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Weakly nonlinear states as propagating fronts in convecting binary mixtures
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We present a picture of the weakly nonlinear time-dependent (blinking) traveling-wave state in
the convection of binary mixtures as a propagating, spatially confined solution of coupled
Landau-Ginzburg equations. Quantitative agreement with the measured slow oscillation frequen-

cy is found.

The study of the convection of binary fluid mixtures has
proven to be fruitful in furthering our understanding of
the spatial and spatio-temporal behavior of a number of
driven nonlinear systems that undergo a bifurcation to a
traveling-wave type of instability. Examples of such sys-
tems are Tollmein-Schlichting waves in channel flows,'
spiral waves in Couette-Taylor flow,? and the secondary
bifurcation to the oscillatory instabilities in the convection
of pure fluids with low Prandtl number.3

In a binary fluid the parameters affecting the flow are
the Rayleigh number R, which is the dimensionless tem-
perature difference AT, imposed across the fluid layer, and
the separation ratio y, which is a measure of the coupling
between temperature and concentration gradients induced
by the Soret effect.* It is the sign and value of y that
determine whether the convection will be oscillatory or
stationary. For y <0, the competition between tempera-
ture and concentration gradients gives rise to a Hopf bi-
furcation at R, to traveling waves (TW) in the system.

Experimentally, traveling waves were first observed>®
to extend over the entire length of the (rectangular) celli

In addition, a number of experimental observations regarding the blinking and
confined states can be understood in this picture.

For cells of sufficiently narrow dimensions, the patterns
were observed to be one dimensional in appearance. Later
experiments, performed in a closer vicinity of the convec-
tive onset, revealed the existence of time independent, spa-
tially confined TW states’® (confined states). Subsequent
experiments, performed still nearer to the convective on-
set®!% showed the existence of spatially modulated, time-
dependent states (blinking states) where the TW first
propagates, for example, to the right and is confined to the
right side of the cell, it then fades as a left-propagating
TW confined to the left of the cell appears. The cycle
then repeats. At certain values of y, even closer to the
convection threshold, a time independent superposition of
spatially-modulated left- and right-going TW (counter
propagating waves) has been observed.’

Work by Cross'! has shown that all of the above states
exist as solutions of the following coupled Landau-
Ginzburg (LG) equations together with finite reflection of
left- (4, ) and right- (4g) going traveling-wave envelopes
at the lateral boundaries of the cell
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Here ¢ is the system’s control parameter [e=(R
—R.)/R.], 19 and & are the system’s characteristic time
and length, respectively, s is the TW group velocity, and
g1, 82, ¢i, i =0,3 are real parameters. The values of these
parameters are y dependent. Simulations performed by
Cross with all of the ¢; taken to be 0, showed that both the
qualitative spatio-temporal behavior and order of appear-
ance of the experimentally observed states as a function of
€ are reproduced by this theory. In addition, on the basis
of work done on the transition from *“convectively” to “ab-
solutely” unstable states in the framework of a single LG
equation,'? a transition from the spatially modulated,
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lower lying states to the spatially homogeneous full-cell
TW states was predicted to occur at a value of s* =2,
where s* =s10/Ee'/? is the dimensionless group velocity.
Such a transition was indeed observed to occur experimen-
tally'? over a broad range of y, but at a value of s* =1.6
instead of the predicted value.

Another success of Cross’s theory is a complete quanti-
tative description of the dynamical and spatial structure
of the linear oscillatory transients observed in a cell of
finite lateral size. A result of this model is a shift in the
onset of the Hopf bifurcation, €, > 0, resulting from the
spatial propagation of the TW. Growth of the instability
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can only occur in the system for values of € > ¢, when the
losses to the TW amplitude due to imperfect reflection at
the lateral boundaries of the cell are overcome by tem-
poral growth, at rate /7o, as the TW traverse the system.
Therefore, in an experiment, the observed critical temper-
ature difference of convective onset AT (expt), Will always
be higher than the critical temperature difference AT, for
a cell of infinite lateral extent. Recent experiments quan-
titatively confirm the predictions of the linear theory. '>'4

On the other hand, our understanding of the behavior of
the nonlinear states is not as clear. Experimentally, the
following unexplained features have been observed:

(1) The modulation (blinking) period of the blinking
state is much larger than any characteristic propagation
time of the system (e.g., the time required for a TW to
traverse the cell).”!® The origin of this time scale is not
understood.

(2) For a given value of y, the region of existence in R
(or AT) of the confined and full-cell TW branches is
dependent only on AT, and not on the observed critical on-
set.!3 Although the value of AT (expt) can be shifted either
above or below the lower end of the confined branch by
varying the lateral boundary conditions, the behavior of
the branch depends solely on ¢ = (AT —AT,)/AT..

(3) In contrast to the above, the blinking states are nev-
er observed for values of AT < AT (xpt). In the cases
where they have been observed (when the lower end of the
confined branch is above ATc(exp,)) they exhibit negligible
hysteresis relative to the experimental onset. !>!¢

The purpose of this work is to introduce a simple ex-
planation for the blinking states based on Eq. (1). The
main idea is that these states are essentially propagating-
front-like solutions of the coupled LG equations that obey
the “marginal stability” theory'” ~!° of front proPagation.
This theory, which has been verified analytically, '* numer-
ically,'”'® and experimentally,? is relevant to a large
class of physical systems which include the complex LG
equations. The theory states that the propagation velocity
of such nonlinear states is entirely determined by the be-
havior of the linearized equations in the region of small
amplitude behind the front. The velocity then selected by
the entire state will be the slowest for which the front is
stable. This approach yields quantitative agreement with
the experimentally measured blinking frequencies, togeth-
er with reasonable explanations for the above experimen-
tal observations.

As in the experiments, we will assume that at a given
instant a coherent front-type solution of Eq. (1) exists, in
which one TW grows from very low amplitudes (4z ~0)
at one side of the cell to a saturated amplitude (4g>> A;)
on the other side. The dynamics of the front are then
determined by Eq. (1), linearized about 4g =0:

70(8; +58x)Ar = (1 +ico)eAr + £8(1 +ic,)d2 AR

+g2(1+ic3) | AL |24k . )

Note that we cannot neglect the cross-coupling term
since in the region of the front, A, = Ag. In this region
we can take A, to be constant?' (since it is slowly chang-
ing in x and ) and of order ¢'/? [since only then should
Eq. (1) be validl. Because of the stability of TW over

standing waves in our system,22 g2 <0 and we have
70(8, +50;)Agr = el(1 —a) +i(co—ac3)1Ag
+&8(1+ic)d2Ar , 3)

where a= —g,| A, |*/€ is a term which shows the effective
renormalization of ¢ in the vicinity of the front due to the
interaction between the left- and right-going TW
(1>a>0).

Equation (3) is solved by substituting Az =exp(kx
— wt) yielding

_ela —a)+i(co—ac3)1+&8(1 +ic))k?
70 )
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The propagation velocity of the front and therefore of the
entire state is given by the envelope velocity Re(w)/Re(k)
of AR as defined by Eq. (4)

1
kr 70

where k =k, +ik; and the condition, Im(dw/dk) =0, for
the linear stability of the state was used.

We now need to look at the stability of the front. Fol-
lowing Dee and Langer,!” we find that such a solution is
stable if Re(w)/Re(k) = Re(dw/dk) since it “outruns”
any perturbation to it. This condition gives us a continu-
um of possible solutions for k,. We now invoke the “mar-
ginal stability” theory'’~'® which states that the system
will select the velocity for which Re(w)/Re(k)
=Re(dw/dk).

Using the marginal stability condition we obtain

Re(w)/Re(k) =Re(dw/dk)

Re(w)/Re(k) =s —

[0 —a)e+ &k U +cD)], (5)
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From Eq. (6) we now can understand the blinking state as
a front-like state which traverses the cell in the same
direction but slower than the underlying TW. As this
occurs, the downstream end of the state is reflected at the
endwalls, thereby forming a left-going state which after
passing through (and being suppressed by) the higher am-
plitude right-going state, will itself begin to grow in space
and time, thus forming a left-propagating front whose ve-
locity is also given by Eq. (6). The round trip time of
these propagating fronts will be the blinking (or slow
modulational) period T of the state

r Zr‘to
T- - ) 7)
0w/0k  s19—2(1 —a)(1+c3) V2E4e'? (

where I is the aspect ratio of the cell. In Eq. (7), the pa-
rameters g, &y, ¢, and s have either been measured !¢
or calculated.?* The exact value of a cannot be estimated
theoretically since g, and | 4; |? are not known. On the
other hand, we know that a negative value of the front
propagation velocity would correspond to the transition
from the spatially modulated “convectively unstable”
states to the spatially homogeneous “absolutely unstable”
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states of the system. As previously mentioned, this transi-
tion was experimentally observed to occur at a value of
s* =1.6. By setting dw/9k =0 in Eq. (6), we find the pre-
dicted value for s* at the transition to be 2(1
—a)2(1+¢}) 2. Using this determination of a, we now
have both a plausible explanation for the occurrence of
the transition from convective to absolute instability at a
value of s* <2, and a prediction for the blinking frequen-
cy having no adjustable parameters.

In Fig. 1 we compare measurements of the blinking-
state period as a function of ¢ at y=—0.02 for two cells
of different I' with the periods predicted by Eq. (7). We
used the measured values of 79=0.1057, and s =0.93v,
and the calculated one?® of £, =0.381d. Here, d is the cell
height, 7, the vertical thermal diffusion time, and v, the
TW phase velocity at the onset of convection. The agree-
ment with the predictions is seen to be quite good.

Given the picture of the blinking state as a propagating
envelope function that is imperfectly reflected at the cell’s
endwalls, we can understand the dependence of the stabil-
ity of the blinking branch on AT (xpr). As in the case of
the linear state, the blinking state must compensate for
reflective losses by growth as it traverses the cell to remain
stable. Thus, we would expect the lower end of the blink-
ing state branch to appear approximately at the same
point as AT(xp) since the two states exhibit similar
growth at small values of e.

In contrast to the blinking states, the confined TW
branch would not be expected to relate to AT c(expt) in this
picture. The envelope function of the confined branch is
stationary in time and, is therefore, not reflected at the
boundaries. We would like to note that Eq. (7) predicts
the existence of a confined state at a single value of ¢
where Re(dw/dk) =0. Although this value of ¢ does cor-
respond to the point where the observed confined branch
loses stability to the full-cell TW branch, neither the ex-
istence of the confined state over a range of € nor the
aperiodic behavior of the blinking state observed for
(higher) values of ¢ immediately preceding the confined
branch are explained by this mechanism.

In conclusion, we have introduced a simple picture of
the blinking state as a continuously propagating front-like
solution of the coupled Landau-Ginzburg equations intro-
duced by Cross. Using a marginal stability analysis to
calculate the propagation velocity of the leading edge of
such a solution, we were able to provide good quantitative
agreement with experimental measurements of the modu-
lational period of the state. In addition, the qualitative
picture of a spatially confined propagating solution cou-
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FIG. 1. Blinking (modulation) period, T normalized by the
oscillation period T of the linear TW state as a function of e.
The solid lines in both (a) and (b) are the theoretical predictions
given by Eq. (7). (a) y=—0.022 in a 27.5 wt. % ethanol-water
mixture with T'=12.0 and an average temperature of 29.05°C
across the cell. The error bar shown is representative and corre-
sponds to a 1-mK uncertainty in the temperature difference. (b)
v=—0.021 in a 0.3 wt. % ethanol-water mixture with ' =16.25
and an average temperature of 21.43 °C across the cell.

pled with reflection at the lateral boundaries of the system
provides plausible explanations for some recent experi-
mental observations.
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