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Abstract4

Griffith’s energetic criterion, or ‘energy balance’, has for a century formed5

the basis for fracture mechanics; the energy flowing into a crack front is pre-6

cisely balanced by the dissipation (fracture energy) at the front. If the crack7

front structure is not properly accounted for, energy balance will either ap-8

pear to fail or lead to unrealistic results. Here, we study the influence of the9

secondary structure of low-speed crack propagation in hydrogels under tensile10

loading conditions. We first show that these cracks are bistable; either sim-11

ple (cracks having no secondary structure) or faceted crack states (formed by12

steps propagating along crack fronts) can be generated under identical load-13

ing conditions. The selection of either crack state is determined by the form14

of the initial ‘seed’ crack; perfect seed cracks generate simple cracks while a15

small local mode III component generates crack fronts having multiple steps.16

Step coarsening eventually leads to single steps that propagate along crack17

fronts. As they evolve, steps locally change the instantaneous structure and18

motion of the crack front, breaking transverse translational invariance. In19

contrast to simple cracks, faceted cracks can, therefore, no longer be consid-20

ered as existing in a quasi-2D system. For both simple and faceted cracks21

we simultaneously measure the energy flux and local dissipation along these22

crack fronts over velocities, v, spanning 0 < v < 0.2cR (cR is the Rayleigh23

wave speed). We find that, in the presence of secondary structure within the24

crack front, the implementation of energy balance must be generalized for25

3D systems; faceted cracks reveal energy balance, only when we account for26

the local dynamic dissipation at each point along the crack front.27
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1. Introduction30

The existence of cracks causes a significant decrease in the practical31

strengths of materials compared to theoretical values. Once propagating,32

cracks are the vehicle that drives material failure. Crack initiation and33

propagation are of crucial importance in questions ranging from the sta-34

bility of materials (Freund, 1998; Sun et al., 2012; Bouchbinder et al., 2014;35

Ducrot et al., 2014; Yang et al., 2019) to earthquake nucleation and dynam-36

ics (Rosakis, 2002; Svetlizky and Fineberg, 2014; Gvirtzman and Fineberg,37

2021). It is therefore surprising that most of our detailed theoretical knowl-38

edge of fracture is generally limited to ideal systems. In this paper, we take a39

closer look at a central tenet of fracture: energy balance of non-ideal systems.40

In particular, we will examine the validity of energy balance in the presence41

of cracks having non-trivial internal structure.42

Important progress on the dynamics of ‘simple’ cracks has been made in43

two-dimensional and quasi-two-dimensional systems (Freund, 1998; Bouch-44

binder et al., 2014; Long et al., 2021). We refer to ‘simple cracks’ as those45

with no secondary structure. Simple cracks are, conceptually, simple branch46

cuts having a r−1/2 singularity, where r is the distance from the crack tip.47

Upon propagation, they form a clean ‘mirror’ surface in their wake. Linear48

elastic fracture mechanics (LEFM) provides the basis of our understanding49

of simple cracks (Freund, 1998). LEFM assumes linear elastic material re-50

sponse, except in the process zone, a small region surrounding a crack’s tip51

where all dissipative and nonlinear processes take place. Outside the process52

zone, LEFM predicts a singular stress field which is characterized by a K/
√
r53

singularity, where K is the stress intensity factor that quantifies the ampli-54

tude of the stress field. K, depending on the applied loading and geometrical55

configuration of the crack system, determines how the crack tip will behave56

in the given system.57

1.1. Simple and not so simple cracks58

Simple cracks, however, do not necessarily possess a ‘simple’ structure.59

Over the past decade or so, studies have found that the classic square-root60

singularity at the tip of a crack may break down as the large strains near a61

2



crack’s tip force the surrounding material to become nonlinearly elastic. We62

will still refer to cracks, however, as simple cracks so long as no instabilities63

develop and the crack front forms, in its wake, a trivial mirror-like surface.64

At sufficiently high speeds, simple cracks do become unstable. The non-65

linear elastic region will drive oscillatory cracks that generate wavy crack66

paths (Bouchbinder, 2009; Chen et al., 2017; Vasudevan et al., 2021). In67

brittle materials, rapid cracks may also lose stability in other ways. Beyond68

a critical velocity of ∼0.3-0.4cR (where cR is the material’s Rayleigh wave69

speed), mode I cracks can lose stability to micro-branches (Ravi-Chandar70

and Knauss, 1984a,b; Sharon and Fineberg, 1996, 1999; Katzav et al., 2007),71

where the simple main crack spontaneously sprouts daughter cracks; micro-72

scopic cracks that extend away from the main crack until arresting.73

Recent work has shown that even very slow, nearly quasistatic simple74

cracks may also become unstable. A small mode III component is suffi-75

cient to cause simple cracks to break up into discrete segments separated76

by sharp propagating steps. As these cracks propagate across a crack front,77

they leave in their wake segmented, faceted fracture surfaces (Tanaka et al.,78

1998; Lazarus et al., 2008; Baumberger et al., 2008; Pham and Ravi-Chandar,79

2014). Phase-field modeling has shown that a planar crack can indeed be-80

come faceted (Pons and Karma, 2010), when KIII/KI crosses a material-81

dependent threshold (Leblond et al., 2011). Initially planar (simple) cracks82

then evolve into segmented arrays that evolve from a nonlinear helical insta-83

bility. Once crack segmenting takes place through this mechanism, experi-84

ments have shown that steps will merge and the segmented fracture surfaces85

will coarsen in a self-similar way (Ronsin et al., 2014; Chen et al., 2015).86

Recent experiments in polyacrylamide hydrogels (Kolvin et al., 2018) both87

revealed how step topology leads to their stability and that local symmetry88

breaking causes the steps to propagate along the crack front. These stud-89

ies also revealed that steps have a complex local 3D structure. Obviously,90

when a simple crack develops such secondary structures, it can no longer be91

considered as a 1D object having a point-like singularity at its tip, but a 3D92

object bounded by 1D crack fronts. This internal 3D structure (Kolvin et al.,93

2017) significantly alters the local in-plane dynamics of the crack front.94

In many materials, simple crack propagation at very low speeds seems95

to be unreachable. In crystalline materials (Thomson et al., 1971; Marder96

and Liu, 1993) the lattice trapping effect prevents a simple crack from prop-97

agating at very low speeds and jumps to cracks propagating at finite speeds98

are expected to result. Velocity jumps that preclude slow crack speeds have99
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been observed in experiments in amorphous materials, where lattice trapping100

should not play a role. Examples include rubber-like materials (Morishita101

et al., 2016; Kubo et al., 2021) (possibly due to a dynamic rubbery-glassy102

transition at slow speeds), PMMA (Fineberg et al., 1992), and soft brittle hy-103

drogels (Livne et al., 2005). In hydrogels such as polyacrylamide elastomers,104

stable simple crack propagation has never been observed at low crack speeds105

(Kolvin et al., 2018; Cao et al., 2018) and simple cracks are generally ob-106

served to jump to v ∼ 0.2cR. In polyacrylamide gels, steps may form when107

crack fronts are locally perturbed, but it has never been clear if a fundamen-108

tal reason exists for why slow simple cracks have never been observed at low109

crack velocities.110

1.2. Energy Balance in 2D and 3D systems111

A central tenet of fracture mechanics is that the motion of a crack is112

governed by energy balance. Griffith (1921) suggested energy balance as a113

criterion for a crack’s extension, where the energy flux into the crack tip, G114

is balanced by the fracture energy Γ, the energy dissipated per unit crack ex-115

tension. G, the energy release rate, is a quadratic function of K (Irwin, 1957;116

Freund, 1998), and Γ is considered to be a characteristic material property.117

For brittle fracture in effectively 2D materials, the principle of small-scale118

yielding allows us to concentrate on the singular region surrounding the tip119

of a crack, so long as all dissipation is contained within a small scale en-120

compassed within the singular region. When rate-dependent dissipation is121

involved in crack propagation, Γ will be dependent on the crack speed, v. In122

this sense, energy balance is generalized to all crack speeds, Γ(v) = G(v). If123

Γ(v) is known and G(v) can be calculated as a function of v, one can predict124

the motion of the crack tip. Once the crack motion ensues, the dynamics of125

simple cracks are entirely described by energy balance; Goldman et al. (2010)126

showed that LEFM provides an excellent quantitative description of the mo-127

tion of a crack tip under conditions of either a semi-infinite crack propagating128

in an infinite medium or an infinitely long strip. Moreover, the rupture of a129

frictional interface (or earthquake dynamics) is described in both form and130

motion (Svetlizky and Fineberg, 2014; Svetlizky et al., 2017) by the classical131

singular solutions for mode II cracks.132

There are several ways to calculate the G(v). For simple cracks in lin-133

ear elastic materials, the measurement of crack tip opening displacement134

(CTOD) can be easily used to calculate K which, via LEFM, yields the135

value of G. In the close vicinity of the crack tip, this calculation should136
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be supplemented by corrections that account for nonlinear elasticity (Livne137

et al., 2010; Bouchbinder et al., 2014). Sufficiently far from the crack tip,138

the well-known J-integral (Rice, 1968; Freund, 1998) will also quantitatively139

provide G by computing the instantaneous rate of energy flow towards the140

crack tip (in 2D media) through a contour C surrounding the crack tip. J is141

path-independent in the case of quasi-static and steady-state crack propaga-142

tion. The J-integral can be extended to the case of crack propagation in 3D143

materials, where the integral becomes domain-independent with C chang-144

ing to a cylindrical volume around a certain part of a crack front (Eriksson,145

2002). In an infinite strip geometry, the translational invariance of the crack146

in the (steady-state) propagation direction can be utilized to provide a mea-147

sure of G that is independent of the form of the fields and/or dissipative148

processes (Goldman et al., 2010). G can also be calculated by considering149

the crack as a singular defect and G as a configurational force acting on the150

crack (Eshelby, 1951; Adda-Bedia et al., 1999b). Using this, Adda-Bedia151

et al. (1999a) suggest a generalized energy (force) balance; balancing G and152

dissipative forces during crack motion.153

In the case of a crack front involving local 3D secondary structure, the lo-154

cal application of the Griffith criterion on the crack front, G(v, z) = Γ(v(z)),155

where z represents a spatial point on the crack front, has been widely used156

in theoretical work to predict the local front motion and stability. For exam-157

ple, Ramanathan and Fisher (1997) and Morrissey and Rice (1998) studied158

the interactions of dynamic crack fronts with localized perturbations to the159

fracture energy using local energy balance. This work predicted a propagat-160

ing mode within crack fronts, coined ‘crack front waves’, which were later161

observed experimentally (Sharon et al., 2001). Leblond et al. (2019) and Va-162

sudevan et al. (2020) combined the Griffith criterion and the principle of local163

symmetry (Gol’dstein and Salganik, 1974), through a heuristic hypothesis of164

dependence of the fracture energy on the mode mixity ratio, to study the165

generation of faceted cracks under mode I + III loading. This work predicts166

both a low (but finite) threshold for the formation of steps and step drift in167

the presence of a mode II component.168

Γ(v) is considered to be a material-dependent parameter, however it has169

rarely, if at all, been directly determined (or measured). Instead, energy bal-170

ance for simple cracks is used to determine Γ(v), since G(v) can be either171

calculated or directly measured. In effectively 2D materials, experiments172

have shown that different methods used to measure G(v) yielded the same173

result (Goldman et al., 2010; Sharon and Fineberg, 1999; Scheibert et al.,174
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2010), so the Γ(v) that is determined in this way indeed appears to be ro-175

bust. Can one, however, use (or ‘trust’) analogous measurements of Γ for176

cases where cracks are not simple? Whereas measurements of G(v) can be177

performed that are not affected by the nature of a crack front, can a char-178

acteristic and solely material-dependent value of Γ of a 3D crack (which is179

independent of the state of the crack front) be determined via energy bal-180

ance? A related question is whether energy balance is a local condition (i.e.181

G(v, z) = Γ(v(z)). To our knowledge, quantitative measurements of the local182

fracture energy showing how the local secondary structure of the crack front183

contributes to Γ have not yet been performed.184

In this work, we will address a number of the issues stated above. We185

will study crack propagation, in polyacrylamide hydrogels, at very low crack186

speeds, where dynamic effects are negligible. By carefully controlling the187

crack initiation conditions, we will first show that simple cracks in these gels188

are universally stable at speeds varying from about 0 to 0.2cR. If stringent189

control is not exercised and slight mixed-mode I+III perturbations are ap-190

plied, slow cracks will become segmented and form propagating steps along191

the fracture front over the same speed range. The co-existence of the single192

crack and the faceted crack states, therefore, reveals bistability of a crack’s193

state. We then utilize the simple cracks generated to measure, for the first194

time in these materials, Γ(v) at these very low crack speeds, using either the195

CTOD or the J-integral measurements.196

When a crack front develops steps, we will demonstrate that the 3D197

structure of the crack front significantly increases dissipation and results in198

an increase of the ‘apparent’ fracture energy that we would assume, were the199

system entirely 2D. Not only do crack fronts form cusp-like shapes at step200

locations (Kolvin et al., 2018), but the dynamic behavior of the entire crack201

front is affected; under constant G conditions both the mean crack front202

speeds and lengths continuously change with the step evolution. We find203

that G is indeed balanced by the total fracture energy, but this only becomes204

clear when we correctly account for all of the variations in geometry and205

dynamics of the crack front that are induced by the steps.206

2. Materials and Experiments207

2.1. Properties of the polyacrylamide gels208

Our fracture experiments were performed using polyacrylamide gels, which209

obey the neo-Hookean elastic constitutive law. The materials are homoge-210
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neous, transparent, and incompressible. Crack dynamics in these materials211

are representative of the broad class of materials that undergo brittle failure212

(Livne et al., 2010; Goldman et al., 2010; Bouchbinder et al., 2014). The213

near-tip fields of propagating cracks are singular and the features character-214

izing their dynamics (e.g. microbranches, front waves, equations of motion)215

are identical to those of other brittle materials (Livne et al., 2005). Hence,216

polyacrylamide gels have been used to verify LFEM predictions (Livne et al.,217

2010; Goldman et al., 2010) and to investigate the effects of nonlinear elas-218

ticity (Bouchbinder et al., 2014). A significant advantage of using these219

materials to study fracture is that they provide a means to perform direct220

and precise measurements of the near-tip structure of the fields driving rapid221

cracks, by slowing crack propagation speeds by nearly three orders of mag-222

nitude (cR in these gels is, for example, 500 times below that of soda-lime223

glass).224

The gels used in this work have a composition of 13.8% (w/v) acrylamide/bis-225

acrylamide with a 2.6% (w/v) cross-linker concentration, providing a Young’s226

modulus E = 105.6 ± 4.2 kPa and shear wave speed cs = 5.9 ± 0.15 m/s.227

The Poisson ratio of 0.5 yields a plane stress Rayleigh wave speed, cR, of 5.5228

± 0.15 m/s. This is the same gel composition used in much previous work on229

brittle fracture (Livne et al., 2005, 2010; Goldman et al., 2010). Our samples230

are of long-strip geometries with typical dimensions L0× b×w of 40 × 20 ×231

1 mm along the crack propagation x, tensile loading y, and sample thickness232

directions z, respectively (see Fig. 1). A pre-crack of 5 ± 1 mm along the x233

direction is introduced at one of the edges of each sample, midway between234

its vertical (y) boundaries.235

2.2. Preparing the initial ‘pre-crack’236

The form of the imposed pre-cracks significantly affects a crack’s initial237

propagation mode. To generate pure mode I propagation, special efforts238

were required to create nearly pure mode I pre-cracks, whose entire fracture239

plane is, as closely as possible, within a single xz plane aligned normal to the240

loading (y) direction. These ‘clean’ pre-cracks were formed by forcing initial241

cracks to arrest while imposing external guiding of the initial crack direction.242

To create clean pre-cracks, we first adhered a thin layer of PDMS to one of243

the gel sample faces to act as a ‘guide’. This guide had the same thickness as244

the gel sample that was adhered to it and contained a cut with the desired245

extension length of the pre-crack. A shorter pre-crack along the x direction246

was created within the gel, by the application of a scalpel having its xz plane247
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located at the y location of the cut in the guide. The xz plane formed by the248

scalpel needed to be both oriented correctly and as mirror-like as possible so249

that a pure mode I crack could be generated after a short extension. The250

composite gels/PDMS sheet was then non-uniformly stretched under tension,251

with the maximal stretch at the position of the cut. Since the shorter pre-252

crack within the gel was free of adhesive constraints and the PDMS layer is253

much tougher than the gels, only the extension of the pre-crack within the254

gel sample was triggered. This pre-crack then extended until encountering255

the notch tip determined by the PDMS guide. Beyond this point, the PDMS256

layer constrained the opening displacement of the crack and, consequently,257

arrested the crack. The PDMS guide both determined the length of the pre-258

crack, and, importantly, forced it to be constrained within the desired initial259

plane. Once the initial crack was formed, the applied tension was reduced to260

zero and the PDMS layer was removed.261

To generate faceted cracks, the PDMS guide was simply not used. This262

caused pre-cracks to be slightly tilted in planes not normal to the y direction.263

Any tilt produced a small local mode III component at the tip of the initial264

crack (Ronsin et al., 2014) that was sufficient to excite facets. We also found265

that mode II components that were externally imposed onto a clean initial266

crack face would not excite facets.267

Once the pre-crack was formed, fracture was initiated in mode I by a268

slow and uniform displacement of the vertical boundaries until reaching the269

fracture threshold, whose value was dictated by the length of the pre-crack.270

In this way, experiments were controllably performed for a range of imposed271

strains. In the long strip configuration, cracks accelerate at the early stage272

and reach nearly steady-state propagation after communicating with the sam-273

ple boundaries (Goldman et al., 2010).274

2.3. Fracture experiments surrounded by air275

Crack motion together with the surrounding displacement fields were276

measured using a fast camera (IDT-Y7) having a spatial resolution of 1920277

× 1080 pixels and a frame rate of 8000 Hz. The camera was mounted above278

the sample and normal to its plane and imaged an area 10.7 × 6 mm2 that279

initiated a few mm’s beyond the pre-crack. The imaged area was illuminated280

via a collimated light beam directed normal to the sample plane from below.281

Around the crack tip, large deformation gradients along the z direction282

appear within the singular region. These gradients are due to strong mate-283

rial contraction in z, caused by gel incompressibility, that must balance the284
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Figure 1: Experimental setup. Experiments were performed with transparent poly-
acrylamide gel sheets under quasi-static tensile loading. The gel sheets were surrounded
by either air or water layers. (a), In the air, gels were illuminated via a collimated beam
of incoherent light that was transmitted normal to sheet surface (from the bottom face) to
produce a shadowgraphy image of both the crack opening and a grid that was imprinted on
one surface of the gel (xy plane). Dynamic cracks were initiated from a pre-crack located
at the center of one of the sample edges. The shadowgraph images formed by the fracture
process were captured with a high-speed camera mounted above the sample. Lower panels:
Example of a pure mode I simple crack (top) and a faceted crack (bottom) imaged from
above. Two of the steps formed on the fracture surface of the bottom image are noted.
The caustics in the vicinity of the crack tip (highlighted by the yellow dashed curves) are
due to a lensing effect; the high stresses near the crack tip cause the gel to contract in the z
direction. (b), Some experiments were performed in a water bath to eliminate this lensing
effect and the resultant caustic. The lighting and camera were mounted at 45◦ to the
yz plane. This enabled the entire crack front to be visualized by shadowgraphy, together
with the CTOD. Bottom panels: a simple mode I crack front is smooth (top), while the
front locally forms a cusp-like shape (bottom) surrounding any steps formed. In the upper
panel, the crack tip opening displacements of the upper and lower surfaces of the simple
crack are highlighted by the green full and dashed lines, respectively. Both crack fronts
are denoted by red dotted lines. The black sections behind the crack front correspond to
the planar upper and lower fracture surfaces where the transmitted light was refracted
away from the camera. Steps on the fracture surface (blue arrow) are observable due to
light that is scattered into the camera by step edges.
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large extensions in the xy plane. This strong contraction gives rise to lensing285

effects; light, which is strongly refracted in the near-tip singular region, does286

not reach the camera. This creates the caustics within the image, the black287

regions surrounding the tip that are highlighted by the yellow dashed curves288

in the bottom panels of Fig. 1a. In the past, these caustics have provided289

an optical tool that was utilized to study the singularities of the stress field290

around the crack tip (Manogg, 1964; Theocaris, 1970). Here, we used the291

centroid of these caustics to both determine the crack tip location and cal-292

culate the crack speed. This method is consistent with the use of the tip of293

the parabolic crack opening for the single crack and provides improved preci-294

sion for crack speed measurements of faceted cracks, as the caustic centroid295

provides the instantaneous mean position of the crack front in z. In the fol-296

lowing sections, as we will be describing crack fronts, to avoid confusion we297

define v as the mean crack front speed in z and v(z) as the normal velocity298

to the crack front at each spatial location, z.299

We measure the displacement field around the crack by imprinting on300

one surface of the gel sample (see Boué et al. (2015)), a shallow square grid301

(depth 2 µm) having a lattice spacing of 60µm. This was accomplished as302

follows. We cast the gels in a mold formed by two glass plates separated303

by a (typically 1mm) spacer. On the xy surface of one of these plates, we304

embossed a rectangular grid formed by lithographical printing of a spin-305

coated epoxy layer. Upon casting, this grid mesh was imprinted on one gel306

surface. When a crack propagated across the measurement area, each frame307

of the camera captured the instantaneous image (through shadowgraphy) of308

the distorted grid. The location of each grid point in the deformed field was309

determined by its center with a resolution of ∼1 µm. The deformation field310

surrounding the crack was obtained by comparing the position of the grid311

points in the deformed frame to their position in the reference (deformation-312

free) frame. Examples of propagating simple and faceted cracks with their313

respective deformed grid patterns are presented in Fig. 1a.314

2.4. Fracture experiments surrounded by water315

To follow the crack front dynamics along the thickness (z) direction, while,316

in parallel, measuring the mean location of the crack front in the xy plane,317

we developed a slightly different optical technique. To this end, we needed318

to both remove the caustics as well as enable optical access to the crack front319

during propagation. Gel samples without grids were used. The transparency320

of the gels provided the possibility to observe the whole crack front, when321
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oblique imaging is used. When the samples are bounded by air, however,322

the crack front is hidden by the caustics formed in the vicinity of the crack323

front. Since the gels consist of cross-linked polymers immersed in water, their324

measured refractive index (1.365) is nearly perfectly matched to that of the325

water (1.333). Hence, as illustrated in Fig. 1b, we were able to eliminate326

the appearance of caustics during fracture experiments by surrounding the327

sample with a water bath. We note that variations of the fracture energy328

due to the surface tension (72.8mN/m) of the surrounding water are < 1%329

and therefore negligible.330

The crack front motion was measured by the fast camera using highly331

magnified images (a field of 6.1 × 3.5 mm2 was mapped to the camera’s332

1920 × 1080 pixel resolution) with a frame rate of 7000 Hz. As presented in333

Fig. 1b, the dynamics of the whole crack front could be captured by mounting334

both the camera and collimated beam at an angle of 45◦ relative to the xy335

plane.336

Fig. 1b presents snapshots of both a single crack and a faceted crack337

developing steps. The CTOD of the top and bottom surfaces of the single338

crack are highlighted by the green full and dashed lines, respectively. As339

the light passing through the crack opening surface is refracted away from340

the camera, shadowgraphy could be used to image the crack front. Owing341

to the small mismatch of the refractive index between the gels and water,342

slight caustics can be observed at the two extremes of the crack front. These343

permit us to easily determine the crack front boundaries (see edges of dotted344

lines in the bottom panels of 1b). Both the local crack front velocity and345

the mean crack front speed could be determined by using the instantaneous346

crack front shapes and positions.347

When a crack forms steps, their characteristic cusp-like shapes within the348

crack front can be observed, as reported by Kolvin et al. (2018). In addition,349

in each frame, we are able to observe the step edge left behind the front, as350

highlighted in Fig. 1b (bottom inset). This is possible because some of the351

transmitted light is scattered by the step edge into the camera. To charac-352

terize the topography of the steps, immediately following experiments where353

a faceted crack was formed, we created a cast of the fracture surface using354

polyvinyl siloxane. These casts are able to reproduce the surface topography355

at microscopic levels. We then measured the fracture surface casts using356

an optical profilometer with an in-plane resolution of 2 µm and out-of-plane357

resolution of ∼0.1 µm.358
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Figure 2: Bistability of slow cracks. Typical crack speeds as a function of time for
simple (a) and faceted (b) cracks. (a), A simple crack, triggered from a clean pre-crack
located along the xz plane under pure mode I loading conditions, generates a mirror-like
fracture surface (inset). Presented are the dynamics of two typical simple cracks that
were driven by imposed stretches of 1.07 (black line) and 1.063 (red line). The former
(black line) slowly accelerated before reaching steady-state propagation of v=10.9 mm/s
= 0.02cR. In the latter experiment (red line) the crack propagated at a speed of v ∼1.0
mm/s = 0.002cR. (b), A faceted crack was triggered via a pre-crack that was slightly
tilted away from the xz plane, and propagated under applied tensile loading condition
with an imposed stretch of 1.068. The tilted pre-crack generated a mixed-mode (I+III)
initial condition near its tip. This experiment formed a faceted fracture surface (inset). In
contrast to the smooth dynamics of the simple cracks in (a), the mean (in z) crack front
dynamics were erratic, reflecting the complex dynamics of the initial steps and, later, of a
single step (shaded region) that propagated within the crack front.

3. Results359

3.1. Bistability of simple and faceted cracks360

In these materials, ‘simple’ mirror-like cracks in mode I have never, to our361

knowledge, been observed for low velocities. As explained in Section 2.2, we362

were able to achieve simple crack states for low velocities from 0-0.2cR by very363

carefully setting the initial conditions of the pre-crack prior to application of364

stresses. Fig. 2a presents an example of the crack speed, v, as a function of365

time for two typical simple cracks, that propagated at steady-state velocities366

of v = 0.002cR and 0.02cR. Stable simple crack propagation generates a367

mirror-like fracture surface, as shown in the inset of Fig. 2a. We find that,368

once simple cracks are excited, they remain ‘simple’ for any velocity up until369
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the formation of micro-branches. This implies that pure mode I cracks in370

gels can exist at any slow crack speed.371

Faceted crack propagation at a very low speed was achieved by initiating372

fracture with slightly tilted pre-cracks, which generated mixed-mode I + III373

initial conditions. Fig. 2b presents an example of crack dynamics during the374

propagation of a faceted crack. The crack speed is highly fluctuating and375

the fluctuations are correlated with the presence of crack segmentation. The376

segmentation of the fracture surface is the result of step formation within the377

crack front. The crack develops out-of-plane steps, which propagate along378

the crack front at an angle of about 43◦ relative to the local front normal,379

as reported by Kolvin et al. (2018). The traces of traveling steps form step-380

lines on the fracture surface. In general, a crack will develop multiple steps381

immediately after initiation, when subjected to mixed mode I+III perturba-382

tions. As noted previously (Ronsin et al., 2014; Pham and Ravi-Chandar,383

2017, 2016), initial steps have complex behavior (as seen in, e.g., Fig. 2b).384

Steps may separate, coarsen and/or disappear upon interaction. When steps385

encounter a free surface, they are often reflected; steps approaching a free386

surface will change direction and propagate to the other free boundary. Such387

repeated step reflection creates a periodic step-line on the fracture surface388

(Fig. 2b). In parallel, the mean crack speed along the sample width (z)389

oscillates in phase with step reflections (see the shaded region of Fig. 2b).390

Fig. 2 also demonstrates crack bistability at low speeds. Both simple391

and faceted cracks propagate within the same range of velocities and applied392

loads. When initiated by mixed mode initial states, faceted crack states393

may appear from speeds of nearly zero. Faceted crack states will generally394

disappear when crack speeds increase to sufficiently high values. Without395

taking special care in forming pre-cracks, mirror-like cracks will often appear396

when a crack jumps to 0.1 − 0.2cR upon initiation. Empirically, cracks in397

polyacrylamide gels appear to be immune to the precise nature of the initial398

pre-crack when they jump to this velocity range (Livne et al., 2005; Goldman399

et al., 2010). Faceted cracks could also transition directly to micro-branches400

(Kolvin et al., 2017) in this velocity range. At much higher velocities (0.2−401

0.95cR) (Livne et al., 2005) bistability between simple cracks and micro-402

branches may also take place, but faceted cracks are not observed.403

3.2. Simple cracks: energy flux and fracture toughness404

Let us first focus on the simple crack state. Crack propagation is under-405

stood to be governed by energy balance. The crack speed, v, is governed by406
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balancing the energy release rate, G, into the crack front with the fracture407

energy Γ(v), which characterizes the velocity-dependent energy dissipation408

of the crack. The energy consumption within the dissipative zone (per sam-409

ple thickness) can be evaluated in a number of ways. Owing to the nearly410

steady-state crack propagation at the very low speeds, we compute the en-411

ergy flux into any closed contour, C, surrounding the crack tip using the412

J-integral (Rice et al., 1968):413

J =

∫
C

[
U(F)nx − σijnj

∂ui
∂x

]
dC , (1)

where U(F) is the strain energy density, ni stands for the components of414

outer normal vector of C, ui and σij are the 2D displacement and stress field415

components. In our experiments, the gels were deformed under, effectively,416

plane stress conditions. This yields a neo-Hookean strain energy density,417

U(F) = µ
2
[tr(FTF) + (detF)−2 − 3], where F is the 2D deformation gradient418

tensor, Fij = δij + ∂ui/∂xj. The calculation of J is path-independent so419

long as the contour encircles the entire dissipative region. This condition420

also ensures G ≡ J , that is the energy release rate G, a local quantity of the421

crack front, is given by the J-integral, a far field quantity.422

Using the displacement field measured with the grid mesh, G could be423

computed by means of Eq. (1). An example of the calculation of G (through424

different contours surrounding the crack tip) for a simple crack propagating425

at v = 0.002cR is presented in Fig. 3a. G is, indeed, seen to be path-426

independent, even though the smallest enclosed area is below a few hundred427

µm2. This is consistent with Livne et al. (2010), who showed the dissipative428

scale to be within ∼20 µm. It’s worth noting that, as the J-integral is429

measured along the free surface, it represents the energy flux per unit sample430

thickness. The path-independence of J reveals that there are no noticeable431

3D effects and no plastic or extra dissipative effects at the smallest measured432

scale.433

We can use the crack tip opening displacement (CTOD) to validate our434

measurements of G. LEFM predicts that the opening displacement of a435

mode I crack tip can be described by a parabolic shape, for scales beyond436

the nonlinear elastic region adjacent to the crack tip (Livne et al., 2010). An437

example is presented in the Fig. 3a, where the excellent parabolic fit of the438

CTOD implies that, at these very low velocities, the size of the nonlinear439

region is below ∼30 µm. LEFM relates the curvature a of the mode I crack440
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(a) (b)

500 μm

Figure 3: Measurements of the energy flux of simple crack states. (a), Calculation
of the energy flux G for a simple crack propagating at a speed of 1.0 mm/s = 0.002cR.
This sample was loaded under mode I conditions, with an imposed stretch of 1.063. G, is
computed using both the J-integral over different contours (black dashed lines in upper
inset) and the CTOD (yellow dashed line in lower inset). Here, the x axis is the spatial
extension of each contour C in the upper inset along the crack propagation direction
normalized by L0 (the color map corresponds to uyy), while the black dots represent the
value of G calculated via the J-integral for each contour. The red dashed line is the value
of G calculated using the CTOD presented in the lower inset. Both measurements are
within 4% of the value of 5.28 J/m2 that corresponds to the total work measured directly
from the force-displacement loading curve (blue dashed line). (b) G as a function of the
crack speed, v, for multiple experiments. G calculated using CTOD (circles) and J-integral
(squares) are in perfect agreement. Colors correspond to different experiments. The solid
line is a guide to the eye and corresponds to a spline fitting of the data.
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tip to the stress intensity factor KI through441

a =
32πµ2(1 + T/3µ)

[KIΩy(θ = π; v)]2
, (2)

where the moving coordinates (r, θ) are centered at the crack tip (θ = 0 is442

the crack propagation direction), and Ωy(θ; v) is a universal function of θ443

and v (Freund, 1998). T in Eq. (2) is the ‘T stress’, which was calculated444

for the strip configuration by Katzav et al. (2007). In Eq. (2) we ignored the445

background strain dependence of the CTOD, which gives a correction within446

5% for the low crack speeds in these experiments (Boué et al., 2015). Using447

the measured a, Eq. (2) provides KI . For plane stress conditions, G is then448

given by:449

G(v) =
1

E
A(v)K2

I (v) , (3)

where A(v) is a known universal function of v satisfying A(0) = 1 (Fre-450

und, 1998). Since the CTOD is obtained from the average projection of451

the crack opening through the sample thickness, the measured G also corre-452

sponds to the effective 2D energy flux. The value of G derived from Eq. 3453

(red dashed line in Fig. 3a) indeed agrees well with the independent mea-454

surements using the J-integral. The value of G is further validated using the455

force-displacement loading curve (see blue dashed line in Fig. 3a) through,456

G =
∫ λmax

1
σ(λ)dλ · b, where σ is the nominal applied stress given by F/wL.457

Measurements of G, using both the J-integral and CTOD, for different cracks458

with the crack speed varying from about 0 to 0.1cR are shown in Fig. 3b.459

Fig. 4a presents measurements of a typical simple crack front propagating460

at a steady-state velocity of v = 0.018cR, as determined by the mean front461

position in z. The corresponding sequence of instantaneous crack fronts462

shows that simple crack fronts possess invariant shapes whose lengths l are463

constant. We note that i), due to the incompressibility of the materials,464

the sample widths in the deformed (lab) frame, w, contract (via Poisson465

contraction) in the z dimension. ii), Crack fronts of simple cracks are not466

straight, but curved. This curvature typically increases the total front length467

by about 5.5%. Since the variation of the imposed stretches, λ, is small, crack468

front lengths in our experiments are nearly constant at about 0.945 ± 0.03469

mm (inset of Fig. 4b) over the range of measured v. Over this range, both l470

and simple crack front shapes are invariant. The curved crack front coupled471

with the sample width contraction implies that the measurements of G(v)472
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a b

Figure 4: Dependence of the fracture energy on the crack speed. (a), Crack speed
(black symbols) and crack front length (blue symbols) as a function of a crack’s position
along the x direction of a typical simple crack. Inset: Successive crack front shapes at
different positions separated by time intervals of 0.714 ms. Note that, due to Poisson
contraction, the measured sample thickness, w, is below the zero strain sample width of
1 mm. The crack front curvature typically increases the crack front length, l, relative to
a nominally straight crack front, by about 5.5%. (b), Measured fracture energy Γ(v) as
a function of the crack speed, v. The fracture energy Γ = G · w/l differs from the bold
line in Fig. 3b as it takes into account the crack front curvature. The uncertainty in Γ is
due to the uncertainty in l. The red dashed line corresponds to a spline fitting of the data
and is a guide to the eye. Inset: Crack front lengths l of simple cracks with v for imposed
stretches between 1.06 < λ < 1.09.
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(as shown in Fig. 3b) do not provide Γ(v) unless the crack front length is473

properly accounted for. Γ(v) and G are related via the total energy balance474

of the integral crack:475 ∫
w

G(v, z)dz =

∫
l

Γ(v(z))dz , (4)

where G(v, z) is the energy flux into the crack front per unit sample thickness476

measured using Eq. (1) with C far from the crack. Since, far from the crack,477

G(v) is independent of z and the invariance of the front shape implies that478

the local crack speed, v(z) equals the mean crack front speed v, Eq. (4) can479

be written as:480

G(v)w = Γ(v)

∫
l

dz . (5)

Using the measured values of l, we derive Γ(v) using our measurements of481

G(v) (Fig. 3b) and the correction factor w/l as input. In contrast to the482

fracture energy of glass (Sharon and Fineberg, 1999), where Γ(v) only weakly483

varies with v, Fig. 4b shows that Γ(v) in gels is a strongly rate-dependent484

function at low speeds. In the extreme low-speed range (0 < v < 0.1cR), Γ(v)485

is a significantly stronger function of v than for 0.1 < v < cR (Livne et al.,486

2010; Boué et al., 2015). Since no crack front structure is observed, we suspect487

that the rapid increase of Γ(v) with v is related to some (as yet, unclear)488

nonlinear dissipation mechanism involved in breaking the polymer chains489

that bind the gels. It is interesting that a similarly rapid increase in Γ with490

v has also been observed in other polymers for low fracture velocities, such491

as PMMA (Scheibert et al., 2010) and multimaterial 3D-printed polymers492

(Albertini et al., 2021).493

3.3. Energy flux and the dynamics of faceted cracks494

Let us now consider faceted cracks (Fig. 2b), which are initiated via tilted495

pre-cracks (see Section. 2.2) that generate local mixed mode I+III conditions.496

The propagating steps along the crack front that form the facets locally497

increase the crack front length, thereby leading to increased local dissipation.498

Kolvin et al. (2018) analyzed the in-plane dynamics of steps and showed499

that the local fracture energy increase caused by steps induces geometric500

curvature within an, otherwise, approximately straight crack front. Induced501

front curvature resulting from a spatially implanted step in fracture energy502

has also been observed in static cracks (Chopin et al., 2011). Both can503
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(a)

(b)

steps

500 μm

500 μm

steps

microbranches

Figure 5: The energy flux G and dynamics of faceted cracks. Two examples of
faceted crack dynamics, each with a constant value of G. Applied uniaxial stretches, (a)
λ = 1.07 and (b) λ = 1.1. (a) v(t) of a faceted crack that develops steps upon initiation
and undergoes apparent stick-propagate motion before transitioning, at t = 92ms, to a
simple crack and (b) a faceted crack that transitioned to a micro-branching state, at higher
applied strains. Center panels: Snapshots of these cracks in the xy plane for (a) t = 105ms
and (b) t = 12ms. Typical steps and micro-branches that were generated upon the death
of the steps are highlighted. Right panels: G, measured via Eq. (1), is constant throughout
the cracks’ propagation in both examples.
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be described well by LEFM. We now show that step dynamics change not504

only the local behavior of the crack front, but the dynamics of the entire505

crack front. One such example was presented in Fig. 2b; even a single step506

propagating through the crack front gives rise to apparently unstable front507

propagation.508

We first consider the energy flux into faceted crack fronts during non-509

steady front dynamics. Fig. 5 presents two measurements of faceted cracks510

propagating under different stretch levels. In Fig. 5a a faceted crack (stretch511

of λ = 1.07) undergoes nearly ‘stick-propagate’ motion (although v, though512

very small is always finite). Here, a single step, which is reflected by each free513

surface (z = 0, w), moves within the crack front. At t = 92ms the step disap-514

peared and the front became a simple crack. Upon the step’s disappearance,515

the front’s propagation velocity instantaneously jumped by a factor of over 5516

and continued to propagate as a simple crack in steady state motion. As in517

Fig. 3a, we use the J-integral to obtain G throughout this unsteady motion.518

As for simple cracks, measured J-integrals are path-independent. We find519

that throughout this entire complex scenario, G remained constant (Fig. 5a-520

right). We note that values of G calculated via the 2D contours are valid, so521

long as the contours are sufficiently far from the crack front to enable any522

fluctuations in z of the strain fields to be negligible. Moreover, the value of523

G entirely determined which value of v the simple crack acquired after the524

jump; v = 0.023cR corresponded precisely to the G(v) given in Fig. 3b.525

As the mean propagation velocity increases, the complexity of the mo-526

tion of faceted cracks generally increases; step reflection is more frequent (as527

their motion in z scales with v) and spontaneous step nucleation or even528

spontaneous transitions to micro-branching may take place. The resulting529

fluctuations in v become more frequent and highly erratic. Fig. 5b presents530

a particular case of a faceted crack that initiated from a rough pre-crack531

under a relatively high stretch, λ = 1.1. Very complex motion ensued, which532

included both step motion and step-generated micro-branches (Kolvin et al.,533

2017) that broke the up-down symmetry within fracture surfaces that occurs534

when only steps propagate. With the generation, transitions, and death of535

steps, the crack front’s motion became so strongly irregular that the crack’s536

overall propagation direction changed. Despite these highly complex dynam-537

ics, Fig. 5b demonstrates that G remained constant at every instant. Hence,538

the global dissipation of these highly erratic crack fronts is invariant, even539

though large variations and re-distributions of local energy dissipation fre-540

quently took place.541
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Since steps have an inherently 3D structure, one may ask whether 2D542

measurements, as described by Eq. (1), correctly evaluate the energy flux to543

a highly complex 3D system. In light of the examples presented in Fig. 5,544

it is puzzling why both the geometry and dynamics of a step-forming crack545

front are so rapidly changing, despite the fact that the global value of G546

does not vary at all. How does the crack front adapt to maintain invariant547

global energy dissipation? How does the local structure within the crack548

front contribute to the energy dissipation? To address these questions, we549

now examine the local behavior of a step-forming crack front using the 3D550

measurement configuration.551

3.4. Dissipative mechanisms of step-forming cracks552

Analysis of faceted cracks containing a single step was achieved using the553

experimental system described in Fig. 1b that enabled simultaneous mea-554

surement of the dynamics and structure of in-plane crack fronts. These were555

coupled with topographic measurements of the fracture surface formed by556

their propagation. Fig. 6a illustrates the topology of a step (Kolvin et al.,557

2018). The crack front is composed of two disconnected and overlapping558

segments, a curved segment that partially overlaps a flat planar one. Both559

segments propagate simultaneously, while the flat segment is always slightly560

ahead of the curved one. Beyond the overlapping sections, the curved branch561

connects to the flat one and terminates. The overlapped section is hidden562

from view when viewing the fracture surface, but can be measured after sec-563

tioning the fracture surface along planes of constant x. A photograph of a564

yz section of a typical step is presented in the lower panel of Fig. 6a, which565

clearly illustrates the different planes that comprise a step’s structure. Kolvin566

et al. (2018) demonstrated that each step generates a local increase in the567

total crack front extension of ∼ 1.4hstep that is formed by both the increase of568

the instantaneous height, hstep, on the fracture surface of the curved branch569

and the overlap width wstep, as shown in Fig. 6a. All of these contributions570

lead to increased local energy dissipation that, consequently, gives rise to in-571

plane deformation of the crack front profile; a local cusp-like shape (Kolvin572

et al., 2018) as presented in Fig. 6a for a typical step, as it appears in our573

experimental system.574

We measured the hstep by means of profilometer scans of the fracture575

surface. The variation of hstep along the fracture surface is shown in Fig. 6b.576

Upon reflection from one of the free faces of the sample (e.g. z = 0), the step577

initiates from a height of about a few micrometers, grows as an approximate578
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Figure 6: Topography of steps. (a), Formation of steps. Top: Steps are formed by
a discontinuous, disconnected crack front that contains an upper branch (red line) that,
after some overlap (green line), re-connects to the planar branch below (blue line) by
sharply curving towards it. The step topologically retains its stability (Kolvin et al.,
2018) as the planar branch always precedes the curved one. (right panel) As noted in
Kolvin et al. (2018), this configuration forms a cusp-like front, when projected on the xz
plane. A photograph of a typical cusp (by means of the configuration described in Fig. 1b)
is presented. (bottom panel) A photograph in the yz plane of a typical step formed within
a fracture surface. The ‘hidden’ overlapping section (green line), which lies beneath the
curved branch (red line), is an extension of the planar branch (blue). Facets are formed
as such steps progress along the z direction in the direction normal to the curved section.
(b), The measured step height, hstep, as a function of its front propagation distance along
x for a typical step. Once reflected, steps grow while propagating along the crack front.
hstep stabilizes at a height of about 40 µm (Kolvin et al., 2017). Inset: A 3D profilometer
scan of a typical step.
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(a) (b)

(c) (d)

Figure 7: Energy balance of a faceted crack. (a), The total crack front speed decreases
with the growth of a step. The dynamics of the step presented in Fig. 6b is analysed.
Inset: The corresponding sequence of instantaneous crack front shapes (displayed at 1.43
ms intervals) that are formed by the growing step (0 < t < 36 ms). (b), The total crack
front length ltot ≡ lxz + 1.4hstep, where lxz is the apparent front length, as projected
onto the xz plane. ltot continuously grows as steps increase their height. Inset: The
corresponding variation of the in-plane crack front length, lxz. (c), The total fracture

energy, Γ̃, determined by
∫
ltot

Γ(v(z))dz (red symbols), when taking into account the

dynamics and all of the geometric variations of the crack front. Note that Γ(v(z)) is the
fracture energy of simple cracks as presented in Fig. 3b, where we are using local velocities
v(z). Γ̃ is invariant, and equal to the (constant) 3D energy flux G̃ (green line) given by

G · w. The blue symbols correspond to the value of Γ̃ calculated by the mean crack front
speed v. The black symbols represent the apparent fracture energy that would be obtained,
were we to consider only the in-plane crack front length lxz. (d), Energy balance between

Γ̃ and G̃ for numerous different propagating cracks, each incorporating a single step. The
red line represents Γ̃ = G̃. G was calculated by means of Eq. (1), which remains valid for
contours sufficiently far from the crack front.
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power law (Kolvin et al., 2017), and stabilizes at hstep ∼ 40 µm. The process579

generally repeats itself when the step encounters the other free surface (e.g. z580

= w). When the sample surface is bounded by air, step reflection is commonly581

observed (see Fig.2b). Upon reflection, steps are inverted in orientation, lose582

height, again starting from a hstep of a few microns, and propagate in the583

opposite direction. When the free surface is, however, bounded by water, the584

step is often not reflected, and disappears upon arrival at the free surface. We585

believe that this step ‘death’ is the result of near-perfect acoustic transmission586

at the boundary between the gel and water.587

Fig. 7a presents the detailed dynamics of a step-forming crack front as588

the step progresses from z = 0 to z = w. The inset of Fig. 7a shows the589

sequence of instantaneous in-plane (xz plane) crack front shapes separated590

by a time interval of 1.43 ms. The step forms a locally concave front shape591

and travels along the crack front. Its location is highlighted by the red dashed592

arrow. The mean crack front speed v, determined by the average of the local593

crack speeds in z, is found to continually decrease with the step’s growth.594

In this example, the free surface is bounded by a water bath, and the step595

‘dies’ when it impinges on the free surface. Upon the death of the step, the596

crack became a simple crack, with a typical curved front (see Fig. 4a) that597

propagates with a nearly constant speed. The decrease in the crack front598

speed is not the result of averaging in z; the step caused the entire crack599

front to decelerate. This is revealed by the progressively decreased spacing600

between adjacent front positions presented in inset of Fig. 7a. Moreover,601

during the motion of the step, the whole curvature of the in-plane front602

shape continuously changed. Consequently, the length of the in-plane crack603

front, lxz, continuously increased as hstep grew (see inset of Fig. 7b). Using604

the measurement of hstep (see Fig. 6b), the variation of the total crack front605

length ltot, given by lxz + 1.4hstep, can be obtained, as shown in Fig. 7b.606

With ltot in hand, we can now define the total energy dissipation of the607

entire crack front, Γ̃. This quantity, having physical dimensions J ·m−1, is608

calculated by summing the contribution of local energy dissipation Γ(v(z))609

for each point along the total extent, ltot, of the crack front. This reads:610

Γ̃ =

∫
ltot

Γ(v(z))dz , (6)

where Γ(v(z)) is the fracture energy of a simple crack. Γ(v(z)) was deter-611

mined using the local crack speed and the independent measurement of the612

fracture toughness provided in Fig. 4b. Since the overlapping structure of the613
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step is coupled with the in-plane cusp of the crack front and moves at speed614

vcusp, Γ̃ in Eq. (6) is given by
∫
lxz

Γ(v(z))dz + 1.4hstep · Γ(vcusp). The result615

of Γ̃, measured at each instant shown in Fig. 7a, is presented in Fig. 7c (red616

symbols). The figure shows that the total energy dissipated by the whole617

crack front is invariant during the growth and motion of the step. Since618

the local normal speed v(z) of the step-forming crack front weakly fluctuates619

around its mean value, v, we can also approximate Γ̃ using the mean crack620

front speed: Γ̃ ≈ Γ(v)ltot. As shown in Fig. 7c, the value of Γ̃ calculated621

in this way is nearly indistinguishable from that calculated using the local622

crack front speed v(z). The invariance of Γ̃ is not trivial; it takes place de-623

spite the continuous development of the step, which significantly alters both624

its shape and crack dynamics. Furthermore, since ltot is correctly taken into625

account, the energy balance of the 3D crack front is retained; the value of626

Γ̃ is precisely equal to the total energy flux into the crack front G̃ = G · w,627

where G represents the energy flux far away from the crack, determined by628

the speed of the steady-state propagation of the crack using Fig. 3b.629

For comparison, we also present the energy dissipation that is obtained630

were we not to consider the increased crack lengths induced by the step in631

Fig. 7c. The discrepancy with Γ̃ underscores the fact that all of the varia-632

tions in crack dynamics and crack geometries must be taken into account.633

Without accounting for all of the crack front variations imposed by a step,634

the constancy of Γ̃ for constant G would not be apparent, for the typical ex-635

ample presented in Fig. 7c. More generally, the equality of Γ̃ and G̃ is shown636

to be generally valid in Fig. 7d, where Γ̃ is compared with G̃ for numerous637

different step-forming cracks.638

4. Discussion639

Special attention must be drawn when any dissipative mechanism breaks640

the invariance in z that is necessary for effectively 2D behavior. Upon any641

change of the local dissipation, crack fronts may undergo significant changes642

in dynamics, geometry, and even topology, while still retaining global energy643

balance. A particular example is the presence of steps; conserving energy644

balance while not being described by 2D LEFM. Examples of this can be645

seen in the sharp jumps of the local velocity despite a constant G, both upon646

step reflection from free boundaries (Fig. 2) and the transition from stepped647

cracks front to simple cracks (e.g. Fig. 7a). Below we discuss a number of648

phenomena that have been clarified by this study.649
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Incorporating crack front structure for slow cracks:650

Once the ‘bare’ fracture energy Γ(v) is known (e.g. Fig. 3b), our results651

suggest, at least for slow fracture in 3D isotropic materials, that geometric652

considerations of crack fronts are all that is required for calculating the frac-653

ture energy. The opposite is also true; if one performs such a comparison,654

and empirically finds that energy balance is not conserved, then there is a655

strong likelihood that some aspect of the geometrical crack front structure656

has been missed. Tanaka et al. (2000) understood this point and incorporated657

crack surface roughness of faceted cracks in their estimates for Γ(v). As Fig.658

7 however shows, simply incorporating the surface roughness is insufficient.659

The true determination of Γ̃ depends critically on the details of the crack660

front state; both the crack’s out-of-plane structure as well as its curvature661

and length must be taken into account. Without doing this, any apparent662

‘characteristic’ dissipation that would result from naive 2D energy balance663

would lead to significant errors. Such misinterpretation could lead to dis-664

crepancies or effective ‘state dependence’ in perceived values of Γ(v) as well665

as ‘effective’ dissipation of the 2D problem that are inconsistent with crack666

dynamics (as could be interpreted from the in-plane calculation in Fig. 7c).667

Incorporating crack front structure for dynamic cracks:668

Once a crack becomes strongly dynamic (e.g. v > 0.5CR) then inertial669

effects become important and purely geometrical contributions to Γ̃ must be670

supplemented by dynamic ones. In this vane, Sharon and Fineberg (1999)671

showed that, for rapid dynamic cracks undergoing micro-branching (and con-672

sequent crack speed fluctuations), the application of energy balance to predict673

the mean crack speed (even while incorporating all of the additional surface674

created by the extensive micro-branches in Γ(v)) is not sufficient to determine675

the equation of motion for the resultant mean crack velocity. This same study676

showed that only the crack speed of instantaneously simple crack states (for677

which the inertial contributions are correctly incorporated by LEFM) could678

correctly evaluate Γ(v) of the material.679

Local Energy Balance:680

In this work, we have measured the local energy dissipation Γ(v(z)) along681

the crack front and the total energy flux G into the full crack front to probe682

the global energy balance Γ̃ = G̃. While we have not directly demonstrated683

local energy balance, we believe that this property can be inferred from our684
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measurements. Our experiments have demonstrated that energy balance is685

maintained in each moment in time, regardless of the instantaneous crack686

front length or step position and amplitude. The result that global energy687

balance holds for the numerous arbitrary and continuously varying crack front688

shapes and dynamics that were sampled, therefore, constitutes a proof that689

local energy balance Γ(v(z)) = G(v, z) at each point along the crack front690

also takes place. This result has been implicitly assumed in many previous691

studies, when non-planar fronts have been considered, but this assumption692

had never been explicitly verified. Local energy balance was suggested by693

the work of Chopin et al. (2011), who used Gao and Rice’s first-order pertur-694

bation analysis of the crack front (Gao and Rice, 1989) to demonstrate that695

local energy balance provides a good explanation of the crack front profile696

when a crack moves along the boundary formed by a manufactured jump in697

fracture energy. Kolvin et al. (2018) later used this analysis to quantitatively698

describe the shape of a crack front resulting from a propagating step.699

Generality of the results:700

Here, we have focused on the overall structure of stepped crack fronts701

in polyacrylamide gels. The structure and influence of these steps may be702

similar to the mechanisms that give rise to observed faceted fracture sur-703

faces in other brittle amorphous materials. Well known phenomena include704

‘lance-like’ or ‘twist-hackle’ structures in glass (Sommer, 1969; Hull, 1999),705

and faceted fracture surfaces in gelatin (Baumberger et al., 2008; Pham and706

Ravi-Chandar, 2016) and Homalite H-100 (Pham and Ravi-Chandar, 2014,707

2016). Facets in such amorphous materials should be qualitatively different708

than the faceted fracture surface in brittle crystalline materials, as the latter709

is formed by deflected crack fronts propagating along multiple crystal planes710

(Kermode et al., 2008). Despite any differences in the physical natures of711

facets, the necessity of accounting for crack front structure is generally true712

in any analysis of energy balance. For example, we have seen in Fig. 4 that713

even for the ‘trivial’ case of simple cracks, the crack front structure (crack714

front curvature) should be taken into account to provide precise values for Γ.715

716

While this work has clarified much of the influence of secondary structure717

on crack front dynamics, many questions still remain. Below, we note a718

number of important unresolved issues.719
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Stability and Bistability:720

We have found that the formation of simple cracks at low speeds critically721

depends on the imposed initial and loading conditions. Once formed, simple722

cracks remain surprisingly stable. On the other hand, at ‘zero’ velocity, very723

slight anti-planar perturbations of the initial crack or slight mode mixity724

in the loading will cause simple cracks to lose stability and excite stepped725

cracks. Once excited, the stability of steps in gels is maintained, as Kolvin726

et al. (2018) have shown, because of the step topology. At intermediate727

velocities (e.g. v ∼ 0.1cR) simple cracks become, apparently, much more728

stable than faceted cracks; empirically, stepped fronts generally transition to729

simple cracks for sufficiently large v. Thus, bistability is lost. The mechanism730

driving this transition is still unknown.731

Anisotropic Materials:732

Determination of the fracture energy using solely geometric considera-733

tions may not be true for ductile materials like anisotropic metallic alloys734

(Pineau et al., 2016). The crack fronts in these materials are usually com-735

plex and even subtle details of the mode of fracture (e.g. plane strain vs.736

plane stress) may well give rise to different values of the fracture energy737

(via e.g. the local selection of different local fracture planes). These mate-738

rials may therefore undergo complex and stress-direction related dissipative739

mechanisms (Garrison Jr and Moody, 1987) that are more complex than the740

simple geometrical considerations that hold for isotropic materials, such as741

gels. Such complexity could also invalidate the measure of G by the use of742

J-integral measurements performed on a single material plane or free surface,743

such as those utilized in our experiments.744

Validity of the 2D J-integral to 3D systems:745

Even in effectively 2D systems, the accuracy of the J-integral is based on746

the fact that all of the dissipative mechanisms are confined to the near-tip747

region. This, for example, may not be the case when mechanisms such as748

poro-viscosity are significant (Baumberger et al., 2006; Noselli et al., 2016).749

In such cases, where significant bulk dissipation occurs (Bouklas et al., 2015;750

Yu et al., 2018), path dependence will yield non-trivial information about751

material properties. In our case, the path independence of our measurements752

(see Fig. 3a) implies, for example, that (for the composition of polyacrylamide753

gels that we used) poro-viscous contributions can indeed be neglected.754
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For non-simple crack fronts, if a contour approaches the crack front too755

closely, the 2D J-integral will no longer be an accurate measure of the strains756

surrounding the crack front as translational invariance along z is lost. Care757

should then be taken to ensure that interpretations obtained by such 2D758

calculations are valid; calculations must only be performed at distances such759

that the crack front structure does not significantly affect the z variation of760

the fields far from the crack front.761

762

Properties of Steps:763

Many properties of crack front steps remain unresolved. These include764

how their steady-state height is determined, which for the gels used in these765

experiments is hstep ∼ 40 µm. In these polyacrylamide gels, steps always766

grow upon nucleation or decay upon merging until stabilizing at hstep ∼ 40767

µm. What is the significance of this 40 µm scale? Kolvin et al. (2018) con-768

jectured that once a step emerges, the curved section, by generating a small769

anti-planar perturbation, produces a significant repulsion from the straight770

branch (Melin, 1983; Schwaab et al., 2018). As branch separation should lead771

to a decrease in repulsion strength, it was conjectured that the separation772

distance of the two branches forming a step should stabilize at the distance773

corresponding to when the repulsion balances the attraction. As such, the774

stable height of the step may be an intrinsic property, independent of the ma-775

terial properties, but dependent on a scale such as the size of the overlapping776

section between the two fracture planes that form a step. This, however, has777

yet to be demonstrated and, of course, is related to the complex 3D spatial778

structure of crack front steps, which itself remains a theoretical/numerical779

challenge.780

What determines the dynamic behavior of Γ?781

Our measurements of Γ for simple cracks even in ‘simple’ isotropic mate-782

rials such as the elastomers used here, raise additional questions about the783

role of the internal structure of polymers during the fracture process. For784

example, why do elastomers have such a strong and monotonically increasing785

fracture energy dependence for low values of v? One might expect that the786

opposite would take place; prior to any crack extension due to fracture of the787

material, the tangled polymer chains that make up a gel, if given sufficient788

time (small v) should undergo large elongation and alignment, as well as789

internal friction of the polymer strands (Yang et al., 2019; Baumberger and790
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Ronsin, 2020). In this picture, many of these dissipative processes would,791

conceivably, not have time to develop at high values of v, so that naively792

one might expect the fracture energy to decrease with v. As Figs. 3 and 4793

demonstrate, this is obviously a wrong (or, at least, incomplete) picture. A794

quantitatively accurate description of how this class of materials does break,795

poses (in our view) an interesting challenge. If the large growth of Γ is due,796

in some way to the internal structure of the elastomers used here, one might797

expect to obtain the same behavior for other polymers as a function of v.798

While this is an important question, there is, currently, insufficient informa-799

tion to perform such a comparison.800

801

In conclusion, we have shown here that energy balance is indeed valid802

but only when all of the geometric and dynamic variations of the 3D crack803

front are quantitatively accounted for. Thus, hidden structure can, indeed,804

trigger unexpected consequences and, often counter-intuitive, dynamic be-805

havior. The results of this study may have numerous implications to both806

our fundamental understanding of fracture and resulting material properties807

such as fracture toughness. We have shown that even for the very ‘simple’808

case of the fracture of a brittle material at quasi-static speeds (where inertial809

effects are negligible), internal structure of cracks (or their internal ‘state’)810

will play a crucial role in determining both fracture dynamics and ‘effective’811

fracture toughness. Realizing this is critically important to our interpretation812

of observations in seemingly simple physical situations.813
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