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Rapid rupture fronts1–5, akin to earthquakes, mediate the transition to frictional motion. Once formed, 4 

their singular form1,3,6–11, dynamics12,13and arrest2,14 are well-described by fracture mechanics. Ruptures, 5 

however, first need to be created within initially rough frictional interfaces. Hence, ``static friction 6 

coefficients” are not well-defined; frictional ruptures nucleate over a wide range of applied forces4,9,15,16. 7 

A critical open question is, therefore, how the nucleation of rupture fronts actually takes place17–23. 8 

Here, we experimentally show that rupture fronts are prefaced by slow nucleation fronts; self-similar 9 

entities not described by fracture mechanics. They emerge from initially rough frictional interfaces at a 10 

well-defined stress threshold, evolve at characteristic velocity and time scales governed by stress levels, 11 

and propagate within a frictional interface to form the initial rupture from which fracture mechanics 12 

take over. These results are of fundamental importance to questions ranging from earthquake 13 

nucleation and prediction to processes governing material failure. 14 

The question of rupture nucleation has a long history. The existence of a crack in a stressed brittle material 15 

creates singular stress fields having the form 1/𝑟1/2 , where 𝑟 is the distance from the crack’s tip. Crack 16 

propagation in perfect materials initiates only when a crack surpasses a critical length, the Griffith length, 17 

which is determined by geometry and applied stresses24. Below this length, crack propagation should not 18 

occur. Beyond this length, the energy concentrated at a crack’s tip becomes larger than that needed to 19 

create more surface (the ‘fracture energy’) and cracks will propagate – generally accelerating rapidly to 20 

near sonic speeds.  To lose stability to fracture, a material must, therefore, possess a defect or a ‘seed 21 

crack’ of size larger than the Griffith length.  22 

Will brittle materials fracture when sufficiently large seed cracks do not exist? In the tensile fracture of 23 

heterogeneous materials, statistical coalescence of microscopic cracks25,26  surrounding the tip of cracks 24 

that are nearly the Griffith length can cause material failure. Similarly, shear fracture in (heterogeneous) 25 

rock can occur by the sporadic growth and coalescence of material flaws27. The details of these nucleation 26 

processes, i.e. how small incipient cracks grow to surpass the Griffith length, are largely unknown. 27 

Let us now consider a frictional interface. Frictional interfaces are inherently heterogeneous; these rough 28 

interfaces are composed of ensembles of relatively sparse interconnecting contacts that bridge any two 29 

contacting bodies28. Experiments have shown that the breakdown of a frictional interface is actually a 30 

fracture problem29,30; sliding only takes place when the contacts are broken by coherent fronts whose 31 

dynamics and structure are those of shear cracks1,3,6,8,10.  Such interface cracks can be either rapid 32 

(‘seismic’) and approach the Rayleigh wave speed, 𝑐𝑅, or even quite slow12,31,32 (~0.02𝑐𝑅). While the latter 33 

are ‘aseismic’ (their slow acceleration produces a negligible seismic signature), so long as they are beyond 34 

the Griffith length, they are still quantitatively described by fracture mechanics12.  Slow propagation12,31 35 

in the framework of fracture mechanics will occur if crack lengths barely exceed the Griffith length. Stress 36 

heterogeneities or variation of the fracture energy can even cause interface cracks to arrest2,14.  An open 37 

question is whether all slow interface ruptures associated19,30,33,34 with aseismic precursory motion within 38 



natural faults can be addressed by fracture mechanics. While some material-independent scenarios exist 39 

for propagation below the Griffith length17,34,35 clear experimental measurements are lacking. 40 

Here we address the question of how frictional cracks nucleate, since, for rough interfaces, no initial crack 41 

that is close to the Griffith length exists.  Simplistic nucleation criteria (e.g. a `static friction coefficient’) 42 

are invalid4,16; even considering the same two blocks15 nucleation of interface cracks may occur for “static 43 

friction coefficients” that vary by factors of 5 for, ostensibly, identical nominal conditions.  Experiments5,18–44 
22,33 have observed that very slow ‘aseismic‘ processes often preface the rapid interface break-down 45 

(‘seismic’ processes) that leads to frictional motion, but the form that these processes take is unclear.  46 

Numerical observations assuming velocity36 or slip37 weakening friction laws have also observed slow 47 

nucleation preceding rapid rupture, with no qualitative difference36 between the nucleation phases of 48 

small and large rupture events.  Recent theoretical work17 suggests a well-defined mechanism for 49 

nucleation; slow nucleation fronts, triggered at a well-defined critical shear stress threshold, whose 50 

dynamics are unrelated to fracture mechanics. 51 

Despite their importance, the mechanisms that gives rise to frictional (and earthquake38) nucleation have 52 

been incredibly elusive.  The main reasons for this lie precisely in the unpredictability of the nucleation 53 

process; our inability to control the nucleation location and conditions at the point of nucleation, with the 54 

high spatial precision required, has impeded controlled studies of these critical processes.  55 

By implementing a method that enables precise control of the location and stress conditions at the 56 

nucleation location, we will experimentally demonstrate that the nucleation process occurs only when 57 

applied stresses surpass a well-defined (but interface topography-dependent) threshold. At this point, 58 

nucleation fronts are excited that are unrelated to dynamic fracture. They are extremely slow while 59 

evolving and propagating at stress-dependent time scales. These fronts set the stage for the dynamic 60 

ruptures governed by fracture mechanics. 61 

Our experimental system1, shown schematically in Fig. 1a, consists of 2 PMMA blocks that are pressed 62 

together to form a frictional interface (Methods). Throughout each experiment, we continuously measure 63 

the real contact area 𝐴(𝑥, 𝑧, 𝑡) over the entire interface every 1.7𝜇𝑠, by an optical method based on total 64 

internal reflection32.  The interface, of width 𝑤 = 5.5𝑚𝑚 and length 200𝑚𝑚 consists of randomly 65 

distributed contacts with roughness ∼ 3𝜇𝑚.  At selected locations, 𝑥0, we use a marker to create 1-4mm 66 

thick `barriers’, oriented along the 𝑧 direction, whose fracture energy is about 5 times that of the bare 67 

interface (Extended Data Fig. 1). After application of a constant normal load 𝐹𝑁  (4.5 MPa), we quasi-68 

statically increased the applied shear, 𝐹𝑆, until initial ruptures fronts (Fig. 1b) nucleated at 𝑥 = 0 and 69 

propagated in the positive 𝑥 direction. These initial ruptures accelerate to velocities, 𝑣𝑎𝑟𝑟, before abruptly 70 

arresting2,14 upon encountering the near side of a barrier.  At later times, new rupture fronts will nucleate 71 

at well-defined locations near the barrier’s far side.   72 

Examples of rupture arrest and subsequent nucleation are presented in Fig. 1c. While rupture arrests are 73 

abrupt, it is clear that the time required for nucleation is strongly dependent on the velocity, 𝑣𝑎𝑟𝑟, of the 74 

initial ruptures immediately preceding their arrest. Moreover, as we will show, the stress conditions and 75 

nucleation times are determined by 𝑣𝑎𝑟𝑟, which range up to the Rayleigh wave speed, 𝑐𝑅=1255 m/s.  The 76 



higher 𝑣𝑎𝑟𝑟, the shorter the nucleation time. Furthermore, no nucleation takes place (Fig. 1c –left panel) 77 

for 𝑣𝑎𝑟𝑟  below location-dependent threshold values. 78 
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Figure 1. Experimental setup and rupture arrest by imposing barriers. a, The real contact area, 𝐴(𝑥, 𝑧, 𝑡), (width 80 

𝑤 = 5.5𝑚𝑚 and length 200𝑚𝑚) forming the frictional interface between two PMMA blocks is measured every 81 

1.7𝜇𝑠 by an incoherent light sheet using the total internal reflection method (Methods). A high fracture energy 82 

barrier of width ∼ 1 − 4𝑚𝑚 was imprinted across the interface (gray line). b, (top) 𝐴(𝑥, 𝑧, 𝑡) of a typical rupture 83 

front at the onset of stick-slip motion at times 10𝜇𝑠 apart. (bottom) Full spatiotemporal dynamics of the contact 84 

area, averaged over the z axis. 𝐴(𝑥, 𝑧, 𝑡)  is normalized by 𝐴0 = 𝐴(𝑥, 𝑧, 𝑡0), where 𝑡0 is a time prior to rupture 85 

propagation. Dashed lines denote the times of the snapshots in the top panel. c,  Examples where spontaneously 86 

nucleated ruptures arrest at a barrier located at 𝑥0 = 50mm (grey boxes) . Noted are their propagation velocities, 87 

𝑣𝑎𝑟𝑟 , at arrest. Arrested ruptures may trigger the nucleation of a new rupture on the far side of the barrier. The 88 

duration of the nucleation process decreases with increasing 𝑣𝑎𝑟𝑟 .  Below a threshold value of 𝑣𝑎𝑟𝑟  (left panel) 89 

arrested ruptures will not nucleate another rupture.  90 

In Fig. 2 we focus on the short-time effects of the sudden rupture arrest on the nucleation area. Each 91 

rupture arrest produces a wave that propagates at approximately the shear wave velocity, 𝐶𝑆, that, within 92 

∼ 10𝜇𝑠 of its passage, reduces 𝐴(𝑥, 𝑡) ≡ < 𝐴(𝑥, 𝑧, 𝑡) >𝑧 by 1-2% in a ‘damage zone’ that extends a few 93 

mm’s beyond the far side of the barrier. The damage zone is indicated by a sharp drop of 𝐴(𝑥, 𝑡) followed 94 

by a region of gradually decreasing damage.  We utilize the edge of the sharp reduction of  𝐴(𝑥, 𝑡) to 95 

characterize the extent of the damage zone, 𝜉0 (Fig. 2b).  𝜉0 is defined as the point where 𝐴(𝑥) falls below 96 

the gradual damage level by 2 standard deviations of the measurement noise (Methods). The amount of 97 

the initial damage, D, increases with 𝑣𝑎𝑟𝑟, as shown in Figs. 2c,d. Damage jumps, D(𝑣𝑎𝑟𝑟), occur within 98 

∼10 𝜇𝑠 of  rupture arrest. After that, D(𝑣𝑎𝑟𝑟) are stable, with only slight fluctuations resulting from wave 99 

reflections from the block boundaries. It is interesting that the size of 𝜉0 is nearly independent of 𝑣𝑎𝑟𝑟 100 

(inset) and consistent with the nonlinear scale preceding rupture tips identified in recent cohesive zone 101 



measurements39. Furthermore, while damage always takes place, rupture nucleation does not always 102 

occur; blue symbols in Fig. 2c,d denote arrest events that did not nucleate.  103 
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Figure 2. Rupture arrest generates initial damage ahead. a, Spatiotemporal dynamics of a typical nucleation process 106 
upon arrest of an impinging rupture. (imposed barrier in gray) b, (top) Close-up of 𝐴(𝑥, 𝑡) upon crack arrest. (white 107 
rectangle in a) showing the passage of a wave  (velocity ∼ 𝐶𝑆) generated by the arrested rupture. This wave triggers 108 
damage (reduced 𝐴(𝑥, 𝑡))  in a zone extending a distance 𝜉0 from the far side of the barrier. (bottom) The damage 109 
zone size, 𝜉0, is evident from the instantaneous spatial profile, 𝐴(𝑥, 𝑡), of the contact area at time 𝑡 = 0.02𝑚𝑠 110 
(dashed line in top panel). 𝜉0 is defined as the point where the distance between the measurements and 111 
extrapolated fit (red line) of values of 〈𝐴(𝑥)〉 far from the barrier exceeds 2 standard deviations. Here, 〈𝐴(𝑥)〉 is the 112 
time averaged contact area within the temporally stationary damage zone (Methods). c,   𝐴(𝑥, 𝑡) jumps upon 113 
passage of the shear wave. Shown are  𝐴(𝑡) = 〈1 − 𝐴 /𝐴0〉𝑧,𝑥<𝜉0

 from 3 events with different 𝑣𝑎𝑟𝑟 . We define the 114 
initial damage for each event, D, as the jump in  𝐴(𝑡). d,  D dependence on 𝑣𝑎𝑟𝑟 . While D, clearly increases with 115 
𝑣𝑎𝑟𝑟 , the damage zone size, 𝜉0, (inset) does not. Symbol colors: (blue) events that didn’t form nucleation fronts,  116 
(red) events that nucleated and reached dynamic rupture, (green) events that formed nucleation fronts that 117 
triggered arrested dynamic ruptures. Filled circles: the events presented in (c).  118 

If a new crack is nucleated, nucleation will occur on the far side of the barrier (Fig. 1c), as the contacts on 119 

the far side of the barrier are both damaged (Fig. 2) and experience high shear stresses remotely imposed 120 

by the arrested initial crack. Knowledge of the nucleation location enables us to focus on the nucleation 121 

process and track the formation of the new rupture front.   122 

After a static ‘damage’ stage, where the spatial extent of 𝜉0 is stationary, nucleation fronts, defined by 123 

the propagating edges of the damage zone in the 𝑥 direction, 𝜉(𝑡), form within the weakened area and 124 

slowly expand in space.  An example of the nucleation phase is presented in Fig 3. After an initial period 125 



where  𝜉(𝑡) = 𝜉0,   (blue lines in Fig. 3a ) the regions of reduced 𝐴(𝑥, 𝑡) slowly expand and deepen. 𝜉(𝑡) 126 

is indicated by the brown profiles in Fig. 3a.  𝑣𝑛𝑢𝑐 ≡ 𝑑𝜉/𝑑𝑡,  the nucleation front velocities, are extremely 127 

slow (1 < 𝑣𝑛𝑢𝑐 < 10𝑚𝑠−1) and nearly constant over the 3-4mm length of the nucleation zone.  The slow 128 

expansion characterized by  𝑣𝑛𝑢𝑐 simultaneously takes place in the 𝑧 direction.  Defining 𝛿𝑧(𝑡) as the mean 129 

width in 𝑧 of the nucleation zone (Methods and Fig. 3b), we find that both  𝜉(𝑡)  and 𝛿𝑧(𝑡)  expand at 130 

about the same rate, as is evident in the typical 2D dynamics presented in Fig. 3b and quantified in Fig. 131 

3c. This slow 2D propagation continues until losing stability, at a time 𝜏 after the damage onset (Fig. 2).  132 

At 𝑡 = 𝜏 nucleation fronts abruptly undergo rapid acceleration (Fig. 3c) that signals the onset of dynamic 133 

rupture. Here, ruptures become shear cracks1 whose dynamics are described by fracture mechanics12. 134 

Dynamic ruptures continuously accelerate to propagation velocities about 2 orders of magnitude greater 135 

than 𝑣𝑛𝑢𝑐.   136 
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Figure 3. Nucleation is mediated by slowly propagating nucleation fronts. a, Successive profiles (intervals of 138 
0.12ms) of 𝐴(𝑥, 𝑡) showing the transition from the static damage phase (blue) to slow propagation of a nucleation 139 
front (brown) that triggers dynamic rupture (red). 𝜉(𝑡), denoting the leading edge of the nucleation front, is defined 140 
like  𝜉0 in Fig. 2. b, 𝐴 (𝑥, 𝑧, 𝑡) shows the slow 2D evolution of the nucleation front, normalized after the initial damage 141 
triggered by the rupture arrest at 𝑡 = 0. Snapshots correspond to bold profiles in (a). c, Propagation of nucleation 142 
fronts for 3 events in (top) 𝑥, and (bottom) 𝑧. 𝛿𝑧(𝑡) is the mean width (in 𝑧) of a rupture front (see (b) and Methods).  143 
𝑤 is the sample width. Black curves describe the event in (a,b); circles mark the snapshots in (b). The timescale, 𝜏, 144 
of each event is defined by the sharp onset of the rapid accelerations of 𝜉(𝑡) (dotted lines) that mark the initiation 145 
of dynamic rupture. Dashed lines: mean nucleation-front velocities, 𝑣𝑛𝑢𝑐. 146 

What governs the values of 𝜏? Fig. 3c suggests that 𝜏 decrease with 𝑣𝑎𝑟𝑟. Using fracture mechanics, we 147 

can relate 𝑣𝑎𝑟𝑟 to the magnitude of the induced shear stress field, 𝜎𝑖𝑛𝑑(𝑟) ∝ 𝐾(𝑣𝑎𝑟𝑟) ⋅ 𝑟−1/2, created 148 

ahead of the barrier by the arrested ruptures, where 𝐾 is the stress intensity factor24 (Methods). 149 

Nucleation always takes place within the initial damage zone (𝑥 < 𝜉0), but its precise location is difficult 150 

to identify. We, therefore, define the nucleation point as the center of the damage zone (𝜉0/2 from the 151 



barrier’s far side (Fig. 4a)).  𝜎𝑖𝑛𝑑(𝑟∗) approximates the stress field at the nucleation point, whose distance 152 

is  𝑟∗ from the arrested crack tip.  In Fig. 4b we compare 3 different sets of experiments conducted under 153 

similar conditions (using the same samples and normal load). The sets differed in the barrier (arrest) 154 

location and barrier width imposed (Fig. 1).  Each barrier location triggered nucleation within a different 155 

region within the interface, resulting in a different r* values and ranges of 𝑣𝑎𝑟𝑟 obtained (inset Fig. 4b).  156 

In each of these, we computed the value of 𝐾(𝑣𝑎𝑟𝑟) at the rupture arrest (Methods). This procedure 157 

enables the comparison (Fig. 4b) of 𝜎𝑖𝑛𝑑(𝑟∗)  vs. 𝜏 for each data set.  In all sets, 𝜏 is a continuous function 158 

of  𝜎𝑖𝑛𝑑(𝑟∗) with an approximate dependence 𝜎𝑖𝑛𝑑(𝑟∗) ∝ 1/𝜏 . Moreover, while the proportionality 159 

factor varied with the barrier location, all experiments yielded a distinct (location – dependent) threshold, 160 

𝜎𝑡ℎ𝑟𝑒𝑠ℎ, below which no nucleation front was excited.  161 

 162 

 163 

Figure 4. The shear stress level determines the nucleation time,  . a, We used fracture mechanics to relate 𝑣𝑎𝑟𝑟  164 

to the magnitude, 𝐾, of the stress singularity created by the barrier-arrested rupture, hence the induced stress, 165 

𝜎𝑖𝑛𝑑(𝑟∗), at the nucleation point, 𝑟∗ (distance from the arrest point to the damage zone center, 𝜉0/2 from the 166 

barrier).  b, 𝜏 dependence on 𝜎𝑖𝑛𝑑.  Shown are many events from experiments performed under similar conditions 167 

at barrier locations, 100mm (squares), 70mm (diamonds), and 50mm (circles). The latter data set was used in Figs. 168 

1-5. Dashed lines are guides for extrapolation to 𝜏 → ∞. Black shapes: Highest 𝜎𝑖𝑛𝑑 ≤ 𝜎𝑡ℎ𝑟𝑒𝑠ℎ for which no 169 

nucleation front was observed, within the 15ms limits set by our experimental apparatus. The longest value of 𝜏  170 

observed was 9ms;  values of 𝜏 spanned over 1 (circles, diamonds)  to 2 (squares) orders of magnitude. Typical error 171 

bars correspond to our 20−30𝑚𝑠−1 resolution in 𝑣𝑎𝑟𝑟 . Noted are the values of 𝑟∗ measured for each barrier. (inset) 172 

𝜎𝑖𝑛𝑑  as determined by 𝑣𝑎𝑟𝑟 . 173 

The timescale 𝜏 characterizes the nucleation process.  In Fig. 5 we show that all dynamic quantities 174 

measured within the nucleation process are governed by this single timescale, which can span over an 175 

order of magnitude. 𝜉(𝑡) and  𝛿𝑧(𝑡) describe locations of the leading edges of the front, while  𝐴(𝑡) ≡176 

1 − 〈𝐴(𝑥, 𝑡)/𝐴0 〉𝑧,𝑥 < 𝜉0 describes the contact area reduction at the ‘tail’ of the front, within the initial 177 

damage zone (Fig. 2).   𝐴(𝑡) increases continuously until the onset of dynamic rupture at 𝑡 = 𝜏.  As Fig. 5 178 

demonstrates, when 𝑡 is scaled by 𝜏, the evolutions of all of these independent quantities collapse to well-179 
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defined (local topography-dependent) functions for 𝑡 < 0. ⋅ 𝜏 for each of the different experiments 180 

presented in Fig. 4b.  181 

The data collapse evident for 𝑡 < 𝜏 breaks down, once dynamic fracture initiates. In Fig. 5 events where 182 

nucleation fronts triggered dynamic ruptures are denoted by shades of red. For comparison, we also 183 

include an example (blue) where no nucleation front was excited as well as examples (green) for which 184 

rupture fronts eventually arrested. The instability point at 𝜉(𝑡 = 𝜏), which depends on the barrier 185 

location, is where dynamic fracture initiates.  The breakdown of the scaling of 𝜉(𝑡), 𝛿𝑧(𝑡) and  𝐴(𝑡) at 186 

this point suggests that the nucleation process is indeed disassociated from that of dynamic rupture; for 187 

𝑥 < 𝜉(𝜏) all nucleation fronts behave in the same way, whereas for  𝑥 > 𝜉(𝜏)  front dynamics are 188 

governed by fracture mechanics12. In the borderline cases (green in Fig. 5) fronts arrest beyond 𝜏, possibly 189 

due to either local fracture energy barriers or aging processes40 that  are important at time scales > 1𝑚𝑠.   190 
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Figure 5. Nucleation dynamics scale with the nucleation time,  . a.  (left) Nucleation front propagation in the 𝑥 192 

direction,  𝜉(𝑡), for events at the same (50mm) barrier location with 1.0 < 𝑣𝑛𝑢𝑐 <  .1 𝑚𝑠−1.  (right) When scaled 193 

by 𝜏,  𝜉(𝑡/𝜏) collapse to a single form for 𝑡 < 0. ⋅ 𝜏. (blue) no nucleation and (green) nucleation fronts that either 194 

arrested beyond 𝜏 or (red)  developed to fully dynamic ruptures.   b,  Contact area levels at the ‘tail’ of the front,  195 

Δ𝐴(𝑡/𝜏) ≡ 1 − 〈𝐴(𝑥, 𝑡/𝜏)/𝐴0〉𝑧,𝑥 < 𝜉0,  c, nucleation front propagation in the 𝑧 direction, 𝛿𝑧(𝑡/𝜏) / 𝑤, for the same 196 

events (See Fig. 2) . Insets are respective unscaled data. Note that during dynamic rupture (𝑡 > 𝜏), when the 197 

dynamics are governed by fracture mechanics, no such scaling is observed.  198 

We have used the stress transfer resulting from arrested ruptures to show that nucleation fronts are well-199 

defined vehicles that create the conditions enabling rapid interface rupture. The transferred stress first 200 

weakens the nucleation area (Fig. 2) and then drives the nucleation process (Fig. 4). Such stress transfer 201 

is also believed to drive “remote triggering” of natural earthquakes41.  202 

 203 



We have seen that nucleation fronts are ‘inertia-less’, propagating slowly at approximately constant 204 

(stress-dependent) velocities. We have also seen that, upon surpassing a nucleation length, 𝜉(𝑡 = 𝜏) −205 

𝜉0/2,  these fronts undergo abrupt transitions to the rapidly accelerating, inertially driven, high speed 206 

rupture fronts that are identified with shear cracks.  These nucleation lengths range from 3 to 8 mm and 207 

closely correspond to Griffith lengths (Methods and Extended Data Figures 2 and 3) calculated using 208 

fracture mechanics. We, therefore, identify nucleation lengths with the corresponding Griffith lengths, 209 

𝐿𝐺. This identification, together with the inertia-less dynamics of the nucleation fronts, may also provide 210 

a plausible explanation for the linear relation between 𝜏−1 and 𝜎𝑖𝑛𝑑 − 𝜎𝑡ℎ𝑟𝑒𝑠ℎ in Fig. 4b (Methods).  211 

Our observations of scaling behavior and inertia-less propagation that takes place significantly below 212 

𝐿𝐺  clearly demonstrate that nucleation fronts are wholly different entities than the rupture fronts 213 

described by fracture mechanics. These qualities are consistent with recent predictions17 of distinct 214 

nucleation fronts with a major difference; while both are excited beyond a clear threshold, theoretical 215 

predictions anticipate that this threshold is above 𝐿𝐺 , in contrast to experimentally observed fronts. 216 

Beyond 𝐿𝐺, a transition from 2D to 1D fronts (i.e.  𝛿𝑧 → 𝑤) occurs where additional jumps in rupture 217 

velocity are observed, as in recent experiments23,42. We ascribe this to geometrical considerations 218 

(Methods) and not to new physics. It is noteworthy that the Griffith length is about 100 times smaller 219 

than critical rupture lengths predicted via “Rate and State” friction43 and an order of magnitude lower 220 

than predicted by friction laws incorporating slip weakening37 (Methods). 221 

Details like the front shapes, their explicit stress dependence and stress thresholds, however, do depend 222 

on nucleation locations, as in the different experiments presented in Fig. 4. These differences indicate the 223 

importance of the discrete nature of the interface and its local topography (which determines the fracture 224 

energy landscape). The discrete nature of frictional interfaces may be intimately related to the mechanism 225 

that drives nucleation fronts34,35. An interesting open question is whether this mechanism is related to 226 

mechanisms34 used to model experimentally observed slow fronts in which the discrete nature of the 227 

interface plays a key role. Whether a slow front is below or above the Griffith length has a critical effect 228 

on both how they are driven as well as their consequent dynamics17,34.   229 

We have characterized a new mechanism for the nucleation of frictional ruptures, a system that is 230 

important in its own right as well as in analogous natural settings, such as earthquake nucleation. One 231 

characteristic of these extremely slow nucleation fronts is that they are inherently aseismic22. Within 232 

natural faults, we would therefore expect their excitation to be accompanied by a pronounced reduction 233 

of background seismicity near hypocenters of emerging earthquakes. The general type of nucleation 234 

process described here, may also provide insight to the more general question of how the onset of 235 

fracture takes place. This, despite much work26, still remains a challenge to our fundamental 236 

understanding of material stability.  237 
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Methods Summary: 242 

The Methods section includes descriptions of the sample construction, measurements, loading system 243 

and experimental protocol. Also included are descriptions of the influence of the marker on the fracture 244 

energy, and how we determined the quantities 𝑣𝑎𝑟𝑟,  𝐴(𝑡), 𝜉(𝑡), 𝜏,  and  𝜎𝑖𝑛𝑑. We also include 245 

descriptions of the Griffith length calculation and our estimation of the critical nucleation length using 246 

Rate and State and Slip Weakening friction parameters. We additionally include an explanation of the 247 

linear relation between 𝜏−1 and 𝜎𝑖𝑛𝑑. Extended Data Figures 1-3 are contained in this section.  248 

Extended Data Figure 1: Fracture energy increase by the marker layer. 249 

Extended Data Figure 2: Calculation of theoretical stress intensity factors.   250 

Extended Data Figure 3. Comparison of theoretical and measured Griffith lengths.   251 

Data Availability 252 

Source data for Figs. 2c,d, 3a,c,d, 4b and 5 are available with this paper. All other data that support the 253 

plots within this paper and other findings of this study are available from the corresponding author upon 254 

request. 255 
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 363 

Methods 364 

Sample construction  365 

Our samples were constructed of  poly(methylmethacrylate) (PMMA) blocks. The 𝑥 ×  𝑦 × 𝑧 dimensions 366 

of the top and bottom blocks were, respectively, 200 X 100 X 5.5mm and 290 X 28 X 30mm. The top block 367 

was diamond machined to be optically flat. The bottom block had an overall flatness to within 5𝜇𝑚  and 368 

was ground to have a 3 𝜇𝑚 r.m.s surface roughness. The longitudinal, 𝑐𝐿 , and shear, 𝑐𝑆 , wave velocities 369 

were ultrasonically measured44 under plain strain conditions. We obtained values of  𝑐𝑝  = 2680 𝑚/𝑠 and 370 

𝑐𝑠 =1361 𝑚/𝑠, with a ± 10 𝑚/𝑠 error. This yields a Rayleigh velocity, 𝑐𝑅, of 1255 ± 10 𝑚/𝑠. The dynamic 371 

Young’s modulus and Poisson ratio are E=5.75±0.15 GPa and 𝜌 =0.33±0.000  respectively. The density 372 

of the PMMA used was 1170±10 𝑘𝑔/𝑚3 Note that PMMA is viscoelastic. We measured the static Young’s 373 

modulus to be   3.62±0.3  GPa.   374 

Barrier Construction 375 

To create a surface barrier we used a Staedtler permanent marker of size M. The marker color was chosen 376 

to be blue, which we found to be largely transparent to the blue (470nm) light used to illuminate the 377 

interface. Prior to each set of experiments, we drew a line across the bottom block in the 𝑧 direction 378 

(normal to the propagation direction, 𝑥), and waited for an hour until the marker’s solvent evaporated. 379 

The effects of the marker could be erased by cleansing the interface with isopropyl alcohol.  380 



We chose to implement different barrier widths between 1-4 𝑚𝑚. The barrier locations were changed 381 

from set to set. Using an optical profilometer, we found that the thickness of the marker layer was 382 

measured to be < 1𝜇𝑚 above the surface.  383 
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Extended Data Figure 1: Fracture energy increase by the marker layer. a. Schematic description of the experiment. 385 
Half of the interface was painted with a marker layer, and the strain signals were measured by a number of rosette 386 
type strain gages located about 3.5 mm above the interface. Blue (red) colors correspond to the bare (painted with 387 
marker) interface, respectively.  b. Comparison of the Δ 𝑥𝑥  (top) and Δ   (bottom) signals of the same rupture 388 

front in the bare (blue) and painted (red) regions, respectively. This rupture front propagated at a velocity of 389 
1200 𝑚/𝑠 =  0. 5𝑐𝑅  . Superimposed are 3 successive measurements spaced 7mm apart in both the bare (blue) and 390 
painted (red) regions. The influence of the marker is evident on the amplitudes. Shown are (top) the Δ 𝑥𝑥  and 391 
(bottom) Δ    components, whose respective amplitudes 𝛿 𝑥𝑥  and 𝛿    are proportional to the instantaneous 392 

values of the stress intensity factor, 𝐾. c. 𝛿 𝑥𝑥  as a function of the rupture velocity in both regions. Each point is an 393 
average of 2-10 measurements; the error bars are their standard deviation. Colors denote the painted (red) and bare 394 
(blue) sections of the interface. (inset) The resulting fracture energy ratios of painted and bare surfaces. Use of the 395 
marker increases   on the interface by  approximately  a factor of 5. 396 

The influence of the marker on the fracture energy along the interface was measured in separate 397 

experiments, in which half of the top block was painted with the marker, while the other half remained 398 

bare. The fracture energy,  ,  within each section was evaluated from the amplitude of the strain signals, 399 

as measured by strain gages located about 3.5 𝑚𝑚 above the interface, as in previous studies1,2,39. The 400 

strain field amplitudes, are proportional to the instantaneous stress intensity factor, 𝐾, of the singular 401 

component of the near-tip fields, as the rupture front traverses each strain gage1. As1,24,45  ∝ 𝐾2,  we 402 

have  ∝ 𝛿 𝑥𝑥
2  , where 𝛿 𝑥𝑥 is the maximal strain field amplitude. The results, presented in Extended Data 403 

Fig. 1, show that the marker increases    by about a factor of 5.        404 

Loading system 405 

The loading system used was described, in detail, previously1,15. The top block was clamped at its top edge 406 

and was pressed to the bottom block with an external force 𝐹𝑁 = 5000N in the 𝑦 direction yielding a mean 407 

normal stress of  4.5 MPa at the interface. 𝐹𝑁 was maintained to be constant throughout each experiment. 408 



The bottom block was mounted on a low friction translational stage, and stick slip behavior was achieved 409 

by a quasi-static (∼  10𝜇m/𝑠  or  about   50𝑁/𝑠 ) loading of a shear force in the – 𝑥 direction. In all of the 410 

events shown here, spontaneous cracks were nucleated near the 𝑥 = 0 edge and propagated in the 𝑥 411 

direction until arresting at the barriers.  Note that, over the 1-10ms  duration of these experiments, the 412 

effects of the loading are negligible; the displacements and applied shear force varied, respectively, by 413 

less than 1-10nm and  0.002-0.02%. 414 

Real contact area measurements  415 

Changes in the real contact area were measured by an optical method based on total internal reflection, 416 

as light is transferred only at contact points1,15,32,39. The transmitted light intensity is proportional to 417 

𝐴(𝑥, 𝑧, 𝑡) and is continuously imaged at a 580000 frame/s rate with a spatial resolution of 12 0 ×   pixels 418 

in the 𝑥 × 𝑧  directions. This translates to a mapping of  165 × 688 𝜇𝑚/𝑝 𝑥𝑒𝑙 in the 𝑥 and 𝑧 directions, 419 

respectively. We illuminate the interface by means of a light sheet  at  a  0∘ incident angle that is 420 

constructed using a high power LED (CBT 120) as a non-coherent light source to avoid interference 421 

patterns and photoelastic effects.  This incident angle is far from the critical angle (∼ 42∘) for total internal 422 

reflection from PMMA to air, so that nearly all of the light impinging on non-contacting area is reflected 423 

away from the interface. The transmitted light, imaged by the camera, is therefore mapped to 𝐴(𝑥, 𝑧, 𝑡). 424 

     determination 425 

Instantaneous rupture velocities were derived from the propagation of the tip location, which was defined 426 

as the point where the value of 𝐴(𝑥, 𝑡) is decreased by 3%. The velocity of the rupture fronts when 427 

reaching the barrier, 𝑣𝑎𝑟𝑟 , were measured by a linear extrapolation of the velocity measurements in the 428 

preceding 15-20 𝑚𝑚 to the barrier locations, 𝑥0. This procedure yielded errors in the range of 20-30 𝑚/𝑠. 429 

This uncertainty produced negligible errors in estimations of 𝜎𝑖𝑛𝑑 except when 𝑣𝑎𝑟𝑟 → 𝑐𝑅, where the 430 

stresses 𝜎𝑖𝑛𝑑 at the rupture tip become singular24 as a function of 𝑐𝑅 − 𝑣𝑎𝑟𝑟. This increased uncertainty is 431 

noted by the error bars within Fig. 4.  432 

Rupture edge detection  433 

𝜉(𝑡) is defined as the leading edge of the rupture front in the 𝑥 direction. To determine 𝜉(𝑡), we used 434 

profiles, 〈𝐴(𝑥, 𝑡)〉, defined by  𝐴(𝑥, 𝑡), averaged over the 𝑧 axis, and smoothed over a time interval (~20𝜇𝑠 435 

for propagating fronts) where fluctuations of 𝐴(𝑥, 𝑡) were less than 200𝜇𝑚.  The precise location of 𝜉(𝑡) 436 

was determined by fitting a second order polynomial (red line in Fig. 2b) to the 〈𝐴(𝑥, 𝑡)〉  profile of a region 437 

ahead of the approximate front (we used a 1< 𝑥 − 𝑥𝑎𝑝𝑝 <50mm range to perform these fits, where 𝑥𝑎𝑝𝑝 438 

is the location of the approximated location). Our measurement noise is given by the standard deviation 439 

of 𝐴(𝑥, 𝑡) around the fitted region. The rupture edge was defined as the location where the 𝐴(𝑥, 𝑡) profile 440 

dropped 2 standard deviations below the extrapolated fit.  441 

The average widths of the rupture, 𝛿𝑧(𝑡), were determined as follows. The nucleation patches generally 442 

initiated near one of the interface’s free faces, at either 𝑧 = 0  or 𝑤.  For each 𝑥 location within the 443 

propagating nucleation fronts,  𝜉0 < 𝑥 < 𝜉(𝑡), we chose the furthest point in 𝑧 from the sample edge for 444 

which 𝐴 dropped by 2%. 𝛿𝑧(𝑡) was defined as the mean value of these measurements.  445 

We note that for the 𝛿𝑧(𝑡) determination we used the center 6 out of the 8 rows measured in the 𝑧 446 

direction, to avoid edge effects.     447 



Damage Values, 𝚫 ( ) 448 

We quantify the damage at the ‘tail’ of the nucleation front by averaging the changes in 𝐴 within the 449 

damage zone, as  𝐴(𝑡) ≡ 1 − 〈𝐴(𝑥, 𝑡)/𝐴0〉𝑧,𝑥 < 𝜉0. The initial damage, 𝐷, was taken as the sharp jump in 450 

 𝐴 within 10𝜇𝑠 after  the passage of the shear wave generated by the rupture arrest at the barriers.  451 

  determination 452 

The nucleation time, 𝜏,  at which nucleation fronts became unstable was defined by the onset of sharp 453 

acceleration in the 𝜉(𝑡) curve. This acceleration, which precedes dynamic rupture onset, is quite sharp, 454 

with an uncertainty of less than 30𝜇𝑠 for all experiments performed.   455 

Induced stress, 𝝈𝒊𝒏𝒅, calculations 456 

The induced stress field from the arrested crack was calculated using fracture mechanics. We used the 457 

relations in (1) to obtain the static stress intensity factor of the arrested crack, 𝐾.   458 

 = 𝐺𝑆 ⋅ 𝑔(𝑣) = 𝐾2/𝐸 ⋅ (1 − 𝜌2)𝑔(𝑣)       (1) 459 

In (1), 𝜌 is the Poisson ratio and 𝑔(𝑣) is a universal dynamic function24 that depends on the 460 

instantaneous velocity, 𝑣,  of the rupture front.  𝐺𝑆 is the static energy release rate given by 
𝐾2(𝑣=0)

𝐸
⋅ (1 −461 

𝜌2). By determining 𝐾 we could derive the induced stress field ahead of the crack, at all points, 𝑟 , ahead 462 

of the arrest location.  Note that fracture mechanics provides not the stress, 𝜎𝑥 (𝑟), at a point 𝑟  but, 463 

instead, the difference,  𝜎𝑥 (𝑟) = 𝜎𝑥 (𝑟) − 𝜎𝑟𝑒𝑠,  from the residual stress, 𝜎𝑟𝑒𝑠 , that remains after 464 

rupture has taken place29. Once 𝐾 = √(𝐸𝛤/(1 − 𝜌2)) ⋅ 𝑔(𝑣𝑎𝑟𝑟)
−

1

2 is determined from (1), then   𝜎𝑥 (𝑟) 465 

is given by24: 466 

 𝜎𝑥 (𝑟) = √(𝐸𝛤/(1 − 𝜌2)) ⋅ 𝑔(𝑣𝑎𝑟𝑟)
−

1

2 ⋅  (2𝜋𝑟)−
1

2   (2) 467 

The value of 𝜎𝑖𝑛𝑑  at the nucleation point was defined as  𝜎𝑥 (𝑟∗), where 𝑟∗ is the distance from the 468 

arrested crack tip to the nucleation point of the nucleation fronts. This location was approximated as the 469 

center of the initial damage zone: 𝑟∗ ≡ 𝐿 + 𝜉0/2, where 𝐿 is the barrier width. 470 

The values of 𝑟∗ were, on average, constant in each set of experiments, with an uncertainty of  about 471 

0.3 𝑚𝑚. The values  𝜎𝑖𝑛𝑑(𝑟∗) used in Fig. 4 were,  therefore, determined using the average value of  𝑟∗.  472 

Griffith length approximation 473 

To determine the nature of slow propagation during the nucleation phase, we calculated the theoretical 474 

Griffith length of a nucleation front of length 𝑙. Beyond a critical length of the nucleation front, fracture 475 

mechanics predicts that crack propagation is governed by fracture mechanics. The critical value of 𝐾, 𝐾𝑐, 476 

is determined by the measured fracture energy  ≅ 1 J/m2; 𝐾𝑐 = √((𝐸𝛤)/(1 − 𝜌2)) . To this end, we 477 

computed the theoretical static stress intensity factor, 𝐾(𝑙), of a shear crack of length 𝑙 from the 478 

nucleation location within our nucleation zone. For a one dimensional crack (in a 2D medium)  𝐾(𝑙) can 479 

calculated using the Eshelby integral24 with a (0.88)  correction factor46 for a center crack: 480 

  𝐾(𝑙) =0.88√
2

𝜋𝑙
 ∫

Δ𝜎𝑥𝑦(𝑠)

√1−(𝑠 𝑙 )2 
𝑑𝑠

𝑙

0
    (3) 481 



Note that the integration starts from the nucleation point, which is located in the center of the damage 482 

zone (𝜉0/2). We assume that the stress value,  𝜎𝑥 (𝑠), at every nucleation front length, 𝑠, in the 483 

integrand is that of the singular field given by  (2) of the arrested crack at the barrier location, 𝑥0  (e.g. 484 

 𝜎𝑥 (𝑠 = 0) = 𝜎𝑖𝑛𝑑 ≡  𝜎𝑥 (𝑟∗)).  485 

Our nucleated crack fronts were not 1D through-cracks in a 2D medium. Instead, nucleated crack fronts 486 

had an approximate elliptical shape in the 𝑥𝑧 plane of axis ratio 𝛿/𝑙 = 0. 5. As a result, the computed 487 

𝐾(𝑙) from (3) had to be corrected46,47 to account for this elliptical geometry. The elliptical crack shape 488 

reduces the stress intensity factor, relative to a 1D  center crack of the same length, resulting in an increase 489 

of the Griffith length, 𝐿𝐺.   490 

  491 

Extended Data Figure 2. Calculation of theoretical stress intensity factors.  a. Two snapshots of the expanding 492 
rupture during the nucleation phase of the event presented in Fig. 3. We can approximate the general shape of the 493 
nucleating patch by a semi-elliptical edge crack47, as denoted by the white line. The ellipse’s axis ratio,  /𝑙 is 494 
approximately 0.85, and remains fairly constant throughout the entire nucleation phase. b. Schematic description 495 
of the calculation47 of the stress intensity factor 𝐾, of a semi-elliptical edge crack. The parameters 𝑤 and 𝑏 used in 496 
the calculation are noted.  The nucleation patch was assumed to propagate in the 𝑥 direction.  The nucleation point 497 
at the center of the ellipse, is located at the center of the initial damage zone, a distance of 𝜉0/2 from the right edge 498 
of the marker. The propagation distance, 𝑙(𝑡), used in the calculation is therefore  𝑙 = 𝜉(𝑡) − 𝜉0/2 in terms of the 499 
damage zone size, 𝜉0 and nucleation front  location, 𝜉(𝑡), which are both defined from the barrier edge (Fig. 3a).    c. 500 
The theoretical stress intensity factor as a function of crack length for the 1D (dashed line) and the elliptical (full line) 501 
cases. The stress field used in this example is that denoted by the black line in Fig. 3c, where 𝑣𝑎𝑟𝑟 = 11 0 𝑚/𝑠. Note 502 
that, experimentally, the onset of dynamic rupture (Fig. 3c) occurred at a length 𝑙 = 4mm, which agrees well with 503 
the predicted value (𝑙 = 3. ) for 𝐿𝐺. The dotted line denotes the critical stress intensity factor, 𝐾𝑐, above which 504 
stationary cracks are unstable.  505 

A comparison of 𝐾(𝑙) for the center crack (K1D in Extended Data Fig. 2c) and for the elliptical crack (K2D 506 

in Extended Data Fig. 2c) is presented in Extended Data Fig. 2c. The parameters required for the 507 

computation of this correction were the finite distance of 𝑙 = 0 from the block’s far edge (b=150mm), the 508 

interface width (𝑤=5.5), and the propagation direction, 𝑥.  509 
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The onset of fracture is dictated by energy balance, when the static energy release rate, 𝐺𝑆(𝑙) = 𝐾2/𝐸  510 

becomes equal to  ,  where 𝐸 is the static Young’s modulus for PMMA.  The value of  𝑙, at the point of 511 

instability is defined as the Griffith length, 𝐿𝐺. The values of 𝐿𝐺 in our experiments are both significantly 512 

greater than the lengths at which the slow propagation of the nucleation fronts initiate and are consistent 513 

with the lengths of the nucleation fronts at the onset of dynamic rupture (at times 𝑡 = 𝜏 in the text).  For 514 

example, using the measured value1 of  = 1 𝐽/𝑚2, the calculated values of 𝐿𝐺 for the 6 different 515 

experiments performed at the barrier location of 50mm (much of the data presented in Figs.  2-5) yield 516 

predicted Griffith lengths between 3.5 and 4 mm. This compares well to the corresponding measured 517 

transition distances of 4 ± 0.25mm. This comparison is presented in Extended Data Figure 3.  In the 518 

experiment presented in Fig. 3c (black line), 𝜉(𝑡 = 𝜏) ∼ 5 mm,  where  𝜉0/2 ∼ 1.2mm (Fig. 2d- inset) so 519 

𝐿𝐺 = 𝜉(𝑡) − 𝜉0/2 ∼  3.8𝑚𝑚.  520 
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521 
Extended Data Figure 3. Comparison of theoretical and measured Griffith lengths.  Compared are the calculated  522 
Griffith lengths, 𝐿𝐺  with the  measured distances of  nucleation lengths, 𝜉(𝜏) from the nucleation locations, 𝜉0/2.  523 
The data shown correspond to the red data within Fig. 5a, in which nucleation fronts triggered rapid rupture fronts.  524 

Critical nucleation length from Rate and State and Slip Weakening friction 525 

Rate and State Friction 526 

Calculations43 of the  stability of a steadily sliding block have been performed, assuming that the frictional 527 

resistance 𝜏 is given by Rate and State friction48,49: 528 

𝜏𝑠𝑠(𝜎, 𝑉) = 𝜏0 +  (𝜎) +
(𝑎−𝑏)𝜎0

𝑉0
(𝑉 − 𝑉0)   529 

where 𝜏0, 𝜎0 and 𝑉𝑜 are, respectively, the shear stress, normal stress and sliding velocities in steady-state 530 

frictional sliding. The value  − 𝑏 is defined by  − 𝑏 =
𝑉𝜕 𝑠𝑠(𝜎,𝑉)

𝜕𝑉
/𝜎 where, 𝑉 and 𝜎 are the block’s 531 

instantaneous sliding velocity and applied normal stress. For PMMA the values of the coefficients   ∼532 

0.00  and 𝑏 ∼ 0.015  have been independently measured40,50,51 for our experimental conditions.  533 



Rice et al.43 derived a critical nucleation length at which steady sliding becomes unstable. This length is 534 

given by: 535 

 536 

𝐿𝑐 = 𝜇𝐷𝑐𝜋/ (𝑏 −  )𝜎0  537 

In our experiments, the shear modulus, 𝜇 = 2GPa, 𝜎0 =4.5MPa, and the slip length 𝐷𝑐 was obtained from 538 

direct measurements of the cohesive zone size of propagating ruptures39 yielding 𝐷𝑐 ∼ 5𝜇𝑚.  Substituting 539 

these quantities into the expression for 𝐿𝑐 we find that 𝐿𝑐 ∼ 1𝑚. This value is over two orders of 540 

magnitude greater than the 4-8mm size (e.g. Fig. 5a in the text) of the measured nucleation lengths 𝜉(𝜏) 541 

in our experiments.   542 

Slip Weakening Friction 543 

Uenishi and Rice37,52 calculated the critical nucleation length assuming a slip weakening friction law and 544 

found that:   545 

𝐿𝑐 = 1.15 ⋅
𝜇

𝑊
= 1.15 𝜇 ⋅ 𝐷𝑐/(𝜎𝑝𝑒𝑎𝑘 − 𝜎𝑟𝑒𝑠) 546 

where  𝜎𝑝𝑒𝑎𝑘 and 𝜎𝑟𝑒𝑠 are, respectively, the peak and residual frictional resistances of an interface. We 547 

can relate these quantities to the fracture energy,  , which (in a slip weakening model) is given by  =
1

2
⋅548 

𝐷𝑐(𝜎𝑝𝑒𝑎𝑘 − 𝜎𝑟𝑒𝑠). Substituting this expression into that for 𝐿𝑐 and using the measured value of  =549 

1𝐽/𝑚2 , we find that 𝐿𝑐 =  𝑐𝑚 – or about an order of magnitude greater than the measured transition 550 

lengths (3-8mm) to rapid ruptures that we have associated with the Griffith length.  551 

 552 

Linear scaling of 𝜏−1 and 𝜎𝑖𝑛𝑑 553 

The linear relation between 𝜏−1 and 𝜎𝑖𝑛𝑑, may be understood by combining the inertia-less  dynamics of 554 
the nucleation fronts with fracture mechanics.  555 
Empirically, we find that  𝑣𝑛𝑢𝑐 ∝ 𝜎𝑖𝑛𝑑 − 𝜎𝑡ℎ𝑟𝑒𝑠ℎ ≡ 𝛽(𝜎𝑖𝑛𝑑 − 𝜎𝑡ℎ𝑟𝑒𝑠ℎ), where 𝜎𝑡ℎ𝑟𝑒𝑠ℎ is the threshold 556 
stress for the onset of nucleation fronts (see Fig. 4). This linear relation could be expected from the class 557 
of  fluctuation-dissipation phenomena in which inertia-less motion takes place when forces are balanced 558 
by dissipation. Examples of such phenomena include Stoke’s drag in fluids or Ohm’s law. In our case, the 559 
stress, 𝜎𝑖𝑛𝑑,  is balanced by the frictional resistance of the random contacts that compose the interface. 560 
In the case of Stoke’s flow or Ohm’s law the external field driving the motion (gravity or an electric field) 561 
is balanced by, respectively, random molecular motion or the interaction of charge carriers with random 562 
impurities.  563 
Using this, we can obtain a linear relation between 𝜏−1 and 𝜎𝑖𝑛𝑑 by simply invoking fracture mechanics. 564 
We have shown that 𝜉(𝜏) − 𝜉0/2  =  𝐿𝐺  (𝐿𝐺is the Griffith length). By definition, 𝑣𝑛𝑢𝑐 ⋅ 𝜏 = 𝐿𝐺, so 𝐿𝐺 ∝ 565 
(𝜎𝑖𝑛𝑑 − 𝜎𝑡ℎ𝑟𝑒𝑠ℎ) ⋅ 𝜏 . 566 

By fracture mechanics 𝐿𝐺 ∝
𝐾𝑐

2

𝜎𝑖𝑛𝑑
2  where 𝐾𝑐 is a constant (given by the fracture energy).  567 

Putting these expressions for 𝐿𝐺 together, we obtain a prediction that 𝜏 ∝
𝐾𝑐

2

𝜎𝑖𝑛𝑑
2 ⋅ ( 𝜎𝑖𝑛𝑑 − 𝜎𝑡ℎ𝑟𝑒𝑠ℎ)−1.  568 

Since, for each experiment, 𝜎𝑖𝑛𝑑 does not change drastically for each location, we find that 𝜏−1 ∝  𝜎𝑖𝑛𝑑 −569 
𝜎𝑡ℎ𝑟𝑒𝑠ℎ , as indicated in  Figure 4b.  570 
 571 


