PHYSICA

ELSEVIER Physica A 249 (1998) 10-17

Propagating solitary states in highly dissipative
driven fluids
J. Fineberg*, O. Lioubashevski

The Racah Institute of Physics, The Hebrew University of Jerusalem. Jerusalem 91904, Israel

Abstract

Highly localized solitary states, driven by means of the spatially uniform, vertical acceleration
of a thin fluid layer, are observed to propagate along the 2D surface of a fluid in a highly
dissipative regime. Unlike classical solitons, these states propagate at a single constant velocity
for given fluid parameters and their existence is dependent on the highly dissipative character
of the system. The propertics of these states are discussed and examples of bound states and
two-state interactions are presented. (©) 1998 Elsevier Science B.V. All rights reserved.

Highly localized states have long captured the imagination of Physicists in disciplines
ranging from solid state to high-energy physics. Non-linear systems, in particular, have
an inherent ability for self-organization or self-focusing that, in many cases, gives rise
to these intriguing states. A classic example is the soliton, first documented by Rus-
sell [1], as he chased it on horseback through the canals of 19th century Scotland.
Soliton-type structures have since been observed in a wide class of conservative or
nearly conservative non-linear systems where the balance between non-linear ampli-
fication and dispersion can give rise to stable, highly localized structures. We now
pose the question of whether these types of structures can exist in dissipative systems.
Localized, soliton-like structures, ubiquitous in 1D non-linear integrable systems, are
rarely if at all observed in highly dissipative 2D or 3D systems. Recent studies of
ID classical conservative systems show that dissipation strongly influences solitons.
In extensions of the Kuramoto-Sivashinsky (KS) and KdV equations [2], although
soliton-like solutions were seen to persist, the addition of slight dissipative effects was
enough to cause the collapse of a family of solitons having a continuum of propaga-
tion velocities to a single selected state. Highly localized soliton-like states have also
been observed as stable solutions of dissipative subcritical complex Ginzburg-Landau
equations with fifth-order damping terms. In these 2D systems both stationary [3] and
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breathing solutions [4] were observed. Study of two-state interactions between the latter
states revealed a strong dependence of the interaction product on the relative phase of
the interacting states.

There have been a number of recent experimental observations of localized prop-
agating states in 2D dissipative systems. Temporally, intermittent localized structures
have been observed in the convection of binary mixtures [5,6] and localized states
which, upon collision, can either annihilate or pass through cach other have been seen
in the catalytic oxidation of CO on a 2D substrate [7]. Recent experiments [8,9] have
revealed highly localized propagating solitary structures upon the spatially uniform,
vertical acceleration of a thin fluid layer of viscous fluid. Surprisingly, strikingly sim-
ilar structures [10] were later observed when a granular medium was excited in the
same way.

The latter two experiments were especially significant in that the solitary states oc-
curred in systems which are highly dissipative. In contrast to classical solitons which
tend to be destroyed upon the introduction of dissipation, we shall see that in the case
of a viscous fluid, the highly dissipative nature of the system is necessary for the
formation of these states. Thus, we might be looking at a new type of non-linear phe-
nomena — highly localized states where dissipation plays a key role in their formation
and stability. Below, after a description of the experimental system, we will describe
some of the properties of these intriguing states and present examples of their mutual
interactions. Finally, we will mention some recent work in the scaling behavior of the
linear threshold of the system that indicates that, in the highly dissipative regime, a
Rayleigh-Taylor-type mechanism is the dominant mechanism for instability.

Our experimental system is similar to those generally used to study the well-known
Faraday instability, which gencrates parametrically driven surface waves. We subject
a featureless layer of fluid to uniform, externally imposed oscillations in the vertical
(parallel to gravity) direction. The acceleration, ¢, of the fluid layer can be viewed
as the system’s control parameter. At a critical value of the layer acceleration, 4., a
bifurcation occurs to parametric waves on the fluid surface which oscillate at half of
the external driving frequency. Solitary states then spontaneously appear at well-defined
values of a, typically a few percent above «.. The system is further characterized by the
quantities w, &, v, p, and ¢ defined as the externally imposed angular frequency, depth
of the fluid layer, kinematic viscosity, fluid density and surface tension, respectively.
As previously described in Refs. [8,9], our experiments were performed in a 144.0
mm diameter circular cell with the fluid supported by an aluminum plate, polished to
a mirror surface and flat to 1 pm. The cell’s lateral boundaries, made of Delrin, were
sloped at a 20° angle to reduce meniscus formation on the fluid surface. The fluid depth
varied between 1.0 and 5.0 mm. Fluids used were glycerol-water mixtures and the hy-
drocarbon flushing fluids, TKO-FF (described at length in Refs. [8,9]) and TKO-77.
The fluid temperature was regulated to within 0.01°C. In the latter fluids ¢ and v were
varied between 29.6 and 31.0dyne/cm and from 4.7 to 0.25 St, respectively, as the
temperature was varied over a 20-45°C range. The cell was mounted on a mechani-
cal shaker providing vertical acceleration from 0 to 30g’s over a frequency range of
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Fig. 1. Views from above (left) and the side (right) of typical propagating solitary states. One excitation
period is shown where time increases from top to bottom and with a time interval of 8 ms between frames.
Both the propagation and complex structure of the statc as a function of the phase relative to the excitation
is apparent. The arrows, indicating the propagation direction, are of length 1.5cm.

20-80 Hz. The acceleration, monitored by a calibrated accelerometer, was regulated to
within 0.01 g. To determine the instability onset, the system was visualized from above
by shadowgraph with stroboscopic illumination. Direct visualization of the system was
performed by scattered stroboscopic light viewed either from the side and above. Visu-
alization was performed at rates of up to 360 Hz using a high-speed CCD camera [11].

Most previous experiments in this system were performed in the low v, large &
limit (/<h where / is the wavelength of the excited pattern) at low dissipation
(i.e. a dissipation rate ~ v/4? <w). These studies include non-linear mode interactions
[ 12-14] in small aspect ratio systems, where the excited modes are well separated, and
the dynamics and disorder of patterns [ 15--19] in larger aspect ratio systems. High v
fluids in small /1 systems were recently introduced [ 20-22] to both reduce mode quan-
tization effects and damp out long wavelength modes (for a detailed discussion see
Ref. [21]). As we will see, this regime of high dissipation leads to new non-linear
phenomena.

Typical views of the solitary state both from the side and above are presented in
Fig. 1. As viewed from ‘above, these states are similar in appearance to the “oscillon”
states recently observed in granular media [10]. This state is hysteretic and large am-
plitude states spontaneously appear in the near vicinity of the system’s primary in-
stability to spatially confined periodic states. For sufficiently large perturbations (e.g.
mechanically striking the fluid layer) solitary states can be excited prior to the onset
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of the confined pattern. The state has a non-trivial periodic temporal behavior (a sin-
gle period is shown) with the same period as the forcing frequency, w. As in the
dissipative extensions to the KdV and KS equations [2], for a given value of w a
single constant-propagation velocity, v, is observed that is independent of the driving
amplitude. Compared to the linear group velocity, v,, of surface waves, the functional
dependence of v is quite different. Although its basic scale is similar to v,, ¢ varies
only slightly as « is changed. Upon formation, these states are stable and can propa-
gate in any direction. When guided by the lateral wall of the apparatus, single solitary
states have been observed to propagate indefinitely around the circumference of the
cell. Solitary states, generated by either collisions or external perturbations to the sys-
tem, can exist far from the system boundarics with no apparent difference in their form
or properties relative to states that propagate adjacent to the cell boundaries. The main
mechanism for the destruction of these states is by collision with either other solitary
structures or the system’s lateral boundaries.

How general are these states and why have they not been observed in previous
experiments? For any given values of v and / no solitary states are observed above
a critical value of w. A dimensionless number relating these quantities is the ratio
of the boundary-layer thickness, & = (v/w)'?, to h. We view a highly dissipative
system as one where the characteristic time for dissipation, kv, is on the order of
the driving period, 1/w. The ratio d/k (or, equivalently, the ratio between the forcing
and dissipative time scales) determines the selection of the fluid state. Above a critical
value [8.,9], (6/h).iy = 0.30, solitary states spontaneously appear. Below this value
global patterns, as observed in previous studies { 12-22] where 0.03 < §/h < 0.27,
are formed. The parameter (6/#)"2, analogous to a Reynolds number of the flow, can
be obtained by scaling [23] the externally forced Navier-Stokes equations by the length
scale i and the time scale @™ '. (8/h).,;, occurs in the region where the forced oscillation
of the fluid surface approaches critical damping (when the viscous and driving time
scales are comparable). Thus, the existence of solitary states is crucially linked to the
system dissipation., The value of (J/4).;, underlines the qualitative difference between
the dissipative states observed here and “trough” solitons [24-26] observed in the
low-dissipation regime. These latter solitons, described by a non-linear Schrodinger
equation, were observed in a nearly conservative, 1D system for §/h ~ 0.01, a value
far below (0/h)cyir.

Fig. 2 demonstrates the scaling propertics of the solitary states. We find that the width
of the state, defined as the distance between consecutive “fingers” at their maximal
amplitude, scales with the linear wavelength. 7, of the system. The maximal amplitude
of the state, on the other hand, scales with the amplitude, a/w?, of the forcing.

Solitary states can interact in a number of ways. The interaction potential between
them appears to be short-ranged as no perceptible change in form occurs until two
states are within a wavelength of each other. Two states will interact via collision,
where an example is shown in Fig. 3. Unlike classical solitons, which interact via a
phase shift, the results of a collision between two solitary states can result in either
the two states passing through each other with a small change in amplitude, mutual
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Fig. 2. Scaling of the solitary state. (Left) Transverse views at maximum amplitude for (top) wm/2x = 20 Hz,
v = 14St, h = 29mm; (center) w/2r = 26Hz, v = 1.25St, # = 2.1mm (bottom) /27 = 41 Hz,
v = 0.86St., i = 1.0mm; (Right) the scaling of the width, ¢/, where d is distance between consecutive
fingers and ~ the wavelength of the primary instability (upper) and (lower) scaling of the height of the
solitary states where / is the maximum amplitude of the state.

annihilation, or “billiard ball”-type collisions in which the resulting solitary state(s)
leaves the collision region at a large angle relative to the axis described by the two
initial states. An example of the latter type of collision is presented in Fig. 3, where
a nearly “head-on” collision near the center of the cell resulted in the formation of
two oppositely propagating states. One of these outgoing states was formed at a small
amplitude and decayed as it propagated away from the collision site. The second state
formed, propagating toward the bottom of the figure, was stable. This type of collision
is reminiscent of simulations performed on dissipative solitary states formed within
an interacting fifth-order Ginzburg-Landau-type model [4]. An interesting feature of
collisions resulting in the formation of new states is that, as in interacting elementary
particles, an intermediate “metastable” state is formed (Fig. 3 — center) which then
decays into the final interaction products. In contrast to the initial and final states, this
metastable state is non-propagating and exists for times longer than the time needed
for a propagating state to traverse the interaction region.

Bound solitary states can also be formed, where typical two-state bound states are
presented in Fig. 4. These states are formed by either collisions or initial conditions of
the system and propagate with thc same velocity as single solitary states. These states
are weakly bound and can either spontancously break up into a pair of single states
or exist until perturbed by collision. Besides two-state bound states, other, generally
unstable, multi-state bound states have been observed.
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Fig. 3. A typical “head-on” collision of two solitary states which results in a “new” statc. Note the formation
of a metastable “bound” state upon collision.

Fig. 4. Typical view of two-state bound states, from the side (upper) and above (lower). Arrows indicate
the propagation direction. When perturbed, these states become unstable to two single solitary states.

What is the mechanism for the formation of these states? A hint is suggested by the
scaling behavior of the threshold for the linear stability of the system in this parameter
regime. The first instability of the system is not to solitary states but to parametrically
forced confined patterns with a typical example shown in Fig. 5a. The experimental
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Fig. 5. (a) A typical example of the spatially confined primary instability of the system where w/2n = 42 Hz,
h = 1.0mm and v = 0.63 St. (b) Scaling of reduced acceleration threshold, a./(h®)>(2/m—g/a.), as a function
of the dissipation parameter, (5/h)?. Typically, over an order of magnitude in a. is represented for each

value of (d/#)2. Experimental data (4 in cm, v in St): (solid square) # = 0.1, v = 0.58; (solid triangle)
h =013, v=058 ()~ =013, v=08; (solid inverted triangle) # = 0.15, v = 0.8; (solid diamond)
h=0.15 v=048, (+) h =021, v = 0.8; (x) A =021, v=123; () A =024, v =08, () h = 03,

v = 1.23; (open square) A = 0.51, v = 2.53; (dotted triangle) # = 0.21, v = 0.48; (dotted diamond) 4 = 0.25,
v = 0.41; (dotted circles) A = 0.3, v = 0.48. Numerical data: (dot—dashed line) # = 0.13.v = 0.81; (dashed
line) A = 0.15, v = 0.50; (dotted line) & = 0.13, v = 0.20. Note the following data sets where ¢, < 2 -- 3g:
(dotted diamond) # = 0.25¢m, v = 0.41 St; and (dotted circles) & = 0.3cm, v = 0.48St. The solid line,
Apy = 0.059 + 21.46(5/h)>*. is a fit to the data. Representative error bars are shown.

system can be characterized by five dimensionless parameters that can be built using
the seven quantities ¢, w, v, p, o, h, L, along with the gravitational acceleration, g.
With so many dimensionless parameters, there is no a priori reason to expect simple
scaling behavior of the instability threshold to emerge. By combining experimental
measurements and numerical calculations of the instability threshold with the Kumar—
Tuckerman algorithm [27], we demonstrate (Fig. 5b) that, unexpectedly, in the highly
dissipative high-v low-A regime, simple scaling of the critical acceleration indeed occurs
in a surprisingly wide range of experimental parameters [23]. The scaling in this regime
effectively reduces the dimension of parameter space from 5 to 2. The two dominant
parameters that emerge are (6/#)° which, as mentioned previously, determines the
existence of solitary states, and a new parameter, a/(w?h)(2/n — g/a). The acceleration
difference (2a/m — y) that appears in this latter parameter suggests that a mechanism
akin to the Rayleigh-Taylor instability may drive the instability in this regime. The
Rayleigh—Taylor instability occurs when a dense fluid is accelerated into a less dense
one (in our case air) and finger-like patterns of the denser fluid result. The numerical
factor 2/m accounts for the fact that a upwardly accelerates over only half of a cycle.
The Faraday instability to parametrically driven surface waves can occur for values of
a.—g < 0 and, as Fig. Sb shows, the breakdown of the scaling for these relatively low
values of « suggests that the Faraday instability is a qualitatively different instability
mechanism than that observed in the scaling regime.
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In conclusion, we have described high-amplitude, highly localized solitary states that
occur in a highly dissipative system. The conditions necessary for the formation of
these states suggest that not only does dissipation not destroy these states, but that a
high degree of dissipation may be essential for their existence. Intriguing questions
regarding these states are their generality and the robustness of their characteristics.
As mentioned above, a number of qualitatively similar type structures have recently
been observed in experiments on a variety of driven non-linear systems and simulations
of a number of dissipative model systems. If these “dissipative solitons” are indeed
generic, what is their role in the dissipation and promotion of disorder in this and other
nonlinear systems?
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