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A theory of electron diffusion in a gas in the presence of an intense radiation field is presented.
The theory is applicable when the classical electron oscillation energy €, exceeds the typical
electron-gas inelastic collision energy loss & and when the frequency w of the wave is much larger
than the inelastic collision frequency v.,. It is shown that the existence of these two different time
scales allows us to derive a simple Langevin type, model stochastic equation, describing the slow-
time-scale electron transport in the gas. Assuming linear dependence of v, on the electron energy,
simple analytic expressions for the time evolution of the average electron translational energy W and
random-walk parameter {(x2),, are derived. In the long-time limit W =£/4 and (x?),,=Dt, where
the diffusion coefficient D is independent of both w and €. These predictions are in a good agree-
ment with the results of Monte Carlo computer experiments, conducted for the cases of N, and Hg.

I. INTRODUCTION

Self-consistent theoretical determination of electron dif-
fusion coefficient in a gas in the presence of an elec-
tromagnetic wave usually requires a solution of the
Boltzmann equation.! This can be conveniently accom-
plished in the case when the electromagnetic field is so
weak that the classical electron oscillation energy
€o=e’E?/2mw? (E and o being the amplitude and fre-
quency of the electric field of the wave) is much less than
the average energy € of the electrons. Such a situation ex-
ists, as a rule, when &,<<e€y<<&;,, where &, and
Eaq~2&m /M are the characteristic electron-energy losses
in inelastic and elastic collisions, respectively. Indeed, in
this case, the electrons gain the translational energy via
the inverse bremsstrahlung, until the energy growth satu-
rates due to the inelastic collisions and a steady state is
achieved in which € is of the order of &;,, or more, and
therefore &>>¢€;. Then the smallness of the oscillating
component of the velocity, allows us to seek a solution of
the Boltzmann equation in the form of the two-term
Lorentz equation? f(v,t)=fo(v)+f(v,t), where formally
|f11/1fo| <<1 and therefore a perturbation method can
be applied in solving for f, and f;. The time-independent
part f of the distribution usually serves to calculate the
diffusion coefficient, while the small oscillatory part f;
describes the polarization current.

In the present work we will consider a different situa-
tion of radiation fields so intense that the aforementioned
perturbative procedure cannot be applied. This usually
happens when €;> £, and the characteristic electron-gas
collision frequency v, is much smaller than .

In this case the velocity of the electrons oscillates with
large amplitude a =(2€,/m)'/? many times between suc-
cessive collisions. The translational component of the
velocity, in contrast, remains relatively small because the
inverse bremmstrahlung type heating of the electrons at
€> &, is negligible compared to the energy losses in in-
elastic collisions. Thus, in the case considered here é~e¢,
in contrast to a typical weak radiation-field case. Situa-
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tions which fall into such intense-field regime can be
found in various applications. For example, for the radia-
tion flux of ~0.5 MW/cm? and w=30 GHz we have
€0~10 eV. Thus, assuming that typically v,y =~10°
(sec Torr)~!, the intense-field conditions in this case exist
at pressures lower than 20 Torr. Therefore, the present
theory may be of interest in projected electron cyclotron
resonance heating experiments in large laboratory plas-
mas.? Similar parameter regime characterizes gas break-
down by intense picosecond Nd glass-laser pulses.* Here
€,> 10 eV for fluxes of more than 5X 10'* W/cm?, while
® >>Veop at p <100 atm.

In the following theory we will concentrate on a single-
electron diffusion process. It should be mentioned, how-
ever, that since €)> &, the diffusion is also accompanied
by a rapid electron multiplication due to ionizing col-
lisions. The theory of the current growth in such a highly
nonlocal and time-dependent situation is out of the scope
of the present work and will be described elsewhere.’

The content of the paper will be as follows. In Sec. II
we will derive and solve a model stochastic equation,
describing the electron transport. Section III will describe
a Monte Carlo computer experiment for testing the
theory. Finally, in Sec. IV we will discuss the results of
the simulations as well as the limitations of the proposed
theoretical model.

II. MODEL STOCHASTIC EQUATION

Consider an electron in a gas in the presence of the elec-
tric field of the form

E(t)=Eycos(wt), Ey=const . (1)

We are interested in the nonrelativistic case (v/c <<1) and
therefore, in studying the electron motion, neglect the
magnetic component of the electromagnetic wave, as well
as the dependence of E on position. Assume that E, is
large enough so that in collisions with the gas molecules,
the electron is scattered mainly in the forward direction.
Consequently, for simplicity, we are adopting a one-
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dimensional scattering model, in which only inelastic col-
lisions influence the motion of the electron.

Chose the x axis in the direction of E; and assume that
at t=ty the electron is at rest. Then, if the first inelastic
collision occurs at t=t, the velocity of the electron for ¢
in the interval (¢y,2,) will be

vo(t)= —a[sin(wt)—sin(wty)] , (2)

where a =eEy/mw=(2€y/m)"/?. Similarly, the velocity
between the first and the second inelastic collisions is

v1(t)=A,—a[sin(wt)—sin(wty)] , (3)

where A, is the change in the velocity in the first collision.
More generally, between the nth and (n + 1)th collisions
(tn <t <tn+1)9

v, (t)=V, —assin(wt) , 4)
where
V,=asin(ot))+ 3 A, ' 5)

i=1

is the translational part of the velocity which, obviously,
leads to the electron transport in the gas. In order to
understand how V¥, evolves in time, consider the three
possibilities shown schematically in Fig. 1, where we see
the velocity v(¢) for three different domains of V. Using
the fact that the sign of A, ; (which describes the direc-
tion of the change of ¥,,) is opposite to the sign of v,(z) at
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FIG. 1. Dependence of the electron velocity v on time. (a)
and (b) Large translational velocity ¥V (| V | >a /2). The grad-
uate decrease of | V| is characteristic in this case. (c)
| ¥V | <<a. The translational component of the velocity changes
rather randomly in collisions.

the moment of the (n 4 1)st collision, we conclude that in
the case in Fig. 1(a), where ¥V, >a /2, most probably V,
is less than V. Similarly, for V, <—a/2 [Fig. 1(b)],
most probably A, ,;>0, so that V, . 1=V, +A,,1>V,.
Thus, for |V, | >a /2, on the coarse-time scale when the
fast oscillations are averaged out (note that we assume
@ >>Veo), We can attempt to describe the evolution of V),
by the dynamic friction-type equation

av _
dt —
In order to find the friction coefficient 8 in (6), assume

the following simple dependence of the inelastic collision
frequency on the electron energy €:

—BV . (6)

Veon=pKE€ , 7

where k =const and p is the pressure of the gas. Assume
also that in every inelastic collision the electron loses the
same amount of energy & and that £ <<€, Then, most
probably, the electron energy € in collisions will be also

much larger than &, so that approximately
m|A||v]|=§, or

|A| ~E/(2me)' /2 . ®)
Therefore, we find

z—l]%‘}!“vconzﬂgé . 9)

Equation (6) predicts a continuous exponential decrease
of | V| on the coarse-time scale. As was demonstrated
earlier, such a deterministic friction effect is dominant at
| V| >a/2. For |V|<a/2 and especially when
| V| <<a, in addition to the friction, we find rather ran-
dom changes of both the sign and the magnitude of V. In
fact, as can be seen in Fig. 1(c), if | V| <<a, the oscillat-
ing electron spends almost equal amount of time in nega-
tive and positive regions of v,(¢), so that with almost
equal probability, A, , ; can be positive or negative. Thus,
in this regime (in which also SV ~0), the coarse-time evo-
lution of ¥V can be described by a stochastic equation of
the form

av _

dt
where A(¢) is a random function of ¢ with zero average
over an ensemble of realizations:

(A(1)),,=0. (11)

@), (10)

We also assume that A(¢) is only correlated with itself
over an average time between collisions,

7=1/{Veon ) ay==2/pk€y=4/pkma? . (12)

We furthermore assume that A4(¢) describes a stationary
process so that the correlation function (A4(')A(2")),,
depends only on the difference ¢t'—t"'. Then [see (8)]

(A Yay=V2E/ma=A4, (13)

and we can approximately estimate the integral

© A2
I= f_+ (A(O)A(t)>avdt27=§2pk/2m . (14)
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Equations (6) and (10) describe the coarse-time evolu-
tion of V in the complementary domains of large or small
values of V, respectively. The two different effects
described by these equations can thus be also represented
by a single Langevin equation

av
dt

This is the desired model stochastic equations, describing
the electron transport in our problem. Note that the
rapid-time variation, due to the high frequency w of the
electromagnetic wave, had been factored out in (15) which
is a direct consequence of our assumption of @ >>v .

=—BV+4+A@) . (15)

We now formally solve (15), assuming that
V(0)=a sin(wt,) [see Eq. (5)],
t .
V(t)=a sin(wty)e P 4e P fo dt' A(t")eP" . (16)

Obviously ( ¥(t)),,=0. Next, we square (16) and ensem-
ble average

W=%( V(1)) 4y

€o
— 20,2

m 28 W Bt t o Bt ’ "
+ 5 fodt e fodt eP(A)A")),y -

(17)

Equation (17) can be further simplified if we use the fact
that as long as €,>>&, the autocorrelation time 7 of A4(¢)
is much less than the relaxation time 1/f3 [see Egs. (9) and
(12)]. This allows on even coarser scale (namely for
t >>7) to replace e in (17) by e# and the limits in the
second integral by * oo. This yields

€0 _op, M —28¢
—_— —_— 1 —_
= + 1B (1—e )74 (18)
or, on using (14) and (9),
€ & | 2, &
W — —_ .
[ 2 4| + 4 19

Thus lim,_, W =£/4.

Velocity (16) can now serve to find electron diffusion
coefficient. The coarse-time (£ >>1/w) evolution of the
coordinate of the electron is given by

x(t)= fot V(t')dt'

a sin(wty)
=——(1—e"F
B
t , t "
+ fodt'e—ﬁ' fo dt" A(t")e? (20)

or, on taking the double integral in (20) by parts,
x(t)= %a sin(wtg)(1—e ~#)

1 ! ’ ' — ! " " gen
+5 [fOA(t dt'—e =P [ A(t")eP" dt
(21)

Clearly (x(¢)),,=0. Next we find

(x(1)) =-“2—<1—e—3')2+lé1. (22)
T2p? B
where ‘
I,= fO'dt' fot(A(t')A(t”))avdt"zIt, (23)

12:—2[f0'dt' [larm et Cawrawn),, e

21
aeHempy, (24)
B
and
t ’ "
Li=e=2 [Tdt' P [ di" P (A A" Yy,
L1 ¢, (25)
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In approximately evaluating the integrals I,, I,, and I;,
as before, on the coarser-time scale, we replaced ¢’ by ¢’
and the limits in the integration with respect to ¢’ by
+ 0. Thus, we get

(xz(t)>av=2;7[ L(a2—31/B)+ (20 /B—a)e P

—3(@*+1/Be~# 1 1n] . (26)

The asymptotic time behavior of {x*(#)),, is therefore

4 3
(xXt))py=Dt + ————(€g— > &) , 27
) + m(pké_)z 0 2 §
where the diffusion coefficient is given by
D=I/pP=—2— . (28)
mpk

Note, that when t— oo, { V*(t)),, and {x%(z)),, are in-
dependent of both the strength E, and frequency w of the
electromagnetic wave. Some other salient features of the
obtained results are the smallness of

{ Wz(w))av=(—;-m(V?(w))av=£ <<€

4
and its independence on the collision frequency. Also,
unexpecticly, D does not depend on &.

III. THE SIMULATION METHOD

In this section we describe a Monte Carlo computer ex-
periment for testing predictions of the simplified theory
presented in the preceding section. The main difficulty in
the simulation of the diffusion process in our case is the
rapid dependence of the electron energy and therefore also
of the collision frequency on time. This complicates the
simulation of time intervals elapsed between successive
collisions. In order to overcome this difficulty, we adopt
here the “null” event method;® namely, we introduce non-
real collisions characterized by collision frequency v,;(€)
such that the total collision frequency

V=Vnul](6) +Vcoll(€) ' (29)

is energy independent. We are also assuming that the null
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collisions do not perturb electron motion and, therefore,
do not affect the results of the simulation.

The computer experiment proceeds as follows. We
start with a test electron at a random-time moment ¢, at
xo=0, with zero initial velocity, and simulate the time in-
terval 7, elapsed until the first collision takes place:’

Ti1=—(Inyy) /v . (30)

Here v, is a computer generated pseudorandom number
with a uniform distribution in the interval (0,1). Next we
use 7 to calculate the energy €; of the electron just before
the first collision takes place. Then we generate an addi-
tional pseudorandom number 1} which serves to simulate
the type of the collision. If vy (€;)/v is less than ¢}, we
decide that a real inelastic collision takes place, otherwise
the electron encounters a null collision. In the former
case the electron velocity v} and position x, just after the
first collision is found from

mot’ (31)
€ — 2 =£
and [see Eq. (4)]
x1=xo+Vor1+ f)—[cos(wtl )—cos(wty)] , (32)

where t; =ty+7;. In the case the first collision happens
to be a null collision, x; is found in a similar way, and it
is assumed that in the collision the velocity is unchanged
(A;=0). At this point, we are ready to proceed to the
simulation of the second collision. A new pseudorandom
number 1, is wused to find the time interval
7y=—(Iny,)/v between the first and the second col-
lisions. The type of the second collision is then simulated
so that we can find the new electron velocity increment A,
and position x, immediately after the collision and so on.
The simulation continues until the total elapsed time
At= Y, 7; exceeds a given value . The actual position

and velocity of the electron at ¢ is then obtained. Finally,
the whole simulation process is repeated with a sufficient
number (usually ~ 10%) of initial electrons at x =0, to pro-
vide the necessary statistics.

IV. RESULTS AND CONCLUSIONS

We applied the simulation scheme described in Sec. 111
for two gases N, and Hg. The corresponding total inelas-
tic collision frequencies found from Refs. 8 and 9 (N;)
and Ref. 10 (Hg) are shown in Fig. 2 (solid lines). In the
first simulation stage, we approximated the experimental
graphs for v (€) in Fig. 2 by the dashed curves, namely
assumed that

0, e<¢

pke, €>¢& (33)

Veol(€) =
where £=11 eV and k=5.8107 (seceV Torr)~! for N,,
and £€=7.5 eV and k=3.4%10® (seceV Torr)~! for Hg.
Figure 3 shows the simulation results for
W=m/2(V?),, versus time in Hg for €;=30 and 50 eV.
Here and throughout the rest of the simulations, we used
@=30 GHz and p=1 Torr. One can see in Fig. 3 the re-

20 ’ .

N Ao o
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}

veol/ P x107° (sec Torr )
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T T
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T
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FIG. 2. Total inelastic electron-gas collision frequencies in
N, and Hg (solid lines). The dashed lines represent a model
with linear energy dependence used in the simulations. The dot-
ted line for Hg (6> 55 eV) represents an improved model for
testing the limitations of the theory for large values of €.

laxation of the average electron energy W from its initial
value of €;,/2 to a stationary value of ~1.9 eV which is in
an excellent agreement with the predicted value of
£/4~1.87 eV [see Eq. (19)]. Interesting to note, that even
the initial relaxation phase of W agrees well with Eq. (22),
as can be seen in Fig. 4, where we plot the results of the
simulations for W —¢&/4 versus time. The slopes of these
graphs yield, according to (22), the value of B=1.5%10°
(Torrsec)™!, which is in a good agreement with the
theoretical estimate [see Eq. (19)]] of B=1.27x10°
(Torrsec) ™.

30 T T T T

] | ]
0 0.5 110 15 20 25

t (10° sec)

FIG. 3. Average translational energy W=m /2{V?),, of the
electrons in Hg versus time. ®, €,=30 eV; , =50 eV. The
relaxation to the steady-state value W=§£/4 is seen in the fig-
ure.
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The results of the simulations for (x?2),, versus time in
N, and Hg are shown in Fig. 5. One can see that after a
transition region and dependence (x?2),,=Dt+ B is estab-
lished with D=(3.7—5.1)x 107 cm?sec™! Torr~! in N,
and D=0.73Xx10" cm®?sec™!Torr~! in Hg. This agrees
well with the theoretical predictions [Eq. (27)] of
Dy, =6.1x10" cm?sec™' Torr™' and Dy,=1.03x10’
cm?sec™! Torr~!. Note also that the values of B in Fig. 5
are much larger in the case on N,, which also follows
from Eq. (27) since kn, <<kng. This is why (x2),,, for
all times, in Hg is practically independent of €,. The
weak dependence of D on €, in N, is probably due to a
poor satisfaction of the assumption of £/€5<<1 and to
the vanishing of vy for € <&, as used in the simulations.

In Fig. 6 we demonstrate the influence of the use in
simulations of a more realistic collision frequency, for Hg
at large electron energies (see the dotted line in Fig. 1)

0, e<§
Veolll€)= {pke, §<e<e (34)
pke,, € <e€.

We can see in the figure that the improved collision model
does not influence the previous results for D (the slope of
the curves in the figure) significantly, as long as € is less
than €, (55 eV in our case). For ¢,> €,, the diffusion is
faster, reflecting the reduction of the “effective” slope k
of vo(€) as compared to the simplified model (29).

In conclusion, we present the following summary.

(i) This work presents a theory of electron diffusion in a
gas in the field of an intense electromagnetic wave for
which the usual perturbative two-term expansion pro-
cedure in solving the Boltzmann equation is inapplicable.

(ii) Assuming o >>v,,j, we had shown that the fast os-
cillations associated with the high-frequency electromag-
netic wave can be averaged out, so that the diffusion pro-

W-£/4 (eV)

0.1 L1 L
0] 0.5 1.0 1.5

t (10° sec)

FIG. 4. Dependence of W —£/4 on time in Hg. @, €,=30
eV; +, =50 eV. The slope of the curves in the figure is —28.
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FIG. 5. Random-walk parameter {x2),, versus time in N,
(curves 4, B, and C) and Hg (curve D). @, €,=30 ¢eV; V¥,
€=40¢eV; A, e,=50¢V.

cess can be described on a slow (coarse) time scale by the
Langevin type, model stochastic equation.

(iii) The shortness of the autocorrelation time

7=1/{¥Veon)av in the Langevin equation in comparison to

the relaxation time 1/f3, allows us to conveniently solve
the model stochastic equation and to derive simple analy-
tic expressions for the average electron translational ener-
gy W and the diffusion coefficient D.

(iv) In the case of a linear dependence of the inelastic
collision frequency on electron energy, both W and D are
shown to be independent of the strength and frequency of
the electromagnetic wave.

(v) The theoretical predictions were found to be in a

FIG. 6. Dependence of (x?),, on time for improved
collision-frequency model in Hg. B, €,6=30 eV; ¥, €,=40 eV;
A, =50 ¢V; @, €=60 eV. For comparison, the dashed line
represents the simulation results obtained with a linear approxi-
mation for v .
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good agreement with the results of the Monte Carlo com-
puter experiments conducted for the cases of N, and Hg.
The simulation scheme was considerably improved by us-
ing the null event method, and was also exploited in

studying the deviations from the simplified theory, due to
the violation of the aforementioned linear dependence of
the collision frequency (usually at small or very large
values of €).
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