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Noise Enhanced Persistence in a Biochemical Regulatory Network with Feedback Control
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We find that discrete noise of inhibiting (signal) molecules can greatly delay the extinction of plasmids
in a plasmid replication system: a prototypical biochemical regulatory network. We calculate the
probability distribution of the metastable state of the plasmids and show in this example that the reaction
rate equations may fail in predicting the average number of regulated molecules even when this number is
large, and the time is much shorter than the mean extinction time.
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Many molecular species that control genetic regulatory
networks are present in low concentrations. The resulting
fluctuations in reaction rates may cause large random
variations in the instantaneous intracellular concentrations
of molecular species which, in their turn, may have im-
portant consequences in biological functioning. This and
related topics have attracted much recent interest from the
biology and physics communities [1-8]. Intracellular pro-
cesses are often regulated via negative feedback by signal
molecules. It was assumed in the past that noise in the
signal component would randomize control of the regu-
lated component. More recently, it has been shown that this
noise may actually enhance the robustness of the regulated
component, bringing the variation of its probability distri-
bution below the Poissonian limit [4]. Here we report a
previously unexplored dramatic impact the noise can have
on the persistence of the regulated component in systems
with negative feedback control. Following Paulsson et al.
[4], we will consider a minimal two-component copy
number control (CNC) model that, on the one hand, in-
cludes standard intracellular processes and, on the other
hand, provides an adequate description to CNC of bacterial
plasmids. Plasmids are extra-chromosomal DNA mole-
cules (typically, circular and double-stranded) that are
capable of autonomous replication. They undergo intra-
cellular dynamics of the birth-death type with decay
(mostly dilution by cell division) and autocatalytic produc-
tion inhibited by signal molecules. If there is no penetra-
tion of new plasmids into the cell, a rare sequence of
multiple decay events will ultimately drive the plasmid
population to extinction. It may even cause the death of
the cell if the plasmid contains a vital gene. We will
combine analytical and numerical approaches to show
that noise in the number of signal molecules can greatly
delay the plasmid extinction. We will also calculate ana-
Iytically the probability distribution function (PDF) of the
metastable state of the regulated (plasmid) molecules and
show that widely used deterministic reaction rate equations
(RRE) may fail in predicting the average number of plas-
mids even when this number is large. These remarkable
effects do not require an unusual molecular distribution
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and occur due to rare events when the number of signal
molecules is very small.

Model.—Consider a double negative-positive feedback
loop with plasmids denoted by X and signal molecules
denoted by S. The plasmids promote the production of
the signal molecules, whereas the signal molecules inhibit
the autocatalytic production of the plasmids. The RRE for
the average concentrations of the two species are [4]

X =XV(S/A) — X, S =aX - S, (1)

where W(S/A) is a nonlinear and monotonic decreasing
function of S, W(0) > 1, the parameter A specifies the
inhibition strength of the signal molecules S, and time
and the rates are rescaled by the decay rate of the plasmids.
Equations (1) have an attracting fixed point (X, S) [where
X =25/n, ¥(S/A) =1, and n = a/B] and an unstable
fixed point (X, Sy) = (0, 0). According to the RRE, the
system would stay in the (X, S) state forever. The under-
lying stochastic process, however, behaves quite differ-
ently. A large enough fluctuation ultimately depletes the
plasmid population. The state with no plasmids is an
absorbing state, as the probability of escape from it is
zero. Therefore, the (X,, Sy) state is actually stable,
whereas the stable fixed point (X, S) of the deterministic
model is metastable. The mean extinction time (MET), the
mean time it takes this stochastic process to reach the
absorbing state, is expected to be exponentially long in
the (presumably large) average number of plasmids in the
metastable state; see, e.g., Refs. [9-11].

To account for the stochastic effects, consider a chemi-
cal master equation (CME) that describes the evolution of
the probability P, ,(¢) of having, at time 7, m plasmids and
n S molecules. For m, n = 1 the CME is [4]

Pm,n = (EZI - l)gm,an,n + (Erln - l)umn
+ am(E;' = 1)P,,, + B(EL, — DnP,,,. (2)

where Ef(n) = f(n + j) and 8mn = m¥(n/A) [12]. Let
us denote by P,,, the probability of having, at time £, n S
molecules conditioned on having m plasmids, and by 7,
the probability of having m plasmids regardless of the
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number of S molecules. We substitute the identity P, , =
Py, into Eq. (2) and sum over all n. The result is

(E_ )gmﬂm + (El - l)mwm: (3)

where g,, = > Pyj(1) g, is the production rate of the
plasmids averaged over the (yet unknown) conditional
distribution P, (7).

Further analytical progress is only possible in some
limits. Following Paulsson et al. [4], we assume that the
S dynamics is much faster than the X dynamics. At the
level of the RRE, S adjusts rapidly to the current value of
X. Then S(r) ~ nX(z) holds, while X(¢) and S(r) flow
relatively slowly towards the fixed point (X, S) according
to the reduced equation X = XW(nX/A) — X. We will
perform further calculations in two particular examples:
exponential and hyperbolic inhibition.

Exponential inhibition.—Here V(S/A) = kexp(—S/A),
k > 1 (we assume that k is not too close to 1), and (X, §) =
(Alnk/m, Alnk). The time scale of the fast dynamics is
~1/ 8, and the time scale of the slow dynamics is ~1/ Ink
[see Fig. 1], so the time scale separation occurs when
Ink < B.

At the level of the CME we can perform adiabatic
elimination of the fast dynamics in the variable P, ()
by assuming that the S population rapidly adjusts to a
Poisson distribution Pl(ﬁ = ¢~ "(ym)" /n! about the cur-
rent value of the mean, nm(r). Now the effective stochastic
rate g,, in Eq. (3) can be easily calculated [4]:

an =S P g —kme =1 - A @)

n=0

This procedure reduces the two-species problem to an
effective one-species problem: a single-step birth-death
process with the birth rate g,, and death rate w,, = m. In
the most interesting case of (m) > 1, there are two widely
different time scales in this process. The first short time
scale is the relaxation time to the metastable state. The
second, exponentially long time scale is the life time of the
metastable state, or the extinction time, see below. At
intermediate times one observes a quasistationary distri-
bution (QSD) ¢,,(t) = 7,,/[1 — 7((?)]: the PDF of having,
at time ¢, m plasmids conditioned on their nonextinction;

0 5 X 10

FIG. 1. The phase plane X, S of the reaction rate Eqgs. (1) for
W(S/A) = kexp(—S/A), B =150, « =200, A=4, and k =
14. The e denotes the fixed point (X, S).

see, e.g., [13]. When g,/u; = ke™" > 1, that is Ink >
rm, the probability flux to the zero state m = 0 is negli-
gible, and ¢,,(f) can be approximated by putting, in Eq. (3),
77, (1) = 0 for all m and assuming w; = 0 [14]. In this way
one obtains a recursion relation for ¢,, [10,15] which yields
the QSD:

qm 818" &m—1 e*(l/Z)rnm(m*l)kmfl

— = = . )
q1 MMzt M m

while g, can be found from the normalization } >°_, g, =
1. Assuming rn < 1, we can replace the normalization
sum by an integral [16] and, by the saddle point method,
obtain

o V2T ok f2rn)
Vk Ink

Now, g ! is nothing but the MET 7 [13], and Eq. (6) yields
an accurate approximation for it. The same result follows
from an exact expression for the MET [17].

Let us calculate for comparison the MET for the ‘““semi-
deterministic’’ (SD) case, when § = nX is a prescribed
deterministic quantity. The SD rate g3° = kme~""/4 is
obtained by putting n = nm. A similar calculation, for
n/A < 1, yields

SD ~ \/277—77 A(lnk)z/(%l)
VkA Ink

How do the fully stochastic (6) and SD (7) results for the
METs compare? Consider their ratio

(Ink)

—1_

q; (6)

(7

R =

T
TST rA ex p|:

The strongest effect is observed for (Ink)? > 7. In this
case, and for A >> 7, we obtain R >> 1: the discrete noise
of the S molecules greatly (exponentially) delays the plas-
mid extinction. Note that in this parameter regime R is a
monotone decreasing function of A. However, even for
A — oo the effect is strong, as R — e("0*/é4n) > 1.
Using Eq. (6) for 7, we can determine the extinction
probability 77y(7): the probability that extinction occurs
until time ¢, see, e.g., Ref. [11]. Also, by conservation of
probability, we can restore the exponentially slow time
dependence of the PDF of the metastable state, 7,,~(f) =
gmexp(—t/7) [where 7 is given by Eq. (6)]. We obtain

(1- rA)} (8)

mo(t) =1 — e T,
k™12 1nk
m+/21rn

Using the PDF (9), we can calculate the (slowly decaying
in time) average number of the plasmids:

€))

T=0(1) = o~ 0k)?/Q@rm)=ram(m=1)/2=1/7

m(1)) = Z (0= (T 5)e 1)
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where we have again assumed rn < 1. For A < 1, (m(?))
strongly deviates from the RRE prediction X = AlInk/7,
even at t < 7, as was previously observed numerically [4].
Note that non-Gaussianity of the PDF (9) appears only in
the preexponent.

To test our analytical results, we solved numerically a
truncated CME (2). The numerically found PDF of the
plasmids () exhibits a slow decay of the metastable
state and a simultaneous growth of the extinction proba-
bility in time, see Fig. 2. Figure 3 compares our analyti-
cal and numerical results for 7r,,(¢). In addition, we com-
pare there the analytical result (6) for the MET with the
numerical result 7™™ = —¢/In[1 — SN_, P, (1)] (that ap-
proaches a constant after a transient), and also 75° from
Eq. (7) with the result of a numerical solution of Eq. (3)
with the SD rate g,,. Very good agreement is observed for
all quantities [18].

Hyperbolic inhibition.—QOur second example employs
the widely used hyperbolic, or Michaelis-Menten, inhibi-
tion model [19]. Here W(S/A) = k/(1 + S/A), k > 1 (and
not too close to 1), and (X, S) = [(k — 1)A/n, (k — 1)A].
The time scale separation occurs at 8 >> 1. At the level of
the CME (2) we again assume a rapid adjustment of the S
species to the m-dependent Poisson distribution. The ef-
fective stochastic rate g,, in Eq. (3) is

Em = Z;_)Pgl?ngm,n = kme " F,(A,A+ 1, nm), (11)

where | F,(a, b, z) is the Kummer confluent hypergeomet-
ric function [20]. Using this effective rate, Paulsson and
Ehrenberg [4] calculated the QSD numerically. We have
found it analytically from the recursion relation [10,15], by
assuming g; > u; = 1. The result is g,,/q; = (1/m!) X
[T/ g, Again, ¢;' = 7 can be found by normalizing the
QSD to unity. Therefore, the PDF of having m plasmids at
time ¢, and the MET, are

e t/T m—l

7Tm>()(t) =

Tm! l_[ &
b

FIG. 2 (color online). The PDF 7,,(t) found by solving nu-
merically a truncated CME (2) for the exponential inhibition
with k = 13, A =4, and @ = 8 = 400. The dashed line shows
the initial distribution: a Kroenecker delta at m = n = 18.

chastic and SD cases [with truncated sums in Eq. (12)] and
numerical solutions of the truncated CMEs (2) and (3),
respectively, are shown in Fig. 4(a) and 4(b), and very good
agreement is observed [18].

The extreme case of very strong inhibition, A < Ink/k,
can be further simplified. It can be checked a posteriori
that here, for all m that contribute to the normalization of
7,,, and hence to the MET, the effective rate (11) is well
approximated by the first term: g,, = kme™ "". This rate
formally coincides with that given by Eq. (4) for the
exponential inhibition, where one must put r = 1.
Therefore, the most interesting case of strong inhibition
A < Ink/k (when the stabilizing effect of noise in the S
molecules on the plasmid fluctuations and persistence is
the largest) is also the simplest. Furthermore, the exponen-
tial inhibition model formally describes the strong hyper-
bolic inhibition limit. By additionally assuming that
A < 1/k < Ink/k, one can show after some algebra that
the QSD and 7,,(r) from Eq. (12) reduce to Egs. (6) and
(9), respectively (with r = 1). The slowly decaying aver-
age of this PDF [Eq. (10) with r = 1] again strongly
deviates, already at r < 7, from the RRE prediction X =
(k — 1)A/n. The corresponding MET [Eq. (6) with r = 1]
can again be compared with the SD MET, obtained by
using the SD rate g5P = km(1 + ym/A)~" which assumes
n = nm. For A < n/k one has gi° < 1, so 7gp = O(1),
as the decay dominates over the replication. In contrast, the
asymptotic result for the stochastic MET, for n < 1,

o V2T k2 /)

T e , (13)
VkInk

is exponentially large. Therefore, the noise in the number

of the S molecules again causes, at A < 71/k, exponential

enhancement of the persistence of the plasmids.

Equation (13) compares well with numerics, see Fig. 4(c).
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FIG. 3 (color online). (a) The PDF (9) of the metastable state
for the exponential inhibition (solid line) and numerical solution
of the CME (2) (o) for t << 7. The parameters are k = 13, A =
3, and @ = 8 = 500. (b) The MET vs A~', the rest of parame-
ters the same as in (a). Solid line: Eq. (6), o: numerical solutions
for the fully stochastic case, dashed line: Eq. (7), OJ: numerical
solution for the SD case, see text for details. The ratio of the fully
stochastic and SD METs increases with the inhibition strength
1/A.
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FIG. 4 (color online). (a) The PDF (12) of the metastable state
for the hyperbolic inhibition (solid line) and numerical solution
of the CME (2) (o) for t < 7. The parameters are k = 15, A =
1, @ = 350, and B = 700. (b) The MET vs A~L the rest of
parameters the same as in (a). Solid line: Eq. (12), o: numerical
solutions for the fully stochastic case, dashed line: Eq. (12) with
the SD g,,, [1: numerical solution for the SD case, see text for
details. The ratio of the fully stochastic and SD METs grows
with the inhibition strength 1/A. (c) Eq. (13) for the MET (solid
line) and numerical solutions of the CME (2) (o) at different 7
for k=10,A=10"3,and 8 =2 X 10%.

Discussion.—We have shown, in a simple CNC model,
that intrinsic discrete noise of the signal molecules can
greatly increase the average number of regulated mole-
cules and therefore enhance the persistence of the regu-
lated component. Although we assumed that P, is
Poisson distributed, we expect these findings to hold, for
sufficiently strong inhibition, for other signal molecule
kinetics as well. What is the mechanism behind the
noise-enhanced persistence? The autocatalytic production
rate of the plasmids is largest at S = 0; therefore, the rare
events of having a very small number of S molecules
strongly dominate the effective stochastic growth rate
gm; see, e.g., Eq. (4). As a result, the average number of
plasmids in the metastable state greatly increases, and this
enhances the plasmid persistence. As the mode and the
average for the plasmid PDF ,, coincide, this mechanism
of failure of the RRE is different from that discussed
previously [7].

The noise-enhanced persistence that we predict here
should be observable in experiment, in vitro and in vivo,
due to recent advances in single-molecule signal measure-
ments. Finally, the effect is not system specific, and should
appear in a host of other birth-death-type systems where
negative feedback is at work.

We thank Ari Meerson for a useful discussion. Our work
was supported by the Israel Science Foundation.
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