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Breakdown of Scale Invariance in the Phase Ordering of Fractal Clusters
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Numerical simulations with the Cahn-Hilliard equation show that coarsening of fractal clusters (FCs)
is not a scale-invariant process. On the other hand, a typical coarsening length scale and interfacial ar
of the FC exhibit power laws in time, while the mass fractal dimension remains invariant. The initial
value of the lower cutoff is a relevant length scale. A sharp-interface model is formulated that can
follow the whole dynamics of a diffusion controlled growth, coarsening, fragmentation, and approach
to equilibrium in a system with conserved order parameter. [S0031-9007(98)06180-8]
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Nonequilibrium driven dissipative systems relax to equ
librium after the driving agent is “switched off” or de-
pleted. In complex systems the relaxation dynamics c
be quite complicated, and it is natural to seek for dynam
scaling and universality. An instructive, exactly solvab
nonlinear example of dynamic scaling in relaxation (coar
ening) of rough (self-affine fractal) surfaces withnoncon-
servativedynamics is given by the deterministic (undriven
KPZ equation [1,2]. A much older example is decay of ho
mogeneous and isotropic hydrodynamic turbulence [3,
Finally, there is an important class of relaxation problem
related to phase ordering dynamics, nonconserved and c
served, in the bulk and on the surface [5–7].

If the system obeys a conservation law, “switching off
of the driving agent occurs naturally. There are man
important nonequilibrium systems that exhibit morpho
logical instabilities and ramified growth at an early stag
of the dynamics, show phase ordering at an intermedi
stage, and finally approach a simple equilibrium.
canonical example is provided by diffusion controlle
systems, such as deposition of solute from a supersa
rated solution and solidification from an overcoole
liquid. The stage of morphological instability and its
implications have been under extensive investigati
[8–12]. If some noise is present, a fractal cluster (FC
can develop at this stage [12]. The subsequent surf
tension driven coarsening of this FC is unavoidab
in a closed geometry with a finite amount of mas
or heat. This stage has not received much attentio
with the exception of the paper by Irisawaet al. [13]
where two-dimensional Monte Carlo simulations wer
performed, and a power law found for the perimeter of
diffusion-limited aggregation (DLA) cluster versus time.

We are aware of two additional physical system
with a conservation law, for which numerical simulation
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showed nontrivial fractal coarsening dynamics and pow
laws for the cluster perimeter: interface controlled [13,14
and surface diffusion controlled [13,15] systems. Beside
Stokes flow controlled coarsening has been discussed
the context of sintering of fractal matter [15].

No theory is available for any of these fractal coarsenin
systems, except for the very late postfragmentation sta
[16]. On the other hand, a FC is a particular case of diso
dered media with long-range (power-law) spatial correla
tions [17]. The scaling hypothesis (SH) (the cornerston
of modern theory of phase ordering [18]) does not exclud
FCs when dealing with long-range correlations in the in
tial condition [6]. Therefore, one is tempted to employ th
SH and calculate the growth exponents for the coarseni
of FCs. We start with these simple calculations. Then w
report our simulations of the diffusion controlled coarsen
ing of a DLA aggregate, as described by the Cahn-Hilliar
(CH) equation. Having measured, for the first time, th
dynamics of the pair correlation function (which is very
close to the average mass density) of the FC, we show t
the SH is invalid. On the other hand, we find that a cha
acteristic coarsening length scale and interfacial area of t
FC exhibit power-law dynamics (with anewgrowth expo-
nent), while the fractal dimension remains invariant (on a
interval of scales shrinking with time). The initial value of
the lower cutoff of the FC is shown to be an additional rele
vant length scale. Finally, a minimalistic sharp-interfac
model is presented that can follow the whole dynamics
the diffusion controlled system: an unstable growth, coar
ening, fragmentation, and approach to equilibrium.

Let the initial state of a conserved system represe
a single-connected, statistically homogeneous self-simi
mass fractal of the minority phase, characterized by th
fractal dimensionD on an interval of scales between the
lower cutoffl0 and upper cutoffL. We start with a simple
© 1998 The American Physical Society 4693
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coarsening scenario [19,20] that isrequired by the SH.
It assumes that the fractal dimension of the coarsen
cluster remains constant on a (shrinking) interval of sca
between the time-dependent lower and upper cutoffs,lstd
andLstd. The interfacial areaA and total massM of the
FC are estimated as [17]

A , ld21 sLyldD and M , ld sLyldD , (1)

respectively, whered is the embedding Euclidean dimen
sion. Mass conservation yieldsL , lsD2ddyD [20]. Now
assume thatlstd , t1yz . Then we find the following scal-
ing laws: Astd , t21yz and Lstd , tsD2ddyDz . The scal-
ing of Lstd describes shrinking of the FC in the process
coarsening [20].

Already at this stage a discrepancy appears: no shri
ing has been observed in any direct numerical simulatio
of coarsening of FCs [13–15]. This gives a strong ev
dence for breakdown of scale invariance [21]. On th
other hand, power laws forAstd reported in Refs. [13–15]
indicate that the problem might possess scaling behav
of a more complicated nature.

To clarify the matter, we performed more detaile
numerical simulations of a diffusion controlled system
In addition to Lstd and Astd, we followed the evolution
of the equal-time pair correlation function (which is ver
close to the average mass density of the FC, so we w
not distinguish between them). Having measured it, o
could find the mass fractal dimension and coarsen
length scale of the FC for every moment of time.

If one remains, for one more moment, within the fram
work of the SH, one can easily predict the dynamics
the mass densityrsr , td. At distancesr ø lstd from
a (typical) reference point inside the cluster, the clu
ter is nonfractal:rsr , td , const. At distances interme-
diate betweenl and L, rsr , td ­ astd rD2d, whereastd
is a function of time. Matching these two asymptotic
we haveastd lD2d ­ const and henceastd , tsd2Ddyz .
Therefore, forlstd ø r ø Lstd the SH predictsrsr , td ,
sryt1yzdD2d, a simple self-similar expression. It is the ab
sence of this self-similarity that will enable us to utterl
disprove the SH.

We concentrated on the diffusion controlled coarseni
and employed the CH equation, a standard model of ph
ordering with a conserved order parameter (COP) [5,6]

≠u
≠t

1
1
2

=2f=2u 1 u 2 u3g ­ 0 . (2)

Equation (2) was discretized and solved on the dom
0 # x # 512 , 0 # y # 512 with periodic boundary con-
ditions. We used an explicit Euler integration scheme
advance the solution in time, and second order central d
ferences to discretize the Laplace operator. With a me
sizeDx ­ Dy ­ 1 no preferred directions emerged in th
computational grid, due to the truncation errors; a tim
stepDt ­ 0.05 was required for numerical stability. The
accuracy was monitored by checking the mass conser
tion that was verified in all the simulations within 0.01%
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We chose a DLA cluster [22] as the initial condition
The fractal properties of DLA clusters are somewhat mo
complex that those of a simple self-similar fractal [23
However, it is a DLA-like FC that can develop durin
the diffusion controlled growth [12], so this choice i
physically motivated. The initial clusters (like the on
shown in Fig. 1, upper left), with radius of order 250
were prepared by a standard random-walk algorithm o
two-dimensional square grid. To prevent fragmentation
an early stage of the coarsening process, we followed
technique of Irisawaet al. [13,14]: the aggregates wer
thickened by an addition of peripheral sites. The ma
fractal dimension was determined from the mass-rad
relation [17] and ranged from 1.67 to 1.72.

We identified the cluster as the locus whereusr, td $ 0.
The coarsening process was followed up to a timet ­
5000. Typical snapshots of the coarsening process
shown in Fig. 1. One can see that smaller features of
FC are “consumed” by larger features, while the glob
structure of the cluster is not affected. To characterize
coarsening process, the following quantities were samp
and averaged over 10 initial configurations: (1) the g
ration radius of the cluster, (2) the circularly averag
pair correlation functiongsr, td ­ kfusr 0, td 1 1g fusr 0 1

r , td 1 1gl, (3) the cluster perimeterA1std, defined as the
sum of j= usr, tdj2 over the whole domain, and (4) th
cluster perimeterA2std, defined as the number of broke
bonds between the aggregate sites.

The gyration radius of the FC has been found to rem
constant within possible logarithmic corrections. Ev
lution of gsr , td is shown in Fig. 2. One can see tha
coarsening affects only the smallest lengths, while t
intermediate-distance power-law part remains “frozen.”

FIG. 1. Evolution of a DLA cluster undergoing coarsenin
in a conserved, diffusion controlled system. The upper ro
corresponds tot ­ 0 (left) and 34.7 (right), the lower row to
t ­ 329.3 (left) and4900 (right).
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FIG. 2. Dynamics of the pair correlation functiongsr , td for
time momentst ­ 0 (solid line), 516.5 (dotted line), and4900
(dashed line).

is evident thatgsr , td does not acquire a self-similar form,
so there is no scale invariance. On the other hand, t
mass fractal dimension remains invariant on an interv
lcstd ø r ø L. The dynamics of the coarsening lengt
scalelcstd, extracted for each moment of time from the
slope of the linear part ofgsr , td (the Porod law [6]), are
shown in Fig. 3. The late-time behavior of the slope ve
sus time shows a power law:t2a1 with a1 ­ 0.19. There-
fore, lcstd , ta1 , and the corresponding growth exponen
z1 ­ 1ya1 is close to 5 (and not to 3 as could be expecte
for a diffusion controlled system with a COP [6]). Fig-
ure 4 shows the dynamics of the cluster perimeter es
matesA1std andA2std. The long-time dynamics of each of
them is describable by a power lawt2a2 , with a2 ­ 0.19
for A1, and0.20 for A2. The corresponding result of Monte
Carlo simulations [13] was slightly different:0.22 0.24.
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FIG. 3. The slope of the linear part ofgsr , td versus time, and
its power-law regression.
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The close proximity of the exponentsa1 anda2 gives evi-
dence that it is a single exponent.

Absence of scale invariance means presence of
additional length scale. Functiongsr , td gives evidence
for the nature of this length scale. For our mass frac
at t ­ 0 we havegsr , t ­ 0d , sryl0dD2d in the fractal
region l0 ø r ø L. Preservation of the power-law par
of g with time (Fig. 2) implies that the same asymptotic
holds, on a shrinking interval of radii, fort . 0 (until
fragmentation). That is, the small intrinsic length sca
l0 remains relevant. How does it show up in th
phenomenology of coarsening? Figure 1 gives evide
that (i) the FC can be regarded as a set of “bars,” a
(ii) the characteristic bar lengthlb grows in time faster
than the bar width (identified withlc). The area of a
single bar should scale likelb lc, hence the total area o
the FC islb lc sLylbdD. This quantity must be equal to
the initial value of the FC area,l2

0 sLyl0dD. This yields
lb , l0 slcyl0d1ysD21d , ta1ysD21d.

We will finish this Letter with formulating a sharp
interface model that can describe thewhole diffusion
controlled dynamics, from the stage of growth throug
coarsening and fragmentation to the final equilibrium
Consider a number of (possibly multiple-connected) ma
clusters characterized by a set of their (moving) interfac
gi . Now let usr, td be the mass concentration of th
solution normalized to the (constant) density of solute
the compact solid phase. The fieldu in the liquid phase is
governed by the diffusion equation

≠u
≠t

­ x=2u (3)

in a finite d-dimensional domain. We specify a no-flu
boundary condition,=nujG ­ 0 on the external bound-
ary G, where indexn stands for the normal componen
of a vector. Assuming that each of the interfacesgi

is in local thermodynamic equilibrium, we employ th
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FIG. 4. Two estimates for the FC perimeter versus time:A1
(triangles) andA2 (circles).
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Gibbs-Thomson relationujgi ­ u0s1 1 l0kid, whereu0
is the (normalized) equilibrium concentration of the solu
tion in the bulk,l0 is the capillary length, andki is the lo-
cal curvature ford ­ 2, or the mean curvature ford . 2.
(We limit ourselves to an isotropic surface tension.) F
nally, mass conservation at each of the moving interfac
yields the well-known relation for the normal speed,

ysid
n ­

x=nu
1 2 u

Ç
gi

. (4)

It is easy to check that this model preserves the to
mass of the solute. In the normalized form

Vc 1
Z

V

u dr ­ const, (5)

where Vc is the total volume (area) of the solid phase
while V denotes the region unoccupied by the soli
phase. This important conservation law does not appe
in the more traditional theoretical formulations of the
diffusion controlled growth problem [8–12], where an
“infinite” system is studied, and the boundary conditio
corresponding to a constant (positive) flux or consta
supersaturation atr ! ` is used. Notice that, even in the
limit of strong diffusion, it is the full diffusion equation
(rather than its Laplace’s equation limit) and no-flu
condition onG that provide the conservation law. Also
the usually small termu in the denominator of Eq. (4)
should be kept to get Eq. (5) right.

In summary, we have demonstrated that diffusion co
trolled phase ordering of FCs is not a scale-invaria
process. In spite of this, the problem possesses nontriv
scaling properties: the coarsening length scale and inter
cial area of the FC exhibit power laws in time (with a new
growth exponent), and the mass fractal dimension rema
invariant. An additional small intrinsic length scale (th
initial value of the lower cutoff) remains relevant until the
fragmentation stage. We believe that these findings ap
to other coarsening mechanisms as well.
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