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Breakdown of Scale Invariance in the Phase Ordering of Fractal Clusters
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Numerical simulations with the Cahn-Hilliard equation show that coarsening of fractal clusters (FCs)
is not a scale-invariant process. On the other hand, a typical coarsening length scale and interfacial area
of the FC exhibit power laws in time, while the mass fractal dimension remains invariant. The initial
value of the lower cutoff is a relevant length scale. A sharp-interface model is formulated that can
follow the whole dynamics of a diffusion controlled growth, coarsening, fragmentation, and approach
to equilibrium in a system with conserved order parameter. [S0031-9007(98)06180-8]
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Nonequilibrium driven dissipative systems relax to equi-showed nontrivial fractal coarsening dynamics and power
librium after the driving agent is “switched off” or de- laws for the cluster perimeter: interface controlled [13,14]
pleted. In complex systems the relaxation dynamics caand surface diffusion controlled [13,15] systems. Besides,
be quite complicated, and it is natural to seek for dynamicStokes flow controlled coarsening has been discussed in
scaling and universality. An instructive, exactly solvablethe context of sintering of fractal matter [15].
nonlinear example of dynamic scaling in relaxation (coars- No theory is available for any of these fractal coarsening
ening) of rough (self-affine fractal) surfaces witbncon-  systems, except for the very late postfragmentation stage
servativedynamics is given by the deterministic (undriven) [16]. On the other hand, a FC is a particular case of disor-
KPZ equation [1,2]. A much older example is decay of ho-dered media with long-range (power-law) spatial correla-
mogeneous and isotropic hydrodynamic turbulence [3,4}tions [17]. The scaling hypothesis (SH) (the cornerstone
Finally, there is an important class of relaxation problemsof modern theory of phase ordering [18]) does not exclude
related to phase ordering dynamics, nonconserved and coREs when dealing with long-range correlations in the ini-
served, in the bulk and on the surface [5-7]. tial condition [6]. Therefore, one is tempted to employ the

If the system obeys a conservation law, “switching off” SH and calculate the growth exponents for the coarsening
of the driving agent occurs naturally. There are manyof FCs. We start with these simple calculations. Then we
important nonequilibrium systems that exhibit morpho-report our simulations of the diffusion controlled coarsen-
logical instabilities and ramified growth at an early stageing of a DLA aggregate, as described by the Cahn-Hilliard
of the dynamics, show phase ordering at an intermediaté€CH) equation. Having measured, for the first time, the
stage, and finally approach a simple equilibrium. Adynamics of the pair correlation function (which is very
canonical example is provided by diffusion controlled close to the average mass density) of the FC, we show that
systems, such as deposition of solute from a supersatthe SH is invalid. On the other hand, we find that a char-
rated solution and solidification from an overcooledacteristic coarsening length scale and interfacial area of the
liquid. The stage of morphological instability and its FC exhibit power-law dynamics (withmewgrowth expo-
implications have been under extensive investigatioment), while the fractal dimension remains invariant (on an
[8—12]. If some noise is present, a fractal cluster (FCinterval of scales shrinking with time). The initial value of
can develop at this stage [12]. The subsequent surfadbe lower cutoff of the FC is shown to be an additional rele-
tension driven coarsening of this FC is unavoidablevant length scale. Finally, a minimalistic sharp-interface
in a closed geometry with a finite amount of massmodel is presented that can follow the whole dynamics of
or heat. This stage has not received much attentiorthe diffusion controlled system: an unstable growth, coars-
with the exception of the paper by Irisawet al.[13]  ening, fragmentation, and approach to equilibrium.
where two-dimensional Monte Carlo simulations were Let the initial state of a conserved system represent
performed, and a power law found for the perimeter of aa single-connected, statistically homogeneous self-similar
diffusion-limited aggregation (DLA) cluster versus time. mass fractal of the minority phase, characterized by the

We are aware of two additional physical systemsfractal dimensionD on an interval of scales between the
with a conservation law, for which numerical simulationslower cutoff/y and upper cutofl.. We start with a simple
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coarsening scenario [19,20] that riequired by the SH. We chose a DLA cluster [22] as the initial condition.

It assumes that the fractal dimension of the coarsenin@he fractal properties of DLA clusters are somewhat more
cluster remains constant on a (shrinking) interval of scalesomplex that those of a simple self-similar fractal [23].
between the time-dependent lower and upper cutdffs, However, it is a DLA-like FC that can develop during
andL(t). The interfacial area and total masd/ of the the diffusion controlled growth [12], so this choice is
FC are estimated as [17] physically motivated. The initial clusters (like the one
_ shown in Fig. 1, upper left), with radius of order 250,

A~ 17N L/D? and M~ 1L/, 1) were prepared by a standard random-walk algorithm on a

respectively, wherd is the embedding Euclidean dimen- two-dimensional square grid. To prevent fragmentation at
sion. Mass conservation yields~ [(°~@/D [20]. Now an early stage of the coarsening process, we followed the

assume thak(r) ~ /<. Then we find the following scal- technique of Irisawaet al.[13,14]: the aggregates were
ing laws: A(t) ~ t~V/7 and L(r) ~ P~/ The scal- thickened by an addition of peripheral sites. The mass

ing of L(¢) describes shrinking of the FC in the process Offractgl dimension was determined from the mass-radius
coarsening [20]. relation [17] and ranged from 1.67 to 1.72.

Already at this stage a discrepancy appears: no shrink- We identified the cluster as the locus whete, 1) = 0.
ing has been observed in any direct numerical simulation§he coarsening process was followed up to a time
of coarsening of FCs [13—15]. This gives a strong evi-3000. Typical snapshots of the coarsening process are
dence for breakdown of scale invariance [21]. On theshown in Fig. 1. One can see that smaller features of the
other hand, power laws fot() reported in Refs. [13—-15] FC are “consumed” by larger features, while the global
indicate that the problem might possess scaling behavigitructure of the cluster is not affected. To characterize the
of a more complicated nature. coarsening process, the following quantities were sampled

To clarify the matter, we performed more detailed@nd averaged over 10 initial configurations: (1) the gy-
numerical simulations of a diffusion controlled system.ration radius of the cluster, (2) the circularly averaged
In addition to L(r) and A(r), we followed the evolution Pair correlation functiong(r,#) = ([u(r',1) + 1][u(r" +
of the equal-time pair correlation function (which is very 7> 1) + 11), (3) the cluster perimetet,(z), defined as the
close to the average mass density of the FC, so we wium of [Vu(r,1)|*> over the whole domain, and (4) the
not distinguish between them). Having measured it, on&luster perimeter(s), defined as the number of broken
could find the mass fractal dimension and coarsenin§onds between the aggregate sites. _
length scale of the FC for every moment of time. The gyration radius of the FC has been found to remain

If one remainS, for one more moment' within the frame_ConStant within pOSSible |OgarithmiC corrections. Evo-
work of the SH, one can easily predict the dynamics ofution of g(r,7) is shown in Fig. 2. One can see that
the mass density(r,7). At distancesr < [(t) from coarsening affects only the smallest lengths, while the
a (typical) reference point inside the cluster, the clusintermediate-distance power-law part remains “frozen.” It
ter is nonfractal;p(r, r) ~ const. At distances interme-
diate betweerl and L, p(r,t) = a(t) r?~4, wherea(r)
is a function of time. Matching these two asymptotics,
we havea(r) 1?4 = const and hence(r) ~ (4~D)/z,
Therefore, forl(r) < r << L(r) the SH predicte (r, 1) ~
(r/t'/2)P=d a simple self-similar expression. It is the ab-
sence of this self-similarity that will enable us to utterly
disprove the SH.

We concentrated on the diffusion controlled coarsening
and employed the CH equation, a standard model of phase
ordering with a conserved order parameter (COP) [5,6],

Ju
ot

Equation (2) was discretized and solved on the domain
0 =x =512,0 =y = 512 with periodic boundary con-
ditions. We used an explicit Euler integration scheme to
advance the solution in time, and second order central dif-
ferences to discretize the Laplace operator. With a mesh
sizeAx = Ay = 1 no preferred directions emerged in the

computational grid, due to the truncation errors; a tlmeFIG. 1. Evolution of a DLA cluster undergoing coarsening

stepAr = 0.05 Was.required for nur_‘nerical stability. The in a conserved, diffusion controlled system. The upper row
accuracy was monitored by checking the mass conservaorresponds ta = 0 (left) and 34.7 (right), the lower row to

tion that was verified in all the simulations within 0.01%. ¢ = 329.3 (left) and4900 (right).
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1.0 : : : The close proximity of the exponents anda, gives evi-
dence that it is a single exponent.
Absence of scale invariance means presence of an

0.8 If

additional length scale. Functiog(r, t) gives evidence
for the nature of this length scale. For our mass fractal
06 att = 0 we haveg(r, t = 0) ~ (r/lp)’~? in the fractal
: regionly < r < L. Preservation of the power-law part
a of g with time (Fig. 2) implies that the same asymptotics
0.4 holds, on a shrinking interval of radii, for > 0 (until
fragmentation). That is, the small intrinsic length scale
lp remains relevant. How does it show up in the
0.2 phenomenology of coarsening? Figure 1 gives evidence
that (i) the FC can be regarded as a set of “bars,” and
0.0 (i) the characteristic bar length, grows in time faster

0.0 500 1000 1500 _ 2000  than the bar width (identified with.). The area of a
single bar should scale likg ., hence the total area of
the FC isl, I. (L/1,)P. This quantity must be equal to

FIG. 2. Dynamics of the pair correlation functigsir, ¢) for it 2 D e i
time moments = 0 (solid line),516.5 (dotted line), andt900 ;Z‘e:r}l()tlzl )/l?;ﬁjﬁqul)trf IIZS([?[?)H‘) (L/lo)”. This yields
¢ .

(dashed line).

r

We will finish this Letter with formulating a sharp-
interface model that can describe théole diffusion
is evident thaiz(r, r) does not acquire a self-similar form, controlled dynamics, from the stage of growth through
so there is no scale invariance. On the other hand, theoarsening and fragmentation to the final equilibrium.
mass fractal dimension remains invariant on an intervaConsider a number of (possibly multiple-connected) mass
l.(r) < r < L. The dynamics of the coarsening length clusters characterized by a set of their (moving) interfaces
scalel.(r), extracted for each moment of time from the y;. Now let u(r,7) be the mass concentration of the
slope of the linear part of(r,t) (the Porod law [6]), are solution normalized to the (constant) density of solute in
shown in Fig. 3. The late-time behavior of the slope ver-the compact solid phase. The fieldn the liquid phase is
sus time shows a power law:* with «; = 0.19. There- governed by the diffusion equation
fore, I.(r) ~ t*, and the corresponding growth exponent
z1 = 1/a; is close to 5 (and not to 3 as could be expected — = yVu 3)
for a diffusion controlled system with a COP [6]). Fig-
ure 4 shows the dynamics of the cluster perimeter estin a finite 4-dimensional domain. We specify a no-flux
matesA;(z) andA,(r). The long-time dynamics of each of boundary conditionV,u|r = 0 on the external bound-
them is describable by a power law®:, with o, = 0.19  ary I', where indexn stands for the normal component
for Ay, and0.20 for A,. The corresponding result of Monte of a vector. Assuming that each of the interfacgs

Carlo simulations [13] was slightly differen®.22-0.24.  is in local thermodynamic equilibrium, we employ the
; ; ; ; 10° . . . .
0.11 ¢
D
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FIG. 3. The slope of the linear part gfr,r) versus time, and FIG. 4. Two estimates for the FC perimeter versus timhe:
its power-law regression. (triangles) and4, (circles).
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