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Hydrodynamic Singularities and Clustering in a Freely Cooling Inelastic Gas
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We employ hydrodynamic equations to follow the clustering instability of a freely cooling dilute gas of
inelastically colliding spheres into a well-developed nonlinear regime. We simplify the problem by
dealing with a one-dimensional coarse-grained flow. We observe that at a late stage of the instability the
shear stress becomes negligibly small, and the gas flows solely by inertia. As a result the flow formally
develops a finite-time singularity, as the velocity gradient and the gas density diverge at some location. We
argue that flow by inertia represents a generic intermediate asymptotic of unstable free cooling of dilute
inelastic gases.
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A gas of inelastically colliding macroscopic particles is
a simple paradigm of granular matter [1–4], and it appears
in numerous applications, from astrophysics and geophys-
ics to materials processing. One of the many fascinating
phenomena in a freely cooling gas of inelastic particles is
clustering instability [5–13]. This instability attracted
much attention from physicists to rapid granular flow
[3,14]. The clusters form an intricate cellular structure
[6–9,11]. Though molecular dynamics (MD) simulations
provide a valuable insight into the complicated dynamics
of clustering, a better understanding requires a continuum
theory. In this Letter we consider a freely cooling dilute gas
of identical inelastic hard spheres. In this case a continuum
theory is derivable systematically from a kinetic equation,
leading to hydrodynamic equations with a heat loss term
caused by the inelasticity of particle collisions [1,15–17].
Hydrodynamics is expected to be an accurate leading order
theory when the mean free path of the particles is much less
than any length scale, and the mean time between two
consecutive collisions is much less than any time scale,
described hydrodynamically. Linearizing the hydrody-
namic equations around a homogeneous cooling state
(HCS), one finds two different linearly unstable modes:
the shear mode and the thermal, or clustering, mode [6–8].
Growth of the shear mode corresponds to production of
vorticity, while the clustering mode governs cluster for-
mation. Nonlinear evolution of the clustering instability is
a hard problem. First, one has to deal here with nonlinear
coupling of the shear and clustering modes. Second, as the
local density grows, the hydrodynamic description be-
comes less accurate. It breaks down completely when the
density approaches the point of the disorder-order transi-
tion in the gas of hard spheres.

In this Letter we follow the clustering instability into a
well-developed nonlinear stage by circumventing these
two difficulties. First, we put the particles into a long
two-dimensional (2D) box, Lx � Ly, so that the shear
modes are strongly overdamped, and all coarse-grained
quantities depend only on x. Second, we consider the limit
of a very small area fraction of the particles. In this case,
despite clustering, the gas density remains small, compared
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with the freezing density, for a very long time. Importantly,
this limit does not preclude arbitrarily high-density con-
trasts in the system. We solve the hydrodynamic equations
numerically and observe that, at a late stage of the dynam-
ics, the shear stress becomes negligibly small. As a result,
the gas moves only by inertia, and the flow formally
exhibits a finite-time singularity. This singularity has a
universal character if the initial mean velocity profile is
smooth. We argue that flow by inertia is a generic inter-
mediate asymptotic in more general multidimensional
freely cooling granular flows, and that the finite-time sin-
gularities form the skeleton of the later dynamics, when
finite-density effects in the clusters come into play.

Let each of N hard disks have a diameter � and mass
m � 1. Let the inelasticity of particle collisions be q �
�1� r�=2> 0, where r is the (constant) coefficient of
normal restitution. Hydrodynamics deals with three
coarse-grained fields: the number density n�x; t�, the
mean velocity v�x; t� and the granular temperature
T�x; t�. We employ scaled variables n ! n=n0, T !

T=T0, v ! v=T1=2
0 , x ! x=Lx, and t ! tT1=2

0 =Lx, where
n0 � N=�LxLy� and T0 are the average number density and
the initial temperature of the gas, respectively. In the dilute
limit, granular hydrodynamic equations [1,15–17] read
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where d=dt � @=@t� v@=@x is the total time derivative,
K � �2=

����
�

p
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�1 is the Knudsen number which, up
to a constant factor of order unity is the ratio of the mean
free path of the particles to Lx, and P � �nT �

�K=4�T1=2�@v=@x� is the stress field. The validity of
Eqs. (1) and (2) requires K 	 1 (scale separation), n�2 	
1 (dilute limit), and q 	 1 (nearly elastic collisions).
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The HCS is described by Haff’s cooling law T�x; t� �
�1� t=t0��2, where t0 � K=4q [1]. A linear stability
analysis of the HCS, analogous to that of Refs. [6–8],
predicts clustering instability of the HCS if Kkx < 2q1=2,
where kx is the (scaled) wave number of a small sinusoidal
perturbation around the HCS. The wave number is quan-
tized by the periodic boundary conditions: kx � 2�k,
where k � 1; 2; . . . is the mode number. Therefore, the
kth mode is linearly unstable if �kK < q1=2 [18]. The
rest of the parameters fixed, the instability occurs when
Lx is sufficiently large. The number of the unstable modes
in the system kmax can serve as a measure of the instability
magnitude. The growth or decay of small perturbations is
algebraic. The density perturbations grow. The temperature
and velocity perturbations decay, but the decays are slow
compared to Haff’s cooling law. As a result, the flow tends
to become supersonic [8].

We followed the clustering instability with kmax � 1
into a strongly nonlinear regime by solving Eqs. (1) and
(2) numerically. We used a Lagrangian scheme [19] with
periodic boundary conditions. The Lagrangian description
allowed us to resolve steep velocity gradients and high-
density peaks with good accuracy until close to singular-
ities; see below. The first series of hydrodynamic simula-
tions dealt with generic initial conditions of the form
n�x; t � 0� � 1� �n�x�, T�x; t � 0� � 1� �T�x�, and
v�x; t � 0� � �v�x�, where each of the small terms
�n�x�, �T�x�, and �v�x� is a sum of a few hundred
Fourier modes with random small amplitudes, of which a
few dozen modes are linearly unstable. In all these simu-
lations we observed strong clustering: development of
multiple high and narrow density peaks, accompanied by
steepening velocity gradients, as the gas temperature con-
tinues to decay. The gas density in the peaks grows without
limit, until the time when our finite-difference scheme is
FIG. 1. The density and velocity profiles at scaled time t �
7:043, shortly before the major density peak develops singular-
ity. The parameters K � 4� 10�4 and q � 10�2 correspond to
79 linearly unstable Fourier modes. 2000 Lagrangian mesh
points are used, so the major density peak includes more than
50 mesh points above the density value of n � 102. The inset
shows an earlier density history (at t � 2, 3, and 4) of a region
around the major density peak.
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unable to accurately follow the density growth in the high-
est density peak. The temporal growth of the density peaks,
and of the velocity gradients, accelerates rapidly, implying
a finite-time singularity. Figure 1 shows a typical snapshot
of the system close to the time of singularity.

A convenient integral measure of the unstable cooling
dynamics is the total energy of the system

E�t� �
Z 1=2

�1=2

�
nT �

1

2
nv2

�
dx; (3)

where nT is the thermal energy density, and nv2=2 is the
macroscopic kinetic energy density. A plot of E�t� is shown
in Fig. 2. As expected, E�t� follows Haff’s law at early
times, but deviates from it at later times. Figure 2 eluci-
dates the role of each of the two terms in Eq. (3). Both the
thermal energy, and the macroscopic kinetic energy ini-
tially decay with time; the thermal energy decays faster. At
later times the kinetic energy approaches a constant. As a
result, E�t� is dominated by the thermal energy at early
times and by the kinetic energy at later times. Remarkably,
the thermal energy continues to follow Haff’s law until the
time of singularity.

The finite-time singularities of the velocity gradient and
the density strongly indicate that, at late times, the stress
tensor P becomes negligibly small, and the gas flows by
inertia only. An additional evidence for the flow by inertia
is the constancy of the macroscopic kinetic energy at late
times. The flow by inertia is described by the equation
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and Eq. (1a). This problem is soluble analytically [20]:

v�x; t� � v0���; (5a)

n�x; t� �
n0���

1� tv0
0���

; (5b)

where v0
0��� � dv0���=d�, while v0��� and n0��� are the

velocity and density of the gas, respectively, at some
‘‘initial’’ moment of time (which should be late enough
so that the flow by inertia has already set in). The relation
FIG. 2. The total energy of the system E (thick solid line), the
thermal energy (circles), the macroscopic kinetic energy
(squares), and Haff’s cooling law (thin solid line) versus time
for the simulation shown in Fig. 1.
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between Eulerian coordinate x and Lagrangian coordinate
� is the following: x � �� v0���t. The finite-time singu-
larities of both the velocity gradient

@v�x; t�
@x

�
v0
0���

1� tv0
0���

; (6)

and the density, Eq. (5b), occur when the denominator in
Eq. (6) becomes zero for the first time. We compared these
predictions with a numerical solution of the full hydro-
dynamic Eqs. (1) and (2), for the same parameters K �
4� 10�4 and q � 10�2, but with simpler initial condi-
tions: n�x; t � 0� � T�x; t � 0� � 1, and a single Fourier
mode for the velocity:

v�x; t � 0� � a sin�2�x�; a � �0:05: (7)

In this case only one singularity develops (at x � 0).
Figure 3 shows the gas velocity v versus � � x� tv�x; t�
at different times. The different curves collapse into a
single curve with an accuracy better than 1.5%.
Additional tests deal with the behavior of the flow in the
close vicinity of x � 0, as the singularity time is ap-
proached. For this smooth symmetric flow we can write
v0��� � ��=�� C�3 �O��5�, where t � � is the time of
singularity in the flow-by-inertia model, and C> 0 is a
constant. In the Eulerian coordinates this yields a solution
in an implicit form. In the leading order

x � �t0v�x; t0� � C�4v3�x; t0�; (8)

where t0 � �� t is the time to the singularity. Not too
close to the singularity point x � 0 one obtains v�

��x�1=3. As the velocity profile (8) is self-similar:
v�x; t0� � �t0�1=2V
x=�t0�3=2�, the velocity gradient is
@v=@x � �t0��1dV=dw, where w � x=�t0�3=2. The shape
function V�w� is determined by the equation C�4V3 � V �
w � 0. What is the density behavior close to the singular-
ity? Very close to x � 0 the density grows indefinitely:
n0�0��1� t=���1; outside of that region (but still close
enough to x � 0) n�x; t� approaches a universal profile n�
FIG. 3. The numerically computed velocity is shown versus x
(a) and versus � � x� vt (b) at times 1, 2, and 3.225 (the
profiles in (a) steepen as the time progresses). Also shown is the
initial profile (7). All the curves in (b) coincide within 1.5%. The
simulation parameters are K � 4� 10�4 and q � 10�2.
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jxj�2=3 [21]. We verified these properties numerically; see
examples in Fig. 4. Importantly, for a strong instability,
kmax � 1, the system ‘‘freezes up’’, and the motion by
inertia sets in very rapidly. Indeed, the scaled velocity
profile in Fig. 3 is very close to the initial profile (7).
Building on this simplification, we can expand Eq. (7) in
the vicinity of x � 0 and predict the time of singularity:
� � �2�jaj��1 ’ 3:18, which agrees within 2% with the
simulation result; see Fig. 4(a). In addition, the linear time
dependence of the quantities, shown in the inset of
Fig. 4(a), sets in already at early times.

Therefore, a strongly nonlinear regime of the quasi-one-
dimensional clustering instability in a dilute granular flow
is describable by a simple flow by inertia, until the moment
of singularity [22]. In a related work, Ben-Naim et al. [23]
investigated the dynamics of pointlike particles, inelasti-
cally colliding on a line. The strictly one-dimensional
setting of Ref. [23] makes a hydrodynamic description
problematic. Still, Ben-Naim et al. observed that the
Burgers equation with vanishing viscosity is a proper con-
tinuum model for their system. It remains to be seen
whether the Burgers equation applies to our quasi-one-
dimensional model at a later stage of the dynamics, when
finite-density effects come into play. We stress that the
(hydrodynamic) density singularities are entirely different
from inelastic collapse [24] (divergence of the particle
collision rate at some locations) which is a discrete-particle
effect. We also note in passing that statistical properties of
the flow by inertia (for example, the dynamics of the
structure function) are well understood [25].

What can be said about a fully multidimensional
strongly unstable cooling flow, when unstable shear and
clustering modes are coupled? A natural assumption, mo-
tivated already by the linear theory of the clustering/shear-
ing instabilities of the HCS [6–8], is that the stress tensor
‘‘freezes up’’, and flow by inertia sets in here as well. A
possible counter-argument involves viscous heating of the
system by the unstable shear modes. The heating effect is
absent in the linear regime of the instability (as the viscous
heating is of the second order with respect to the perturba-
FIG. 4. Numerically computed values of j@v=@xj (filled
squares) and n (empty circles) at x � 0 versus time (a). The
inset shows the respective inverse values. (b) depicts the spatial
profiles of n at time moments 3.209 and 3.225. The straight line
is a x�2=3 dependence; it is given for reference. The parameters
are the same as in Fig. 3.
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tion amplitude), but it comes into play in the nonlinear
regime. The present state of theory makes it difficult to
prove that the viscous heating cannot arrest, in some loca-
tions, the freezing of the stress tensor. However, MD
simulations in 2D strongly indicate that the freezing con-
tinues unarrested. For example, Nie et al. [12] observe that,
at late times, ‘‘the thermal energy becomes much smaller
than the (macroscopic) kinetic energy’’. Based on this
evidence we argue that, in the dilute regime, this strongly
supersonic flow should be describable by multidimensional
flow-by-inertia equations

@v=@t� �v � r�v � 0; @n=@t�r � �nv� � 0: (9)

This flow also exhibits finite-time singularities [21,26], and
the singularities form cellular structures, most of the ma-
terial being concentrated along the cell boundaries [21].
This picture resembles the density distribution of granular
clusters observed in MD simulations of freely cooling
gases of inelastic hard spheres in 2D [6–9,11].
Interestingly, the multidimensional singularities of
Eqs. (9) were studied previously in an entirely different
context: in the so called Zeldovich approximation of theory
of formation of structure in an expanding universe [21].

We stress that there are important differences between
the multidimensional clustering instability and the
Zeldovich model. In the process of clustering instability
of inelastic gases a considerable vorticity is generated,
while in the Zeldovich model the flow is assumed to be
potential [21]. Still, it was found, in a rare treatment of a
more general (nonpotential) velocity field, that ‘‘high-
density regions should be high-vorticity regions’’ [27].
This finding appears to agree with MD simulations of
freely cooling granular gases in 2D [7].

In summary, by following the unstable cooling dynamics
of a dilute inelastic gas we identified an important new
intermediate asymptotic regime: a nonlinear flow by iner-
tia. We argue that high-density regions in the gas, which
are precursors of densely packed granular clusters, are
caused by the flow by inertia, rather than directly by the
pressure gradient. Our results indicate that the role of the
clustering and shearing instabilities of the free cooling is
‘‘merely’’ to produce a long-lived spatially nonuniform
supersonic velocity field needed for the development of
the high-density regions by the flow by inertia. Therefore, a
due account of the flow-by-inertia regime will be important
in the future theory of ‘‘life after singularity’’, where the
singularities are smoothed by finite-density effects in the
clusters, and a coarsening process develops [11]. No first-
principles coarse-grained description of that final stage is
yet available.
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