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Large Deviations of Surface Height in the Kardar-Parisi-Zhang Equation
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Using the weak-noise theory, we evaluate the probability distribution P(H,t) of large deviations of
height H of the evolving surface height /(x, 7) in the Kardar-Parisi-Zhang equation in one dimension when
starting from a flat interface. We also determine the optimal history of the interface, conditioned on
reaching the height H at time #. We argue that the tails of P behave, at arbitrary time 7 > 0, and in a proper
moving frame, as —In P ~ |H|*/? and ~|H|*?. The 3/2 tail coincides with the asymptotic of the Gaussian
orthogonal ensemble Tracy-Widom distribution, previously observed at long times.
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The Kardar-Parisi-Zhang (KPZ) equation [1] is the
standard model of nonequilibrium interface growth driven
by noise [2-6]. In d = 1, the KPZ equation reads

O = vdh + (4/2)(0ch)? + VDE(x,1), (1)

where A (x, t) is the interface height, and &(x, 7) is a Gaussian
white noise with zero mean and (&(xy,#)E(xa, 1)) =
5(xy = x2)8(t; — t,). We will assume here that 1 < 0 [7].

At long times, the evolving KPZ interface exhibits self-
affine properties and universal scaling exponents [2-4].
In d = 1, its characteristic width grows as ¢'/3, whereas
the correlation length in the x direction grows as r2/3, as
confirmed in experiments [8]. The exponents 1/3 and 2/3
distinguish the KPZ universality class from the Edwards-
Wilkinson (EW) universality class that corresponds to the
absence of the nonlinear term in Eq. (1).

Recent years have witnessed spectacular progress in the
exact analytical solution of Eq. (1); see Refs. [5] and [6] for
reviews. For an initially flat interface, most often encoun-
tered in experiment, the exact height distribution at a
given time was obtained by Calabrese and Le Doussal
[9]. They achieved it by mapping Eq. (1) onto the problem
of equilibrium fluctuations of a directed polymer with one
end fixed, and the other end free, and by using the Bethe
ansatz for the replicated attractive boson model [9]. They
derived a generating function of the probability distribution
P(H, 1) of height H of the evolving KPZ interface in the
form of a Fredholm Pfaffian. They also showed that, for
typical fluctuations, and in the long-time limit, P(H, ¢)
converges to the Gaussian orthogonal ensemble (GOE)
Tracy-Widom (TW) distribution. Later on Gueudré et al.
[10] used the exact results of Ref. [9] to extract the first
four cumulants of P(H,t) in the short-time limit. These
cumulants exhibit a crossover from the EW to the KPZ
universality class as one moves away from the body of the
distribution toward its (asymmetric) tails. The tails them-
selves, however, are unknown: neither for long, nor for
short times. Finding them is a natural next step in the study
of the KPZ equation, and it is our main objective here.
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Instead of extracting the tails from the (quite compli-
cated) exact solution [9], we will obtain them, up to pre-
exponential factors, from the weak-noise theory (WNT) of
Eq. (1). The WNT grew from the Martin-Siggia-Rose path-
integral formalism in physics [11] and the Freidlin-Wentzel
large-deviation theory in mathematics [12]. Being espe-
cially suitable for sufficiently steep distribution tails, it
has been applied to turbulence [13], lattice gases [14],
stochastic reactions [15] and other areas, including the KPZ
equation itself [16]. To evaluate P(H,T), we first deter-
mine the optimal history of the interface conditioned on
reaching the height H at time 7. We find that the tails of P
behave, at any time 7 > 0 and in a proper moving frame
[17],as —InP ~ H/> as H — oo and ~|H|*/> as H — —c0.
The 3/2 tail coincides with the asymptotic of the GOE TW
distribution, previously established for long times [9]. We
also reproduce the short-time asymptotics of the second
and third cumulants of P(H, T), obtained in Ref. [10].

(1) Scaling.— Upon the rescaling transformation t/T — ¢

x/v/vT = x, and |A|h/v — h Eq. (1) becomes
Oih = 03h = (1/2)(0xh)* + Ve&(x. 1), (2)

where ¢ = DA2\/T/1°/? is a dimensionless parameter.
Without loss of generality, we assume that the interface
height H is reached at x = 0. The initial condition is
h(x,t = 0) = 0. Clearly, P(H, T) depends only on the two
parameters |[A|H /v and ¢ [17].

(i) Weak-noise theory.— The WNT assumes that ¢ is
small (more precise conditions are discussed below). Then
a saddle-point evaluation of the proper path integral of
Eq. (2) leads to a minimization problem for the action
[16,19]. Its solution involves solving Hamilton equations
for the optimal history of the height h(x,7) and the
canonically conjugate “momentum” field p(x, 7):

,h = 5H/6p = 82h — (1/2)(0:h) +p.  (3)

atp = —5H/5h = _a)ch - ax(paxh)’ (4)
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where H = [dxw is the Hamiltonian, and w(x,r) =
plO*h — (1/2)(d:h)* + p/2]. The boundary conditions
are h(x,0) =0 and h(x > £oo,t) = p(x > +o0,7) =0.
The condition A(0, 1) = H translates into [19]:

p(x.1)

The a priori unknown coefficient A is ultimately deter-
mined by H.
Once the WNT problem is solved, one can evaluate

= AS(x). (5)

1AlH 2
~InP(H,T) = <€" ):Dﬁﬁs(wf[) (6)

where, in the rescaled variables, the action S is

/dt/dxpah w) /dt/dxp (x,0). (7)

Figure 1 shows § = S(H) found by solving Egs. (3) and (4)
numerically with a modified version of the Chernykh-
Stepanov iteration algorithm [20]. Analytic progress is
possible in three limits that we now consider.

(ili) H — 400, or A - +o0o.— Here we drop the
diffusion terms in Eqs. (3) and (4) and arrive at

dip + 9:(pV) =0, (8)
A,V + VoV =d.p. (9)

where V(x,t) = d.h(x, t). Equations (8) and (9) describe a
nonstationary inviscid flow of an effective gas with density
p, velocity V, and negative pressure p(p) = —p?/2 [21].
This hydrodynamic problem should be solved subject to the
conditions V(x,0) = 0 and Eq. (5). An additional, “invis-
cid” rescaling x/A'3 — x, V/A'Y? -V, and p/A* = p
leaves Egs. (8) and (9) invariant, but makes the problem
parameter-free, as Eq. (5) becomes p(x, 1) = 6(x), describ-
ing the collapse of a gas cloud of unit mass into the origin at
t = 1. Further, Eq. (7) yields
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FIG. 1. The action S vs the rescaled height H; see Eq. (6). Main

figure: numerics. Right inset: convergence of Egs. (20) and (25)
to numerical results at large |H|. Left inset: the small-H
asymptotic (37) vs numerics.

S = N33, (10)

where s should be obtained by plugging the solution p(x, 1)
of the parameter-free problem into Eq. (7). Remarkably,
we can already predict the scaling behavior of S(H).
Indeed, the rescaled height at r=1 is h(0,1)=H, =
\A|H/(vA?/3). Therefore, A = (|A|/v)¥?(H/H,)*?, and
Eq. (10) yields

S(AH/v) = (s/H}?) (A H/v)*, (11)
leading to the announced H>/? tail. What is left is to
calculate s and H, which are both O(1). Fortunately, the
hydrodynamic flow is quite simple:

V(x,t) = —a(t)x, |x| < Z(1), (12)

and
(1= (1) x| < (), (13)
pla.1) = {0, x| > £(1), (14)

where r(t) > 0, £(¢) > 0 and a(t) > 0 are functions of time
to be determined. [The behavior of V(x, 7) at |x| > £(t) will
be discussed shortly.]

The “mass” conservation, inherent in Eq. (8), yields a sim-
ple relation £(¢)r(¢) = 3/4. Using it, and plugging Egs. (12)
and (13) into Egs. (8) and (9), we obtain two coupled
equations for (¢) and a(t): i = ra and @ = a® + (32/9)r3
Their first integral is a = (8/3)r,/r =7, where ry = r(0).
This yields a single equation for r(1): i = (8/3)r*\/r = r,.
Its implicit solution, subject to r(t — 1) = oo, is

t=t(r) :3—H)+Earctan< I 1>, (15)

8rry T ro

(37/16)%3. Now we can calculate s:

/dt/ dxr (D)1 = 22/ £(1))?
5% drr(t) = zlwdrr%:éC;)z”. (16)

What happens at |x| > #(t), where p = 0? In the static
regions, |x|>2Z,=3/(4ry)=3"3(2/x)?/3, one has p(x,t) =
V(x,t)=h(x,t)=0 at all times. In the Hopf regions,
£(t) < |x| < &y, V(x, 1) is described by the (deterministic)
Hopf equation 0,V + V0,V = 0. Its solution is x — Vi =
F(V) [22], where the function F(V) is found from
matching with the pressure-driven solution at x = +£(r):

F(V)=-¢, <1 + \/j%V arctan \/j%v> sgnV.  (17)

At t = 1 the pressure-driven flow shrinks to the origin, and
the Hopf solution,

where ry =
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x(V)=V-=2¢, <1 + \/\?;(;_V arctan @V> sgnV, (18)

holds in the whole interval |x| < #,. Now we can find the
optimal height profile A(x,# = 1). For =, <x <0

h(x,l):/_x V(x,l)dx:AVdV(dx/dV)V

%
V(3 =¢,V?) arctan(@) +V3V(V =£)
2V3 '
(19)

Equations (18) (for V > 0) and (19) determine h,(—¢ <
x £0) in parametric form. i, (0 < x < ¢) follows from
the symmetry i(—x,t) = h(x, ). The interface develops a
cusp singularity at x = 0: h(|jx| < 1,1) = H, —2|x|'/?,
where H; = (1/2)(3x/2)*/3. Now we plug this H,, and
s from Eq. (16), into Eq. (11). As a result, Eq. (6) becomes

8+/2|A| H/?
152D T'/*"

The “5/2 tail” is controlled by the nonlinearity and
independent of v. Figure 1 shows that the asymptotic
(20) slowly converges to the numerical result at large
positive H. Figure 2 shows the optimal time histories of the
height profile A(x,?) and of the auxiliary field p(x, 1), as
observed in the full numerical solution for A = 10°. The
analytical predictions agree very well with the numerics
except in narrow boundary layers, where diffusion is
important. These boundary layers do not contribute to
the action in the leading order in H.

(iv) H - —o0, or A —» —oco.— Here p = py(x) is local-
ized in a small boundary layer (BL) around x = 0, and does
not depend on time, except very closeto = Oand t = 1; see
Fig. 3(b). h(x, 1) behaves in the BL as hy(x, 1) = ho(x) — ct,
where ¢ = const; see Fig. 3(a). Outside the BL p(x, 1) = 0,
and h(x, t) obeys the deterministic equation

8,h = 82h — (1/2)(9,h)?. (21)

~InP= (20)

In the BL we should solve two coupled equations:
—c=Vy—(1/2)V3+py, and p)+pyVy = C;, where
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FIG. 2. The optimal interface history for A = 10°. (a) i vs x for
rescaled times t = 0.25,0.5,0.75,and 1. (b) p vs x for t = 0, 0.5,
and 0.75. Solid lines, numerical; dashed lines, analytical.

Vo(x) = hy(x) and C; =const. As py(|Jx| = o) =0,
we set C; = 0. The resulting equations are Hamiltonian,
Vo=0,b and py= -0y h, with the Hamiltonian
5(Vo.p0) = (po/2)(VG = po = 2¢). As py(|x] = o0) =0,
we only need the “zero-energy” trajectory, py = V3 — 2c.
Plugging it into the equation for V{, and solving the simple
resulting equation, we obtain Vj(x) = v/2¢ tanh(1/c/2x)
and arrive at the BL solution

h(x.t) = ho(x) — ¢t = 2Incosh (\/¢/2x) —ct,  (22)
po(x) = —2csech?(y/c/2x). (23)

The condition (0, 1) = —|H| yields ¢ = |H| > 1. Now we
calculate the action (7):

1 /1 o 8v2
s=1 [ [“ s =22mpe.
2 Jo — 3
and, using Eq. (6), obtain the desired H — —oo tail:

_ 8V2u|HP?

—InP = 73D|/1|1/2T1/2 .

(25)
This tail perfectly agrees with the right tail of the GOE TW
distribution [9]. For the initially flat KPZ interface this
asymptotic was obtained in the long-time limit [9]. We argue
that it holds at any time 7 > 0, provided that the right-hand
side of Eq. (25) is much larger than unity. The asymptotic
(25) rapidly converges to the numerical result, see the right
inset of Fig. 1.

Although the BL solution suffices for evaluating In P, it
does not hold for most of the optimal path A (x, ). This is
because hy(x) in Eq. (22) diverges at |x| — oo, instead of
vanishing there as it should. The remedy comes from two
outgoing-traveling-front solutions of Eq. (21) that hold
outside of the BL. For x > 0 the traveling front (TF) is of
the form i(z) = —21In(1 4+ Ce™"%), where z = x — vt, and
v > 0 and C, > 0 are constants to be found. Importantly,
the TF solution can be matched with the BL solution (22) in
their joint region of validity. Indeed, at |vz| > 1 and z < O,
the TF solution becomes

0 0
(b)
-100} -200{
i a T
200} 400|320 120.25,05,0.75 |
-600
<
-300 [ -160! -600| 0.0 O.F 1.0 ]
08 04 00 04 08
X
FIG. 3. The optimal interface history for A = —102. (a) & vs x for

rescaled times r=0.25, 0.5, 0.75, and 1. Insets: the boundary
layers at x=0 and at x= (| H|/2)'/?t for t=0.5. (b) p vs x for t=0,
0.25, 0.5, and 0.75. Inset: p(x =0,¢). The analytical and
numerical curves are indistinguishable, except in the insets of
(a) and at r = 0 for (b).
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h(x,t) =2v(x —vt) = 2In C,. (26)

In its turn, the outer asymptotic of the BL solution (22),
valid at \/cx > 1, is

h(x.1) =\/2¢cx — ct —21n2. (27)

Matching Egs. (26) and (27), we obtain ¢ = 20> and
C, = 2. Then, by virtue of the symmetry h(—x,t) =
h(x, 1), the complete two-front solution is

H
h(x’ [) = —21In [1 + 26—1)(|x|—1/‘f)}, V= |—2| > 1. (28)

It rapidly decays at |x| > vr. Equations (22) and (28)
describe the optimal interface history. Notably, the diffu-
sion only acts in the BL (which gives the main contribution
to P) and in the small regions of rapid exponential decay.
The simple TF solution (27) and its mirror reflection at
x < 0, which hold in most of the system, are inviscid.
Figure 3 shows the optimal time histories of & and p
obtained numerically and analytically for A = —107.

(v) Low cumulants.— At short times, ¢ < 1, and for
sufficiently small rescaled heights H, we can develop a
regular perturbation theory in H, or in A, cf. [23]. In the
zeroth order we have hy(x, 1) = py(x, t) = 0. Therefore,

h(x,t) = Ay (x, 1) + A2hy(x, 1) + ..., (29)
p(x, 1) = Apy(x, 1) + N2py(x, 1) + ... (30)

Correspondingly, S(A) = A%S; + A3S, + .... In the first
order, Egs. (3) and (4) yield

Oihy = 8%y + py, (31a)

dp1 = —05p1. (31b)

Solving the antidiffusion equation (31b) with the boundary
condition p(x, 1) = §(x), we obtain
1
4r(l —1)

Therefore, S, = (1/2) [} dt [2, dxp}(x,t) = (2v27)7".
Now we need to solve the diffusion equation (31a) with
the forcing term p; from Eq. (32) and the initial condition
hi(x,t = 0) = 0. After standard algebra, the solution is

pi(x.1) = e /401, (32)

/1 T te—x2/4(1+t) /1 — te—x2/4(1—t)
hl ()C, t) = \/4—” - \/4_71'

+Z—Cerf<2\/f_+t>—§erf<2\/%>. (33)

At t = 1 the interface develops a corner singularity at the
maximum point x = 0:

e—x2/8

L x (X
h1<x,z_1>_m+4 f(zﬁ) L (39

and we obtain A =+2zH, and S§=A%/(2\2zx)=
(m/2)Y/2H?. That is, at short times, small height fluctua-
tions are Gaussian [10]. The KPZ nonlinearity kicks in in
the second order of the perturbation theory, but the
equations for i, and p, are linear:

Ohy = 0%hy — (1/2)(8,1y)* + pa, (35)

Oy = — )2“02 - 3x(,013xh1)v (36)

with the boundary conditions #,(x,0) = p,(x,1) =0.
Straightforward but tedious calculations [19] lead to

S=\/n/2H* +

Then Eq. (6) yields (still in the rescaled variables)

7/72(x = 3)H>. (37)

P(H) ~ e~ (VFleVDH—(a/eVD)|(x=3) [6]H+(1/e)O(H*)

B \/77771—3H3+O(H4)
eV/2 6 €

This distribution holds when v'/?H?/(D\/T) > 1 and
|A|H/v < 1. The second and third cumulants of P, in the
leading order in €, are

| T (m —3)D*AT

in agreement with Ref. [10]. The left inset of Fig. 1
compares, for moderate H, Eq. (37) with our numerical
results [24].

(vi) Discussion.—Let us summarize the predictions of
the WNT. At short times, ¢ < 1, the dependence of

=—¢InP(H,T) on H (in the proper moving frame
[17]) is shown in Fig. 1. The body of the distribution is
described by Eq. (38) (see also Ref. [9]); the tails are
described by Eqgs. (20) and (25). The small parameter ¢ < 1
guarantees the validity of these results at all H.

At long but fixed time, ¢ > 1, the WNT is not valid in
the body of the height distribution, giving way to the GOE
TW statistics [9]. Far in the tails, however, the action S is
very large. Therefore, we argue that the WNT tails (20) and
(25) hold. The 3/2 tail is captured by the TW statistics, the
5/2 tail is not. We expect the 5/2 tail to hold when it
predicts a much higher probability than the left tail,
—InP ~v*H3/(|A|D*T), of the TW distribution. The
condition is H > D?|A|’T /v*.

Hopefully, the 5/2 tail will be observed in experiments
and extracted from the exact solution [9]. Notably, a 2.4 +
0.2 tail (and a 1.6 &= 0.2 tail) were observed in numerical
simulations of directed polymers in a random potential
[25]. Also, the 5/2 and 3/2 tails were obtained for the

— e~ Wa/eV2)H? [1 . (38)
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current statistics of the TASEP in a ring [26]. To what
extent the latter, finite-system results are related to our
infinite-system results is presently under study.

We thank P. Le Doussal, T. Halpin-Healy, P.L.
Krapivsky, S. Majumdar, and P.V. Sasorov for useful
discussions. B. M. acknowledges financial support from
the United States-Israel Binational Science Foundation
(BSF) (Grant No. 2012145).

Note added in proof.—Recently, we learned that distribu-
tion tails equivalent to our Eqs. (20) and (25) were obtained
in Ref. [27] in the context of directed polymer statistics.
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