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Close-Packed Floating Clusters: Granular Hydrodynamics Beyond the Freezing Point?
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Monodisperse granular flows often develop regions with hexagonal close packing of particles. We
investigate this effect in a system of inelastic hard spheres driven from below by a ‘‘thermal’’ plate.
Molecular dynamics simulations show, in a wide range of parameters, a close-packed cluster supported
by a low-density region. Surprisingly, the steady-state density profile, including the close-packed cluster
part, is well described by a variant of Navier-Stokes granular hydrodynamics (NSGH). We suggest a
simple explanation for the success of NSGH beyond the freezing point.
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ditions that the standard NSGH [6,7] breaks down be- cated at y � 0. Gravity acceleration g acts in the negative
Continuum modeling of flow of macroscopic grains
remains a challenge [1–5]. The best known version of
continuum theory here is the Navier-Stokes granular hy-
drodynamics (NSGH) for a system of inelastic hard
spheres [6,7]. The applicability of NSGH is limited to
rapid granular flows [8]. By definition, these flows are
dominated by binary particle collisions, while multipar-
ticle interactions are negligible. Despite this drastic sim-
plification, the validity of the NSGH demands several
additional assumptions, some of which can be rather
stringent. Under the molecular chaos assumption, the
NSGH is derivable systematically from more fundamen-
tal kinetic equations for inelastic hard spheres [7,9,10].
Going over from kinetic equations to hydrodynamics,
one should assume scale separation: The mean-free
path of the particles should be much smaller than the
characteristic length scale, and the mean time be-
tween two consecutive collisions much shorter than
any characteristic time scale, described hydrodynami-
cally. The inelasticity of particle collisions brings imme-
diate complications. Already at moderate inelasticity
q � �1� r�=2 (where r is the coefficient of normal resti-
tution of the particle collisions), the scale separation may
break down, even in the low-density limit [11,12]. The
normal stress difference [12] and deviations of the par-
ticle velocity distribution [11,13] from the Maxwell dis-
tribution also become important for moderately inelastic
collisions. Therefore, the NSGH is expected to be accu-
rate only for small inelasticity, q � 1.

Additional complications appear at large densities.
Here the molecular chaos assumption breaks down, al-
ready for elastic hard spheres, when the packing fraction
approaches the freezing point value �f ’ 0:49 (in three
dimensions) or 0.69 (in two dimensions). As the kinetic
equations become invalid, the constitutive relations
(CRs), necessary for the closure of hydrodynamics, are
not derivable from first-principles anymore. This is the
regime considered in this work. We consider an ensemble
of monodisperse, nearly elastic hard spheres in such con-
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cause of large densities, not large inelasticity. Our main
objective is to check whether a variant of NSGH can still
be used in an extreme case when the packing fraction is
close to the maximum possible value, corresponding to
hexagonal packing of spheres.

We will focus on granular materials fluidized by
a rapidly vibrating bottom plate in a gravity field.
Vibrofluidized granular materials exhibit fascinating pat-
tern-formation phenomena that have attracted much re-
cent interest [14]. In the high-frequency and small-
amplitude limit of vibrofluidization, there is no direct
coupling between the vibration and the collective granu-
lar motion. In a simplified description of this limit, one
specifies a constant granular temperature at an immobile
bottom plate. In a wide range of parameters, molecular
dynamics (MD) simulations of this system show an (al-
most) close-packed cluster of particles, floating on a low-
density fluid (see below). The close-packed floating
cluster is an extreme form of the density inversion, a
phenomenon well known in vibrofluidized granular ma-
terials. Lan and Rosato [15] were apparently the first to
observe density inversion in three-dimensional MD sim-
ulations. Kudrolli et al. [16] observed a floating cluster in
a reduced-gravity experiment: a slightly tilted two-
dimensional system of steel spheres rolling on a smooth
surface and driven by a vibrating side wall. Recently, a
pronounced density inversion has been observed, in two-
and three-dimensional vibrofluidized granular beds, by
Wildman et al. [17].

An accurate hydrodynamic description of almost close-
packed floating clusters seems a very difficult task, as the
packing fraction here is far beyond the freezing point.
Still, we will attempt to use a variant of NSGH for this
purpose. This attempt will prove successful, and we will
suggest an explanation. Here is the model problem we are
working with. Let N � 1 nearly elastic hard spheres of
diameter d and mass m move in a two-dimensional box
with periodic boundary conditions in the x direction
(period Lx) and infinite height. The driving base is lo-
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y direction. Upon collision with the base, the particle
velocity is drawn from a Maxwell distribution with tem-
perature T0 (which is measured in the units of energy).
The kinetic energy of the particles is being lost by in-
elastic hard-core collisions parametrized by a constant
inelasticity parameter q � 1. Figure 1 shows a typical
snapshot of an almost close-packed floating cluster, ob-
served in an event-driven MD simulation of this system.
Hexagonal packing is apparent in Fig. 1 [18].

Going over to a hydrodynamic description of zero-
mean-flow steady states, we introduce coarse-grained
fields: the particle number density n�y�, the granular
temperature T�y�, and the pressure p�y�. The maximum
possible value of n is the hexagonal close-packing value
nc � 2=�

���
3

p
d2�. A laterally uniform steady state is de-

scribed by the momentum and energy balance equations:

dp
dy

	mng � 0;
d
dy

�
�

d
dy

T
�
�I � 0; (1)

where � is the thermal conductivity and I is the energy
loss rate by collisions. To proceed, we need CRs: an
equation of state (EOS) p � p�n; T� and relations for �
and I in terms of n and T. First-principles CRs are
available only in the low-density limit (well below the
freezing point). Grossman et al. [11] derived a set of
approximate global CRs for a version of NSGH that
assumes nearly elastic collisions, but is not limited to
low densities. Grossman et al. employed free volume
arguments in the close vicinity of the hexagonal packing
and suggested simple interpolations between the hexago-
nal-packing limit and low-density limit. These interpola-
tions include two fitting constants � and � (see below).
The optimum values of these constants were found by a
comparison with MD simulations of a system of inelastic
hard spheres driven by a thermal wall at zero gravity [11].

Notice that, prescribing global CRs of any type, one
grossly simplifies the delicate issue of phase coexistence
that is expected to occur here in close analogy to the
FIG. 1. A snapshot showing the close-packed floating cluster.
The parameters are N � 104, Lx � 100, T0 � 2

���
3

p
� 102, r �

0:988 15, and g � d � m � 1. The figures on the right are
magnifications of the indicated areas.
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system of elastic hard spheres [19,20]. Still, we will use
the simple CRs [11] to attempt a NSGH description of the
close-packed floating clusters. In our notation, the CRs
[11] read

p � nT
nc 	 n
nc � n

; � �
�n��l	 d�2T1=2

m1=2l
; (2)

and I � 4��=�l�qnm�1=2T3=2. Here l is the mean-free
path of the grains,

l �
1���
8

p
nd

nc � n
nc � an

; (3)

and a � 1� �3=8�1=2. According to Grossman et al., � �
1:15 and � � 2:26. We adopted this value of �, but found
better agreement between the hydrodynamics and MD
(see below) for � � 0:6. The value of � � O�1� drops out
from the steady-state problem.

Recently, a more accurate global EOS p � p�n; T� has
been suggested [20]. Still, in the absence of comparably
accurate relations for � and I, employing a more accurate
EOS in Eqs. (1) would be an excess of accuracy.

Equations (1) should be complemented by three bound-
ary conditions. One of them is T�0� � T0 � const.
Integrating the first of Eqs. (1) over the height from 0 to
1 and using the conservation of the total number of
particles,

R
1
0 n�y� dy � N=Lx � const, we obtain the sec-

ond boundary condition: p�0� � mgN=Lx. The third one
is a zero heat flux (that is, a constant granular tempera-
ture) at y ! 1 [21,22]. In practice, one should use
the shooting method, varying the heat flux ��dT=dy at
y � 0 until the third condition is satisfied with desired
accuracy.

Let us measure y in units of the gravity length scale
� � T0=�mg� (note that �=d should be large enough to
fluidize the granulate at the bottom). We rewrite Eqs. (1),
in scaled form, as three first-order equations:

dP
dy

	
1

Z
� 0;

d�
dy

� �Q�Z�P3=2; (4)

d
dy

�F2�Z�P3=2
 �
�

F1�Z�
: (5)

Here Z�y� � nc=n�y� is the inverse scaled density, P�y� �
p�y�=�nc T0� is the scaled pressure, and ���y� is the
scaled heat flux. The functions F1, F2, and Q are

F1�Z� �
��Z�Z� 1� 	

�����������
32=3

p
�Z� a�
2

�Z� a��Z� 1�Z2 ;

F2�Z� �
�Z� 1�3=2Z3=2

�Z	 1�3=2
;

Q�Z� �
�Z� a��Z� 1�1=2

�Z	 1�3=2Z1=2
:

Finally, � � �64=�� q ��=d�2 and f � �
���
3

p
d2N�=�2�Lx�

are two scaled governing parameters. Parameter �
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controls the relative role of the inelastic heat losses and
heat conduction, while f is the effective area fraction of
the grains (it can be smaller or greater than unity). The
boundary conditions at the base become

P�0� � f and Z�0� �
1	 f	 �1	 6f	 f2�1=2

2f
: (6)

Using the hydrodynamic formulation, we first deter-
mine the condition for a density inversion. At too small
inelasticity q (the rest of the parameters fixed), there is no
density inversion, such as in the elastic case q � 0, where
T�y� � const and n�y� goes down monotonically. At large
enough q, the temperature T�y� drops rapidly with y. To
maintain the hydrostatic balance, n�y� should increase
with the height, on an interval of heights between y � 0
and the location of the density maximum y � yc. In our
hydrodynamic formulation, the density inversion occurs,
at fixed f, when � > �c, where �c � �c�f� is a critical
value. The density inversion is born at y � 0: � � �c�f�
corresponds to dn=dy vanishing at y � 0. Using this
condition together with Eqs. (4)–(6), we obtain

��0� � �
3

2
f1=2

F1�Z�0�
F2�Z�0�

Z�0�

: (7)

For a given f, Eq. (7) prescribes the heat flux at the base
y � 0 that corresponds to the birth of the density inver-
sion. Using shooting, we determine, for every f, the
critical value �c�f�, demanding that the temperature
approaches a constant value at large heights. This proce-
dure yields the critical curve � � �c�f� shown in Fig. 2.
The density inversion occurs above the critical curve � �
�c�f�, and it is more and more pronounced, at fixed f, as
� grows. Figure 3(a) shows the density profiles at f �
0:25 and three different values of � > �c. One can see
that, at large enough �, a hexagonally packed cluster
appears. The scaled parameters � � 20 015 and f �
0:25 correspond to the snapshot shown in Fig. 1.
Noticeable is a steep (exponential) density fall at the
upper boundary of the cluster; the exponent corresponds
to the very low temperature there. Figure 3(b) shows the
scaled temperature for these three cases.
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FIG. 2. The critical value �c of the hydrodynamic inelastic-
ity parameter � for a density inversion versus the effective area
fraction f. At small f one obtains �c � f�2.
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Figure 4 compares the density profiles, predicted by
this hydrodynamics (solid curves), with the profiles found
in MD simulations with N � 104 particles of diameter
d � 1, mass m � 1, and r � 0:988 15. The (periodic) box
width is Lx � 100, the gravity acceleration g � 1. The
MD simulations were done for three different values of
the temperature at the base: T0 � 100

���
3

p
, 200

���
3

p
, and

300
���
3

p
. The hydrodynamic parameters in these three

cases are f � 0:5 and � � 5004, f � 0:25 and � �
20 015, and f � 0:167 and � � 45 036, respectively.
One can see that the agreement between hydrodynamics
and MD simulations is surprisingly good.

An additional argument in favor of hydrodynamics
follows from the dimensional analysis of the problem.
The full set of parameters includes d, m, r, g, T0, N, and
Lx. One can always choose d � m � g � 1, so there are
actually four independent parameters. This number re-
duces to three for an x-independent steady state, as N and
Lx enter the problem only through N=Lx. It is crucial that
hydrodynamics further reduces the number of parame-
ters: now only two scaled parameters � and f appear.
This prediction is very robust, as it is independent of the
particular form of the functions F1, F2, and Q (and of the
values of � and �). We verified this prediction in MD
simulations by varying N, T0, and r, but keeping � �
20 015 and f � 0:25 constant. After rescaling the coor-
dinate y by � � T0=�mg�, the resulting density profiles
almost coincide with each other (see Fig. 5). A small shift
between the two profiles, observed in Fig. 5, is apparently
caused by small vertical oscillations of the granulate. In
this example, the oscillation amplitude is about three
particle diameters [26].

As already mentioned, the global CRs completely
ignore the issue of coexistence, beyond the freezing point,
of different phases of the granulate: the liquidlike phase,
the random close-packed phase, etc. So why are they so
successful? We believe the reason is the following. The
vibrofluidized steady state, considered in this work, has a
zero mean flow. Therefore, the viscosity terms in the
hydrodynamic equations vanish. This fact is not merely
a technical simplification. The shear viscosity of granular
flow is finite in the liquidlike phase, and infinite in the
(multiple) domains of the random close-packed phase.
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FIG. 3. Scaled density (a) and temperature (b) versus the
scaled height y for f � 0:25 and � � 500 (solid lines), 2000
(dashed lines), and 20 015 (dotted lines). The dotted lines
correspond to the snapshot shown in Fig. 1.
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FIG. 4. Scaled density versus the height y as predicted by
hydrodynamics (solid curves) and observed in MD simula-
tions, for three different values of the temperature at the base.
The parameters are described in the text. The height is mea-
sured here in units of d.
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The effective total viscosity of the system is expected to
diverge when the coarse-grained density slightly exceeds
the freezing density. This invalidates any NSGH for suf-
ficiently dense flows, and necessitates the introduction of
an order parameter and a different type of the stress-
strain relation into the theory (cf. Ref. [3]). Luckily, these
complications do not appear for a zero-mean-flow state.
Indeed, the EOS, heat conductivity, and inelastic heat loss
rate do not exhibit any singularity around the freezing
point, and all the way to the hexagonal close packing.
Therefore, the NSGH remains reasonably accurate far
beyond the freezing point. A future work should address
the important question about the range of applicability
of the NSGH (actually, of any binary collision model)
for solid yet vibrated phase, versus the granular statics
approach.
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FIG. 5. Checking the hydrodynamic scaling. The solid line
corresponds to the MD simulation shown in Fig. 1. The dashed
line corresponds to another simulation: with N � 2� 104,
Lx � 100, T0 � 4
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and S. Luding (Springer-Verlag, Berlin, 2001), pp. 79–99,
and references therein.
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