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Abstract.  We study large fluctuations of the area A under a Brownian 
excursion x(t) on the time interval |t| � T , constrained to stay away from 
a moving wall x0(t) such that x0(−T ) = x0(T ) = 0 and x0(|t|  <  T)  >  0. 
We focus on wall functions described by a family of generalized parabolas 

x0(t) = T γ[1− (t/T )2k], where k � 1. Using the optimal fluctuation method 
(OFM), we calculate the large deviation function (LDF) of the area at long 
times. The OFM provides a simple description of the area fluctuations in terms 
of optimal paths, or rays, of the Brownian motion. We show that the LDF has 
a jump in the third derivative with respect to A at a critical value of A. This 
singularity results from a qualitative change of the optimal path, and it can be 
interpreted as a third-order dynamical phase transition.

Although the OFM is not applicable for typical (small) area fluctuations, we 
argue that it correctly captures their power-law scaling of A with T, with an 
exponent that depends continuously on γ and on k. We also consider the cosine 
wall x0(t) = T γ cos[πt/(2T )] to illustrate a dierent possible behavior of the 
optimal path and of the scaling of typical fluctuations. For some wall functions 
additional phase transitions, which result from a coexistence of multiple OFM 
solutions, should be possible.
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1.  Introduction

Brownian motion, constrained to stay away from a moving wall, is a standard setting in 
non-equilibrium statistical mechanics and theory of random processes. One subclass of 
this constrained Brownian motion is a Brownian excursion x (t), with x (−T ) = x (T ) = 0, 
which must stay away from a moving wall x0(t) such that x0(−T ) = x0(T ) = 0 and 
x0(|t|  <  T)  >  0. Frachebourg and Martin [1] studied this setting in the context of the 
one-dimensional Burgers equation in the inviscid limit with white-noise initial condi-
tion. In that case the relevant moving wall is parabolic, x0 (t) = T 2 − t2. The parabolic 
case was also studied by Groeneboom [2]. Ferrari and Spohn [3] considered a semicircle 
x0 (t) =

√
T 2 − t2, a more general parabola x0 (t) = T γ (1− t2/T 2) and some other wall 

functions. The authors of these works were interested in the statistical properties of 
typical (small) fluctuations of the Brownian particle’s position away from the moving 
wall at a specified time τ ∈ (−T ,T ) in the limit of T → ∞. The recent work [4] revis-
ited this setting in the context of atypical large deviations of the particle away from 
the wall.

Here we also consider a Brownian excursion that escapes a moving wall, but suggest 
a dierent characterization of the fluctuations away from the wall. We will be inter-
ested in the probability density P (A,T ) of the excess area

A =

∫ T

−T

dt [x(t)− x0(t)]� (1)

under the excursion. In the absence of the moving wall, x0(t) ≡ 0, P (A,T ) coin-
cides with the Airy distribution. The Airy distribution exhibits the scaling behavior 
P (A,T ) = T−3/2 f(A/T 3/2) , and the function f(z) is known analytically [5–7]. The 
Airy distribution has surprisingly many applications. Most of them belong to computer 
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science [8, 9], but the Airy distribution also describes the stationary statistics of the 
height of a whole class of fluctuating interfaces in one dimension [9].

In the presence of a moving wall the probability distribution P (A,T ) is unknown. 
Here we calculate the large deviation function (LDF) of this distribution at T → ∞. 
As we will see, the LDF of the excess area has quite interesting properties. To calcu-
late the LDF, we employ the optimal fluctuation method (OFM), also known as weak 
noise theory, or WKB theory [10]. For the Brownian motion the OFM is essentially 
the geometrical optics approximation. Using the OFM, we approximate the probability  
of observing an atypically large value of the excess area A by the probability of the 
optimal (that is, most probable) path, or ray x (t), which escapes the wall and is con-
strained by equation (1). Mathematically, this approximation involves a saddle-point 
evaluation of the path integral of the properly constrained Brownian excursion. As we 
argue here, the OFM is asymptotically exact for long times and/or suciently large 
excess areas.

As we will see shortly (see also [4]), the OFM problem of determining the optimal 
path can be reduced to a simple geometric construction. The resulting optimal path 
x (t) is in general composed of parabolic segments and segments of the wall. The OFM 
uncovers, in a remarkably simple way, a generic singularity of the LDF, which can be 
interpreted as a dynamical phase transition of third order. For some wall functions 
additional phase transitions, which result from a coexistence of multiple OFM solu-
tions, should be possible. As we argue, these transitions can be quite unusual. Finally, 
we will also use the OFM to probe the scaling of typical excess area fluctuations with 
time T.

In section 2 we introduce the model and the OFM. Our calculations are presented 
in section 3, and the results are summarized in section 4.

2. Geometrical optics of constrained Brownian excursion

The Brownian motion x = x (t) can be described by the Langevin equation

dx

dt
= ξ (t) ,� (2)

where ξ is a delta-correlated Gaussian noise with zero mean:

〈ξ (t1) ξ (t2)〉 = 2Dδ (t1 − t2) .� (3)
The Brownian excursion starts from the point x  =  0 at t  =  −T and returns to x  =  0 for 
the first time at t  =  T. We condition the excursion on staying away from a wall moving 
to the right according to the equation

x0(t) = CT γg(t/T ),� (4)
such that g (±1) = 0, g (0) = 1 and γ > 0. C is a constant with dimensions length/
time

γ
. One realization of this process for the particular case g(t)  =  1  −  t2 is shown in 

figure 1. The conditioned trajectories exhibit dierent excess areas, and we will deter-
mine the LDF of the excess area distribution P(A,T ), where 0 < A < ∞.

https://doi.org/10.1088/1742-5468/aafa81
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Up to a pre-exponential factor, the unconstrained path probability of the Brownian 
excursion can be represented as ∝ exp (−S), where [11]

S =
1

4D

∫ T

−T

ẋ2 dt.� (5)

The conditional probability distribution P(A,T ) is equal to the ratio of the probabili-
ties of a wall-escaping Brownian excursion with and without the additional constraint 
(1). Each of these two probabilities can be represented as a path integral over all pos-
sible paths (with and without the additional constraint (1)). We will assume that each 
of these path integrals is dominated by the action along a single ‘optimal’ (or most 
probable) path, or ray, x(t), for which the action S from equation (5) reaches its mini-
mum. This observation leads to important consequences. To see them, let us rescale 
the coordinate x and time t:

t

T
→ t and

x

CT γ
→ x.� (6)

Upon the rescaling, the condition (1) becomes
∫ 1

−1

dt [x(t)− x0(t)] =
A

CT γ+1
≡ a,� (7)

whereas the rescaled wall function is simply g(t). Making the change of variables (6) in 
equation (5) and using equation (7), we uncover the scaling behavior of the probability 
density, as predicted by the OFM:

− lnP(A,T ) � C2T 2γ−1

D
s

(
A

CT γ+1

)
.� (8)

It is natural to call the function s (a) the LDF of the distribution P(A,T ). It is given 
by s = sc − su where sc and su are the rescaled actions,

1

4

∫ 1

−1

ẋ2 dt,� (9)

over the constrained and unconstrained optimal paths xc (t) and xu (t), respectively. 
Here the ‘constrained’ and ‘unconstrained’ refer only to the rescaled area constraint 
(7).

Figure 1.  A Brownian excursion, which stays away from the wall moving 
according to g (t) = 1− t2. The shaded region has area A, and we are interested in 
its distribution. Rescaled units (6) are used.

https://doi.org/10.1088/1742-5468/aafa81
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Generally, the OFM is expected to be accurate when it predicts a large action. 
Equation (8) implies that for γ > 1/2 the OFM is asymptotically exact at T→∞ pro-
vided that the rescaled action s is not too small. For a given T, this boils down to a 
suciently large A.

3. Optimal path and action

The optimal path of the Brownian excursion must minimize the rescaled action (9) 
under the constraint (7). The constraint can be accounted for via a Lagrange multi-
plier λ, leading to the eective Lagrangian L(x, ẋ) = ẋ2/4− λx. The optimal path x(t) 
must satisfy the boundary conditions x(−1) = x(1) = 0 and stay away from the wall 
g(t). This leads to a textbook problem of the calculus of variations which deals with 
one-sided variations [12]. The solution typically involves alternating segments of two 
dierent types: (1) where x(t) satisfies the Euler–Lagrange equation ẍ+ 2λ = 0 (so that 
x(t) is a parabola) and (2) where x(t) = g(t). At points where two segments meet they 
must have a common tangent [12]. (The last demand comes from the minimization of 
the action with respect to the position of the meeting point.) Finally, if there are mul-
tiple solutions, the one with the least action must be chosen.

3.1. Parabolic wall

We will assume throughout this work that the wall function g(t) is smooth and con-
vex upward, g′′(t) < 0, for almost all |t| � 1. We will also assume for simplicity that 
g(−t) = g(t). The parabolic wall g(t)  =  1  −  t2 is the simplest. Here, for any a > 0, the 
optimal path—also a parabola—is x(t) = λ(1− t2), where λ > 1. The optimal path 
stays above the wall for all times |t| � 1. The rescaled excess area is

a =

∫ 1

−1

(λ− 1)(1− t2) dt =
4

3
(λ− 1) ,� (10)

whereas the rescaled action is

s =
1

4

∫ 1

−1

[(−2λt)2 − (−2t)2] dt =
2

3
(λ2 − 1).� (11)

Eliminating λ from equations (10) and (11), we obtain the LDF

s(a) = a+
3a2

8
.� (12)

The resulting probability distribution (8), in the original variables, is

− lnP(A,T ) � CA
DT 2−γ

+
3A2

8DT 3
.� (13)

As one can see, P(A,T ) has two distinct tail asymptotics: the near tail is exponential 
in A, whereas the far tail is Gaussian. The near tail exhibits the scaling A ∼ T 2−γ.  
The presence of the moving wall does not violate the Airy distribution scaling A ∼ T 3/2 

https://doi.org/10.1088/1742-5468/aafa81
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[5, 6, 8, 9] only in the special case γ = 1/2. We will be mostly interested in γ > 1/2, 
where the OFM predicts a large action and therefore is accurate. By analogy with [4] 
we argue that the scaling A ∼ T 2−γ also holds for typical, small fluctuations of A, where 
the OFM is inapplicable. The reason is quite simple: the near tail identifies uniquely 
the dimensionless combination of A, T, D and C that serves as the dimensionless argu-
ment of the probability distribution of typical fluctuations P . The scaling of typical 
fluctuations of A with time, up to a numerical coecient O(1), follows immediately.

The far tail, described by the second term on the right-hand-side of equation (13), 
is wall-independent. It coincides with the large-A tail of the Airy distribution (see e.g. 
[9]). This is to be expected: for very large A, when the second term dominates the first 
one, P(A,T ) is unaected by the wall. For this reason the Gaussian far tail is universal 
for all wall functions g(t).

3.2. Generalized parabolic wall

A more interesting example is a generalized parabolic wall g(t)  =  1  −  t2k, where k  >  1 is 
an integer. Here the parabolic path x(t) = λ(1− t2) is the optimal path for all |t| � 1 
only when λ > k, see figure 2. In this regime of very large deviations of A the excess 
area is equal to

a =

∫ 1

−1

[λ(1− t2)− (1− t2k)] dt =
4λ

3
− 4k

2k + 1
,� (14)

whereas the action is

s =
1

4

∫ 1

−1

[(−2λt)2 − (−2kt2k−1)2] dt =
2λ2

3
− 2k2

4k − 1
.� (15)

Eliminating λ, we obtain

s(a) ≡ sfar(a) =
3ka

2k + 1
− 8k2(k − 1)2

(2k + 1)2(4k − 1)
+

3a2

8
.� (16)

As expected, the wall-independent universal term 3a2/8 dominates at very large a. 
Equation (16) is valid at λ � k, that is at

a � acr =
8k(k − 1)

6k + 3
.

Now let us consider smaller excess areas, 0 < a � acr, which correspond to 1 < λ � k. 
Here the optimal path involves an a priori unknown parabolic segment x(t) = λ− bt2 
which should be matched, at a priori unknown times t = ±τ , with two wall segments 
by a common tangent construction, see the left panel of figure 2. After a simple algebra, 
we obtain

b = k

(
λ− 1

k − 1

) k−1
k

, τ =

(
λ− 1

k − 1

) 1
2k

.� (17)

The excess area is now equal to

https://doi.org/10.1088/1742-5468/aafa81
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a =

∫ τ

−τ

[λ− bt2 − (1− t2k)] dt =
8k(λ− 1)

(
λ−1
k−1

) 1
2k

6k + 3
,� (18)

and the action is

s =
1

4

∫ τ

−τ

[ẋ(t)2 − ġ(t)2] dt =
8k2(λ− 1)

4k−1
2k

(12k − 3)(k − 1)
2k−1
2k

.� (19)

Eliminating λ, we obtain

s(a) ≡ snear(a) =

(
3
8

) 2k−2
2k+1 k2

(
2k+1
k

) 4k−1
2k+1

(4k − 1) (k − 1)
2k−2
2k+1

a
4k−1
2k+1 , 0 < a � acr =

8k(k − 1)

6k + 3
.� (20)

This expression describes a stretched-exponential ‘near tail’ of P(A,T ). For k  =  1 (the 
‘generic’ case) the exponential tail s ∼ a is restored. Going back to equation (8), we see 
that the scaling of A with T in the near-tail region depends continuously on k and γ:

A ∼ T
6k−3γ
4k−1 , k � 1.� (21)

This scaling (which corresponds to a stretched-exponential tail of P(A)) describes typi-
cal fluctuations of A. These fluctuations are determined by the local behavior of the 
wall function g(t) near t  =  0. This is because, at small a, λ is also small, and the small 
optimal parabolic segment λ(1− t2) ‘feels’ the function g(t) only in a small vicinity at 
t  =  0.

Overall, the LDF of the excess area is

s(a) =

{
snear(a) from equation (20), 0 < a � acr =

8k(k−1)
6k+3

,

sfar(a) from equation (16), a � acr =
8k(k−1)
6k+3

.
� (22)

We checked that equation  (22) actually holds for any k  >  1, not necessarily integer. 
Figure 3 shows s(a) for a quartic parabola wall function, k  =  2. At a = acr, s(a) and 

Figure 2.  The optimal path of Brownian excursion, conditioned on a specified 
excess area, for the quartic parabola wall function g(t)  =  1  −  t4 (shown by the 
dashed line) below the phase transition (the left panel) and at the transition (the 
right panel). Below the transition the optimal path consists of a parabolic segment 
x(t) = λ(1− t2) (blue solid line) and two wall segments (magenta solid lines). At 
the transition the optimal path is the parabola x(t)  =  2(1  −  t2) for all |t| < 1. Above 
the transition (not shown) the optimal path is a parabola x(t) = λ(1− t2), with 
λ > 2, for all |t| < 1.

https://doi.org/10.1088/1742-5468/aafa81
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its first and second derivatives s′(a) and s′′(a) are continuous, but the third derivative 
s′′′(a) is discontinuous. This singularity can be interpreted as a third-order dynamical 
phase transition. The transition occurs when τ  from equation (17) is equal to 1, and 
the order of the transition is determined by the behavior of the wall function g(t) in the 
vicinity of the end points t = ±1. For example, for t close to  −1 one has

g(t) = 2k(t+ 1)− k(2k − 1)(t+ 1)2 +
2

3
k(k − 1)(2k − 1)(t+ 1)3 + . . . .

As one can see, the coecient of the (t  +  1)2 term is nonzero (and negative, so as g(t) is 
convex upward) for all k  >  1. As a result, the order of the transition is independent of k.

A phase transition of the same type occurs, at some critical value of a > 0, for many 
other wall functions. As we have seen, the parabolic wall, g(t)  =  1  −  t2, is an exception: 
here there is no transition. The transition is also absent if g′(t) diverges at t = ±1, as 
it happens for the circular wall g(t) = (1− t2)1/2.

3.3. Cosine wall

Above the phase transition, the optimal path is the parabola x(t) = λ(1− t2): for all 
times |t| < 1 and for all wall functions. Below the phase transition the situation is more 
complicated because of dierent possible mutual arrangements of the optimal parabolic 
segment(s) of x(t) and the wall function g(t). To illustrate these dierences, let us con-
sider the cosine wall g(t) = cos(πt/2). Here the phase transition occurs at λ = 1, which 
corresponds to

a = acr =

∫ 1

−1

[
(1− t2)− cos

(
πt

2

)]
dt =

4

3
− 4

π
= 0.060 093 7 . . . .� (23)

Above the transition the excess area is
∫ 1

−1

[
λ(1− t2)− cos

(
πt

2

)]
dt =

4λ

3
− 4

π
= a.� (24)

In its turn, the action is

Figure 3.  The large deviation function of the excess area, s(a) from equation (22), 
for the quartic parabola wall function g(t)  =  1  −  t4. The third derivative s′′′(a) has 
a discontinuity at the transition point a = 8k(k − 1)/(6k + 3) = 16/15, shown by 
the fat circle.

https://doi.org/10.1088/1742-5468/aafa81
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s =
1

4

∫ 1

−1

{
(−2λt)2 −

[
−π

2
sin

(
πt

2

)]2 }
dt =

2λ2

3
− π2

16
, λ > 1,� (25)

and we obtain

s(a) =
3a

π
− π2

16
+

6

π2
+

3a2

8
, a � acr.� (26)

What happens at 0 < λ < 1, or a < acr? For the cosine wall, the coecient of the t4 
term of the Taylor expansion at small t,

cos

(
πt

2

)
= 1− π2t2

8
+

π4t4

384
− . . . ,

is positive. As a result, a kippa-like optimal path, shown on the left panel of figure 2, 
is impossible in this case. The correct optimal path has two shoulders: mutually sym-
metric parabolic segments, passing through t  =  −1 and t  =  1, respectively, and hav-
ing common tangents with the wall at some t = ±τ , see figure 4. Here the tangent 
construction can be done numerically. Analytical results can be obtained for (1) very 
small a, which corresponds to the near tail of P(A,T ), and (2) slightly below the phase 
transition, acr − a � acr.

For very small a the common tangent points t = ±τ  are very close to t = ±1, and 
the wall function g(t) = cos(πt/2) can be Taylor expanded around t = ±1,

g(t) =
π

2
(1− |t|)− π3

48
(1− |t|)3 + . . . ,� (27)

for the purpose of calculating the common tangent points and the optimal parabola. 
After some algebra we obtain the near tail

s =
21/4π9/4a5/4

5
√
3

, a � acr.� (28)

Figure 4.  The optimal path of Brownian excursion, conditioned on a specified 
excess area, for the wall function g(t) = cos(πt/2) (shown by the dashed line) below 
the phase transition (the left panel) and at the transition (the right panel). Below 
the transition the optimal path consists of two parabolic segments (blue solid lines) 
and one wall segment (magenta solid line). At the transition the optimal path 
is the parabola x(t)  =  1  −  t2 for all |t| < 1. Above the transition (not shown) the 
optimal path is a parabola x(t) = λ(1− t2), with λ > 1, for all |t| < 1.

https://doi.org/10.1088/1742-5468/aafa81
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This stretched exponential tail is determined by the local properties of the wall func-
tion at t = ±1, rather than at t  =  0. The unusual exponent 5/4 appears because there 
is no quadratic term O[(1  −  |t|)2] in the Taylor expansion (27). When a quadratic term 
is present, one obtains s ∼ a, leading to an exponential near tail.

Slightly below the phase transition, acr − a � acr, the common tangent points t = ±τ  
are very close to zero, and we can Taylor expand the wall function g(t) = cos(πt/2) 
there:

g(t) = 1− π2t2

8
+

π4t4

384
+ . . . .� (29)

In the first order in acr − a, the t4 term can be neglected, and the calculations are very 
simple. In this order the result is

s(a) � 4

π
− 2

3
− π2

16
+ a, acr − a � acr.� (30)

At a = aa this expression matches, together with its first derivative, with the asymp-
totic (26). To prove that the transition is of third order (as we conjecture), one would 
need to continue the calculations until the third order in acr − a.

3.4. Multiple solutions and additional phase transitions

For a class of wall functions both types of the parabolic optimal paths (the kippa-like 
and the shoulders-like) are possible for the same value of a. This situation can occur 
when the Taylor expansions of g(t) at t  =  0 and t = ±1 have the following forms:

g(t) =

{
1− bt2 − ct4 + . . . , |t| � 1,

A(1− |t|)− B(1− |t|)2 − C(1− |t|)3 + . . . , 1− |t| � 1� (31)

Figure 5.  A phase transition, originating from an interplay of two coexisting OFM 
solutions: the kippa-like and the shoulders-like. Shown by the dashed and dash-
dotted lines are the functions s1(a) and s2(a), respectively. The resulting LDF s(a) 
is shown by the solid line. The critical point a† is the common tangent point of s(a) 
and s1(a). The critical point acr (where the kippa-like and the two shoulders-like 
paths merge) is at larger a and not shown.

1 The coecients A, B and b are always positive for a g(t) which is convex upward.
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and all the coecients b, c,A,B and C are positive1. A direct calculation shows that, for 
the kippa-like path, the leading-order action at small a is s1(a) � b a, whereas for the 
shoulders-like path it is s2(a) � B a. As the correct solution must minimize the action, 
the selected optimal path ‘nucleates’ at t  =  0 (if b  <  B) or at t = ±1 (if b  >  B). The 
corresponding near tail of P(A,T ) is exponential, with s = min(b,B) a.

As a increases, the functions s1(a) and s2(a) become aected by higher-order terms 
in the expansions (31). It can happen that, for some a∗ (which is subcritical with respect 
to the third-order transition considered above), one has s1(a) < s2(a) for a < a∗, but 
s1(a) > s2(a) for a > a∗. Naïvely, one would expect a jump in the first derivative s′(a) at 
a = a∗, see the dashed and dash-dotted lines in figure 5. The correct LDF s(a), however, 
is quite dierent. In order to calculate it one should minimize the sum s1(a1) + s2(a2) 
with respect to a1 and a2 under the constraint a1 + a2 = a. The result is schematically 
shown by the solid line in figure 5. Importantly, s(a) (which is not a linear function) has 
only one common tangent with s1(a), at some point a = a† < a∗. At 0 < a � a† the LDF 
s(a) coincides with s1(a). At a > a†, however, s(a) is smaller than any of the functions 
s1(a1) and s2(a2). At a = a† s(a) has a jump in its second derivative with respect to a. 
That the system avoids a first-order transition at a = a∗ and instead exhibits a single 
second-order transition at a = a† < a∗ is a new and unexpected feature.

In fact, this argument can be pushed further. Figure 5 makes it obvious that, for a 
second-order transition at a = a† to occur, the curves s1(a) and s2(a) do not even need 
to cross each other at a point a∗ < acr. In other words, this second-order transition can 
happen even without an attempted first-order transition.

4. Summary and discussion

The OFM is very ecient in its description of a broad class of atypically large 
fluctuations. Therefore, it may come as a surprise that the advantages of the OFM 
have not been suciently appreciated in the context of constrained Brownian motions 
and their applications. We started filling this gap in [4] and continued doing it in the 
present work. Here we calculated the large deviation function (LDF) of the excess area 
A of a Brownian excursion, constrained to stay away from a moving wall. For a whole 
class of walls, the LDF has a jump in the third derivative with respect to A at a criti-
cal value of A. It is natural to interpret this singularity as a dynamical phase trans
ition. The transition mechanism—a space-time ‘obstacle’, experienced by the ‘diusion 
ray’—is remarkably simple.

The OFM allows us to probe the scaling behavior A ∼ T α of typical (small) 
fluctuations of the excess area by evaluating their distribution tail (which we call the 
near tail). The scaling exponent α depends continuously on the parameters γ and k 
which characterize the moving wall.

One surprising outcome of this work is that, for some wall functions, additional 
phase transitions are possible, which result from coexistence of dierent optimal paths, 
predicted by the OFM. We identified the mechanism of one such transition, of the sec-
ond order. It would be very interesting to investigate these phase transitions in more 
detail. It would be also interesting to calculate (with a dierent method) the probability 
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distribution of typical fluctuations of the excess area A, and see how their distribution 
match in the tail with the large deviations, considered in this work.

Before we finish, let us return to the third-order transition uncovered in this work. 
In recent years third-order transitions have been identified in large deviation functions 
characterizing a whole list of stochastic many-body systems, see [13] for an illumi-
nating review. These include Gaussian random matrices, non-intersecting Brownian 
excursions in one dimension, nonequilibrium stochastic growth models belonging to 
the Kardar–Parisi–Zhang universality class [13, 14], etc. The common features of these 
third-order transitions are the following [13]:

	•	 �The region of typical fluctuations is ‘sandwiched’ between two large-deviation 
tails.

	•	 �The large-deviation tails scale dierently with a large parameter N � 1 of the 
problem; and the sharp transition appears when N → ∞.

	•	 �The typical fluctuations are described by the Tracy–Widom distribution [15].

The third-order transition, that we uncovered in this work, looks dierent on all counts:

	•	 �The transition point is located outside of the region of typical fluctuations.

	•	 �The large-deviation tails have identical scaling behaviors with T � 1 below and 
above the transition.

	•	 �The typical fluctuations are not described by the Tracy–Widom distribution.

On the other hand, this transition has a simple geometric mechanism which is appar-
ently not shared by the transitions described above. This is a good instance to ponder 
about universality, or a lack of thereof.
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