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Abstract.  We consider an infinite interface of d  >  2 dimensions, governed by 
the Kardar–Parisi–Zhang (KPZ) equation with a weak Gaussian noise which is 
delta-correlated in time and has short-range spatial correlations. We study the 
probability distribution of the interface height H at a point of the substrate, 
when the interface is initially flat. We show that, in stark contrast with the KPZ 
equation in d  <  2, this distribution approaches a non-equilibrium steady state. 
The time of relaxation toward this state scales as the diusion time over the 
correlation length of the noise. We study the steady-state distribution P(H) 
using the optimal-fluctuation method. The typical, small fluctuations of height 
are Gaussian. For these fluctuations the activation path of the system coincides 
with the time-reversed relaxation path, and the variance of P(H) can be found 
from a minimization of the (nonlocal) equilibrium free energy of the interface. 
In contrast, the tails of P(H) are nonequilibrium, non-Gaussian and strongly 
asymmetric. To determine them we calculate, analytically and numerically, 
the activation paths of the system, which are dierent from the time-reversed 
relaxation paths. We show that the slower-decaying tail of P(H) scales as 
− lnP(H) ∝ |H|, while the faster-decaying tail scales as − lnP(H) ∝ |H|3. 
The slower-decaying tail has important implications for the statistics of directed 
polymers in random potential.
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1.  Introduction

For the last 30 years the Kardar–Parisi–Zhang (KPZ) equation [1] has been the focus 
of attention of theoretical and experimental physicists and mathematicians [2–13] and 
has become a paradigmatic model of nonequilibrium statistical mechanics. This equa-
tion provides a continuum description of kinetic roughening of growing stochastic sur-
faces, and it has been remarkably successful in capturing universal scaling properties of 
a whole class of microscopic models [6, 8, 10, 11, 13] and, no less importantly, of some 
real systems [3, 13]. The KPZ equation,

∂th = ν∇2h+
λ

2
(∇h)2 +

√
D ξ(x, t),� (1)

describes the evolution of a fluctuating surface height h(x, t), where x is a d-dimensional 
position vector in the substrate hyperplane of growth. The homogeneous and isotropic 
Gaussian noise ξ(x, t) has zero mean and the correlator

〈ξ(x1, t1)ξ(x2, t2)〉 = κ(x1 − x2) δ(t1 − t2),� (2)

https://doi.org/10.1088/1742-5468/aabbcc
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where κ(x) can be normalized to unity:∫
dxκ(x) = 1.� (3)

In their original paper [1] the authors assumed that the noise is delta-correlated in 
space, κ(x) = δ(x). Later it became clear that, in this case, equation (1) is ill-defined. 
Indeed, already at d  =  1 the systematic velocity of the interface, which results from the 
rectification of the noise by the nonlinear term, diverges unless the noise has a finite 
spatial correlation length � > 0 [10]. The latter can be formally defined as

�2 =

∫
dxx2κ(x).� (4)

After subtracting the systematic interface shift, many interesting statistical quantities 
become well-defined, at d  =  1, even for � = 0. However, at d � 2 even the properly shifted 
quantities, such as the variance of the fluctuating interface width [5, 14], or the variance 
of the one-point height distribution [15, 16], diverge unless � is finite. Being interested in 
d  >  2, we will assume throughout this work a finite correlation length of the noise.

Since the inception of the KPZ equation, the central questions in its analysis have 
been about statistical self-ane properties and dynamic scaling of the interface [1–3]. 
For d  =  1 the KPZ-interface exhibits roughening which, in an infinite system, would 
continue forever for any nonzero noise strength. More recently, the focus of studies in 
1d has shifted toward more detailed characterizations of the roughening interface. One 
of them is the one-point probability distribution Pt(H) of the (properly shifted) surface 
height H at a specified time t [6, 8–11, 13]. A remarkable analytic progress has been 
achieved, in the form of exact representations for Pt(H), for several initial conditions 
[6, 8, 10] and some of their combinations for an infinite system. In this case Pt(H) is 
time-dependent, and quite sensitive to the initial conditions, even at late times.

For d  >  1 analytic progress has been slow and painful, and exact results are unavail-
able. Still, it is known that, at d  >  2, there are two distinct regimes: of weak and strong 
noise, also called weak and strong coupling. For weak noise, an infinite KPZ interface 
becomes smooth at long times. For strong noise it continues to roughen forever. A 
nearly universal consensus is that the transition between the two regimes (as a func-
tion of the dimensionless noise magnitude ε, introduced in equation (6) below) has a 
character of a phase transition, whereas d  =  2 is a critical dimension [3, 4].

Understandably, most of the numerical and analytical eorts at d � 2 are being 
spent on the strong-coupling regime. Here we consider the weak-coupling regime at 
d  >  2 which turns out to be much simpler for analysis, and where we can achieve 
a good quantitative understanding of the complete statistics of the one-point height 
fluctuations. We argue that the KPZ interface, driven by a weak noise, exhibits very 
interesting properties which have been overlooked. We show that even an infinite inter-
face relaxes to a well-defined nonequilibrium steady state, so that the (properly shifted) 
one-point probability distribution becomes time-independent, Pt(H) = P(H). For an 
initially flat interface, the characteristic time that it takes the typical fluctuations to 
reach the stationary distribution scales as the diusion time over the correlation length 
scale. When the noise correlations come from a microscopic regularization of the KPZ 
equation, this time is very short.

https://doi.org/10.1088/1742-5468/aabbcc
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We study this stationary distribution P(H) by the optimal-fluctuation method (OFM), 
also known as the instanton method [17–21], the weak-noise theory [22–24], the macro-
scopic fluctuation theory [25], etc. The crux of the OFM is a saddle-point evaluation of the 
path integral for the KPZ equation (1), constrained by the specified large deviation. The 
ensuing minimization procedure generates an eective classical field theory. The solution 
of the minimization problem yields the ‘optimal fluctuation’ (also known as optimal path, 
activation path, or optimal history). The optimal fluctuation dominates the contribution 
to the probability of observing a specified height H at a specified point (which can be set 
to be x = 0). The minus logarithm of the probability distribution is approximately equal 
to the classical action along the optimal path. The OFM has been extensively used for 
studying Pt(H) of the KPZ equation for dierent initial conditions in one dimension [15, 
26–34]. In higher dimensions, some important results were obtained by Kolokolov and 
Korshunov [15, 27], but the stationarity of P(H) at d  >  2 was not appreciated.

A natural rescaling of the weakly-driven KPZ equation at d  >  2 is the following. We 
rescale x by the correlation length of the noise �, t by the diusion length �2/ν, and h 
by ν/|λ|. This brings equation (1) to the rescaled form3

∂th = ∇2h− 1

2
(∇h)2 +

√
ε ξ(x, t),� (5)

where

ε =
λ2D

ν3�d−2
� (6)

is the dimensionless noise strength. Equation (2) keeps the same form in the rescaled 
variables. For an initially flat interface, the long-time evolution of the KPZ-interface is 
determined solely by the eective noise strength ε. Importantly, ε does not depend on 
the observation time t. This is in contrast with d  =  1 [28], where the properly defined 
eective noise strength scales as 

√
t [26, 28] and, as a result, the noise is always strong 

at long times.
Here are the main findings of this work. A key observation is that, for d  >  2 and 

at small ε, the whole probability distribution Pt(H) approaches a steady state. This 
property is closely related to the fact that the dominant contribution to the local 
fluctuations of the height, for weak coupling, comes from the noise which spatial scale 
is comparable with the correlation length [15]4. Furthermore, in the weak-noise regime, 
ε � 1, lnP(H) exhibits the following scaling behavior:

− lnP(H) � s(H̃)

ε
=

ν3�d−2

λ2D
s

(
|λ|H
ν

)
,� (7)

where the large-deviation function s(H̃) depends on d and on the particular form of the 
spatial correlator of the noise κ(x). The asymptotic behavior of s(H̃) is the following. 

For small H the function s(. . . ) is a quadratic function of its argument, as to be expected. 

3 Without losing generality we assume that λ < 0. Flipping the sign of λ is equivalent to flipping the sign of h.
4 When the nonlinear term in equation (5) is dropped, the statistical stationarity of the interface at d  >  2 at long 
times is evident in the behavior of the mean-square width of the interface and in the height-height correlation 
function [14]. Here we emphasize the stationarity of the whole one-point height distribution P(H), including its 
non-Gaussian tails, in the weak-coupling regime of the KPZ equation.

https://doi.org/10.1088/1742-5468/aabbcc
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This regime is described by the Edwards–Wilkinson equation. Correspondingly, the 
variance of P(H) is independent of λ and equal to

vH =
C0D

ν�d−2
, d > 2,� (8)

where the non-universal constant C0 depends on d and on the particular form of κ(x). 
As we show here, equation (8) can be obtained via a minimization of a (nonlocal) ‘equi-
librium free energy’ of the interface. Here there is no need to deal with the interface 
dynamics for the purpose of calculation of vH .

The more interesting asymptotics concern large deviations of the interface height which 
are intrinsically nonequilibrium. These are described by the (non-Gaussian and strongly 
asymmetric) tails of P(H). To determine the tails we compute, analytically and numer
ically, the corresponding optimal paths, which dier from the time-reversed relaxation 
paths. As we show, the slower-decaying tail λH > 0 scales, in the original variables, as

− lnP(H) � Csν
2�d−2|H|
|λ|D

, d > 2,� (9)

while the faster-decaying tail λH < 0 behaves as

− lnP(H) � Cf |λ|�d−2|H|3

D
, d > 2,� (10)

and is independent of ν. The constants Cs and Cf  depend on d and on the particular 
form of κ(x). We show how to compute these constants numerically: by using the 
Chernykh–Stepanov back-and-forth iteration algorithm [20] for both tails, or by solving 
a nonlinear integro-dierential equation (equation (51) below) for the slower-decaying 
tail (9).

Here is how we organized the remainder of the paper. In section 2 we briefly intro-
duce the OFM and present its governing equations  and the boundary conditions. 
Section 3 deals with typical fluctuations of the weakly-driven KPZ interface, where the 
KPZ nonlinearity can be neglected. We derive the free energy of the interface in this 
limit and determine the most likely interface shape conditioned on reaching a specified 
height at a point. In section 4 we evaluate the slower-decaying, λH > 0, tail of P(H) by 
analyzing static soliton solutions of the OFM equations and solving an ensuing selec-
tion problem. Section 5 deals with the faster-decaying, λH < 0, tail of P(H) by solving 
the OFM equations analytically in the inviscid limit ν → 0. The results of sections 3–5 
are supported by numerical solutions of the OFM equations. The slower-decaying tail 
behavior (9) has important implications for the statistics of the partition function of 
directed polymers in random potential. We discuss them in section 6. Our results are 
summarized and discussed in section 7. A brief description of two numerical methods 
that we used are relegated to the appendix.

2. Optimal-fluctuation method: governing equations

The OFM employs the small parameter ε, see equation (6), for a saddle-point evalu-
ation of the properly constrained path integral of equation (5). Let us introduce the 
kernel K(x− x′) which is inverse to the correlation kernel κ(x− x′):

https://doi.org/10.1088/1742-5468/aabbcc
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∫
dx′′ K(x− x′′)κ(x′ − x′′) = δ(x− x′).� (11)

The saddle-point evaluation procedure leads to a minimization of the eective ‘classical 
action’ 

S[h(x, t)] = 1

2

∫ 0

−∞
dt

∫
dx dx′

(
∂th−∇2h+

1

2
(∇h)2

)∣∣∣∣
(x,t)

K (x− x′)

(
∂th−∇2h+

1

2
(∇h)2

)∣∣∣∣
(x′,t)

.

� (12)
The ensuing Euler–Lagrange equation  can be cast into a Hamiltonian form. For a 
spatially-correlated and temporally uncorrelated Gaussian noise this procedure, by now 
fairly standard, was performed by Gurarie and Migdal [18] for the noise-driven Burgers 
equation, and by Kolokolov and Korshunov [15] for the KPZ equation itself. Therefore, 
we can be brief here. The resulting Hamilton equations take the form

∂th = ∇2h− 1

2
(∇h)2 + π(x, t),� (13)

∂tρ = −∇2ρ−∇ · (ρ∇h) .� (14)

Here the optimal history of the interface h(x, t) plays the role of the Hamiltonian coor-
dinate, while the optimal realization of the noise ρ(x, t) plays the role of the conjugate 
momentum. Further,

π(x, t) =

∫
dx′κ(x− x′)ρ(x′, t)� (15)

is an auxiliary field which is related to ρ(x, t) nonlocally. The nonlocality is a conse-
quence of spatial correlations of the noise. The Hamiltonian of equations (13) and (14) 
is H =

∫
dxH, where

H(x, t) = ρ(x, t)

[
∇2h− 1

2
(∇h)2 +

1

2
π(x, t)

]
.� (16)

Equations (13) and (14) must be supplemented by boundary conditions in space and in 
time. Being interesting in a steady-state distribution, we can assume a (noiseless) flat 
interface at t = −∞:

h(x, t = −∞) = 0.� (17)
The interface must reach a specified rescaled height H (we omit the tildes) at x = 0 
and t  =  0:

h(x = 0, t = 0) = H.� (18)
This condition leads to a singular boundary condition on ρ(x, t) [15]:

ρ(x = 0, t = 0) = Λ δ(x),� (19)
where the Lagrangian multiplier Λ is ultimately set by the value of H from equa-
tion (18). Finally, both h(x, t) and ρ(x, t) must vanish at x → ∞. The problem pos-
sesses the conservation law

https://doi.org/10.1088/1742-5468/aabbcc
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∫
dx ρ(x, t) = Λ.� (20)

Once the optimal path, conditioned by equation (18), is found, P(H) is given in terms 
of the classical action (12), evaluated along this path:

− lnP(H) � 1

ε

∫ 0

−∞
dt

∫
dx (ρ∂th−H) =

s(H)

ε
,� (21)

where

s(H) =
1

2

∫ 0

−∞
dt

∫
dx ρ(x, t) π(x, t) =

1

2

∫ 0

−∞
dt

∫
dx

∫
dx′ρ(x, t)κ(x− x′) ρ(x′, t),

�

(22)

see [15]. Let us also define the action accumulation rate on the optimal path, which we 
will call ṡ(H, t):

ṡ(H, t) =
1

2

∫
dx ρ(x, t) π(x, t).� (23)

Using the inverse kernel K, we can rewrite equation (22) as

s(H) =
1

2

∫ 0

−∞
dt

∫
dx

∫
dx′π(x, t)K(x− x′) π(x′, t).� (24)

In the following we will need to use the Fourier transforms of κ(ξ) and K(ξ):

κk = (2π)−d

∫
dξ e−ikξκ(ξ) and Kk = (2π)−d

∫
dξ e−ikξK(ξ).� (25)

They are related as follows:

κkKk = (2π)−2d.� (26)

3. Typical fluctuations and equilibrium free energy

For small fluctuations we can drop the nonlinear terms in equations (13) and (14) and 
arrive at the linear equations

∂th = ∇2h+ π(x, t),� (27)

∂tρ = −∇2ρ,� (28)
which describe typical, small fluctuations of the interface. For the Edwards–Wilkinson 
interface these equations would be exact.

A straightforward way of solving the linear problem in the framework of the OFM 
would be the following. One first solves the anti-diusion equation (28) backward in 
time with the ‘initial’ condition (19). Then one evaluates π(x, t), using equation (15), 
and solves the driven diusion equation (27) forward in time. The action is then calcu-
lated from equation (22), and Λ is expressed through H via equation (18). The following 

https://doi.org/10.1088/1742-5468/aabbcc
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shortcut simplifies the calculations. As the linearized system is in equilibrium, the 
activation path h(x, t), defined on the time interval −∞ < t � 0, must coincide with 
the time-reversed relaxation path hr(x, t), defined on the interval 0 � t < +∞ [35]. The 
momentum field of the relaxation path is zero: ρr(x, t) = 0, 0 � t < +∞. As a result, 
the activation path h(x, t) obeys the equation

∂th(x, t) = −∇2h(x, t).� (29)

Combining equations (27)–(29), we obtain two equilibrium relations,

π(x, t) = −2∇2h(x, t) and π(x, t) = 2∂th(x, t).� (30)

Once equation (28) for ρ(x, t) is solved, the second relation in equation (30) in conjunc-
tion with equation (15) allows one to compute h(x, t) by integration over time.

There is, however, a more radical shortcut which makes the dynamic calculations 
altogether redundant, as is indeed to be expected from an equilibrium system (27) and 
(28). Using the relations (30) directly in equation (24) for the action, and performing 
integrations by parts, we obtain

s [φ(x)] =

∫
dx

∫
dx′K(x− x′)∇φ(x) · ∇φ(x′),� (31)

where φ(x) ≡ h(x, t = 0) is the optimal shape of the interface at the observation time 
t  =  0. Equation  (31) does not include integration over time. It describes the equilib-
rium free energy of the Edwards–Wilkinson interface with a spatially-correlated noise. 
Together with the relation − lnP � s(H)/ε, the free energy provides a complete descrip-
tion of the equilibrium interface, which represents a random Gaussian field.

At ε � 1 the free energy suces for computing the variance of P(H), up to small 
sub-leading terms, for the KPZ interface. Let us perform this calculation. We should 
minimize the free energy (31) subject to the boundary conditions φ(x = 0) = H  and 
φ(x → ∞) = 0. It is convenient to recast the boundary condition φ(x = 0) = H  as an 
integral constraint:∫

φ(x)δ(x)dx = H.� (32)

Now we can minimize the functional

s̃[φ(x)] =

∫
dx

[∫
dx′K(x− x′)∇φ(x) · ∇φ(x′)− Λ0φ(x)δ(x)

]
,� (33)

where Λ0 is a Lagrange multiplier (not to be confused with the Lagrange multiplier Λ 
entering Equation (19)). Demanding that the variation vanish, we obtain∫

dx′ K(x− x′)∇2φ(x′) +
Λ0

2
δ(x) = 0� (34)

or, using equation (11) and interchanging x and x′,
∫

dxK(x− x′)

[
∇2φ(x) +

Λ0

2
κ(x)

]
= 0.� (35)

https://doi.org/10.1088/1742-5468/aabbcc
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As this equality must hold for any x′, we arrive at the Euler–Lagrange equation for the 
functional s̃ [φ(x)]:

∇2φ(x) = −Λ0

2
κ(x).� (36)

This is a Poisson equation for an eective potential φ(x). Its Fourier transform is

φk =
Λ0

2k2
κk.� (37)

The knowledge of φk suces for calculating s [φ(x)] in terms of Λ0. Indeed, using equa-
tion (26), we obtain

K(x− x′) =
1

(2π)2d

∫
dk

κk

eik(x−x′)

and recast equation (31) as

s [φ(x)] =
1

(2π)2d

∫
dk

κk

∫
dx eikx ∇φ(x) ·

∫
dx′ e−ikx′∇φ(x′) =

∫
dk

k2φ2
k

κk

.

Plugging here φk from equation (37), we obtain

s [φ(x)] =
Λ2

0

4

∫
dk

κk

k2
.� (38)

What remains to do is to express Λ0 through H. For that we need to solve equa-
tion  (36) in the real space. As the noise is isotropic, and the solution is unique, we 
can exploit spherical symmetry and rewrite equation (36) as an ordinary dierential 
equation (ODE):

1

rd−1

d

dr

(
rd−1dφ

dr

)
= −Λ0

2
κ(r).� (39)

The solution φ(r), which vanishes at r = ∞ and is equal to H at r  =  0, is obtained by 
two consecutive integrations. As a result,

Λ0 =
2H∫∞

0
dr

∫ r

0
dr′ (r′/r)d−1κ(r′)

.� (40)

Equations (38) and (40) yield the announced variance vH from equation (8), where

C0 =
Γ(d/2)

[∫∞
0

dr
∫ r

0
dr′ (r′/r)d−1κ(r′)

]2
4πd/2

∫∞
0

dk kd−3κk

,� (41)

and Γ(z) is the Euler gamma function [36].
As a concrete example, here and in the following we consider a Gaussian correlator. 

In the original variables it is5

κ(z) =
(
π�2

)−d/2
e−z2/�2 .� (42)

5 Here, for convenience, we slightly changed the definition of the correlation length � compared to equation (4). 
The new � is equal to the old one multiplied by 

√
2/d.
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In the rescaled variables κ(z) = π−d/2 e−z2. Then equation (41) yields

C0 =
1

4(d− 2)πd/2
.� (43)

In this example the optimal interface shape at the observation time is

φ(r) = H

[
e−r2 −

Γ
(
d
2
, r2

)
− Γ

(
d
2

)
rd−2

]
,� (44)

where Γ(a, z) is the incomplete gamma function [36]. At large distances φ(r) ∼ 1/r(d−2) 
is the d-dimensional Coulomb potential of a point-like charge placed at the origin. For 
d  =  3 and 4 equation (44) yields

φ3(r) =

√
πH erf r

2r
and φ4(r) =

H(1− e−r2)

r2
,� (45)

respectively. Here erf z is the error function [36]. For d → ∞ we obtain φ∞(r) = H e−r2: 
the Coulomb contribution disappears, and only a short-range contribution (on the cor-
relation length scale of the noise) remains. The functions φ3(r),φ4(r) and φ∞(r) are 
shown in figure 1.

4. The λH > 0 tail

As in the well-studied case of d  =  1 [15, 26, 28], the λH > 0 tail is dominated by the 
KPZ nonlinearity, but diusion still plays an important role. Its competition with the 
nonlinearity determines the size of the relatively small region around the origin where 
ρ(x, t), the optimal fluctuation of the noise field, is localized. At moderately large 
heights the size of this region is much larger than the correlation length 1. At still 
larger heights the inequality is opposite. In all cases, ρ(x, t) � 0 outside of this region. 

Figure 1.  The most probable shapes of equilibrium Edwards–Wilkinson interfaces 
reaching the height H at d = 3, 4 and ∞ (top to bottom) for the spatial correlator 
(42) of the noise. The interface height φ(r) is rescaled by its value H at r  =  0. The 
radial distance is measured in units of the correlation length � of the noise.
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Here the optimal path of the system is almost deterministic and can be approximately 
described by the noiseless KPZ equation

∂th = ∇2h− 1

2
(∇h)2 .� (46)

4.1. ρ-solitons and h-fronts

A key role in determining the λH > 0 tail is played, in all dimensions, by a family of 
solutions of equations  (13) and (14) which describe a stationary pulse of the ρ-field, 
which we call soliton, and a traveling front of h(x, t) which this soliton drives [15]:

ρ (x, t) = P (x) , h (x, t) = H (x)− ct, c > 0.� (47)
These solutions can be parametrized by the velocity c of the traveling h-front. A 
larger c corresponds to a larger amplitude and smaller width of the ρ-solitons. At 
d  =  1 the height distribution never reaches a steady state. As a result, velocity c is 
uniquely selected by the specified interface height H and the specified time t when 
this height is reached, and one obtains c � |H|/t [26, 28]. At d  >  2, time (if it is 
suciently large) drops out of the problem, and c must be selected by minimizing 
the action. This important aspect of the high-dimensional case was not appreciated 
previously.

Figures 2 and 3 show our numerical results for suciently large negative H, or Λ6. 
Figure 2 depicts the numerically found ρ(r = 0, t) (left panel) and dh(r = 0, t)/dt (right 
panel) versus time for three dierent, and suciently large, values of H  <  0. As one can 
see, the time-dependent solution exhibits three asymptotics: growth in the initial and 
final stages and a plateau in between. Strikingly, these asymptotics are identical for 
dierent H, except that the durations of the plateau are dierent (they increase with 
|H|), whereas the plateau values coincide. Crucially, the plateau region corresponds 
to a unique pair of the ρ-soliton and h-front, described by equation (47). This soliton-
front solution has c � 2.83. Three solid lines in figure 3 show the spatial profiles of the 
solitons, observed at these three dierent H. The collapse of data confirms that this is 
the same soliton. In the rest of this Section we will show that this unique soliton-front 
solution is selected because its action is minimum.

Let us consider the soliton-front solutions in some detail. Plugging the ansatz (47) 
into equations (13) and (14), we obtain

∇2H− 1

2
(∇H)2 +

∫
dx′ κ(x− x′) P(x′) + c = 0, ∇ · (∇P + P∇H) = 0 .

�

(48)

It is natural to set H(0) = 0. At large distances P(x) → 0, but H(x) can grow indefinitely. 
The latter feature does not present a problem, as the solution (47) can be continuously 
matched with the solution of equation (46) which vanishes at x → ∞. The resulting com-
posite solution, however, does not aect the action s(H), so we will not present it here.

6 We solved the full OFM problem numerically for the noise correlator (42) at d  =  3 by using the Chernykh–
Stepanov back-and-forth iteration algorithm [20] and assuming spherical symmetry. See the appendix for some 
details.
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(48), we obtain P(x) = −P0 e

−H(x), where P0 is a positive constant. Plugging this  
relationship into the first equation in (48), we obtain

∇2H− 1

2
(∇H)2 − P0

∫
dx′ κ(x− x′) e−H(x′) + c = 0 .� (49)

Now we change the variables from x and H to

χ =

√
c

2
x and Z(χ) =

√
P0

c
e−

1
2
H(
√

2
c
χ).� (50)

This brings equation (49) to the form

Figure 2.  ρ(r = 0, t) versus time (left) and dh(r = 0, t)/dt versus time (right) in the 
regime, corresponding to the λH > 0 tail of P(H). The OFM problem was solved 
numerically for three dierent Λ, corresponding to H  =  −29.5, −32.5 and  −35.1. 
The plateau regime is well described by the ansatz (47). The plateau duration 
increases with |H|. For these heights it was sucient to start the numerical 
calculations at t  =  −18.

Figure 3.  Solid lines: Spatial profiles of ρ(r, t), obtained for the same parameters 
as in figure 2. The profiles are shown at t  =  −5 or t  =  −4, corresponding to the 
plateau of ρ(0, t) observed in figure 2. Dashed line: P (r), obtained from a numerical 
solution of equation (51) for c  =  2.68, which corresponds to the minimum of the 
function f(c) = ṡ/c.

7 This assumption holds automatically for spherically-symmetric solutions which we will focus on shortly.
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∇2Z(χ) = Z(χ)− Z(χ)

∫
dχ′ κ̄c(χ− χ′)Z2 (χ′) ,� (51)

where

κ̄c(w) =

(
2

c

)d/2

κ

(√
2

c
w

)
,� (52)

and 
∫
dw κ̄c(w) = 1. Equation (51) is a nonlinear integro-dierential equation in partial 

derivatives. It should be solved with the boundary condition Z(∞) = 0 subject to con-

straint Z(χ) > 0. A solution exists, for any c  >  0, for a single value of Z(0) =
√
P0/c. 

Once the solution is found, one can use it to evaluate the action accumulation rate (23), 
which can be rewritten as

ṡ(c) =
1

2

∫
dx dx′ κ(x− x′)P (x)P (x′) =

c2

2

(
2

c

)d/2 ∫
dχ dχ′ κ̄c(χ− χ′)Z2(χ)Z2(χ′).

� (53)
From now on we will assume spherical symmetry, Z(χ) = Z(χ), where χ is the (res-

caled) radial coordinate. The resulting nonlinear integro-dierential equation (51) still 
cannot be solved analytically. We made analytical progress in the limits of c � 1 and 
c � 1, and also solved equation (51) numerically.

4.2. c � 1: broad solitons

4.2.1.  Leading order, 2  <  d  <  4.  For c � 1, the soliton width is much larger than the 
correlation length of the noise. Therefore, in the leading order, one can approximate 
κ̄c(w) by the delta-function, as if the noise were white in space. As a result, (the spheri-
cally symmetric version of) equation (51) becomes a nonlinear ODE:

1

χd−1

d

dχ

(
χd−1dZ

dχ

)
= Z − Z3,� (54)

whereas the c-dependence enters only through the change of variables (50). Equation (54) 
should be solved subject to the conditions Z ′(0) = 0, Z(∞) = 0 and Z(χ) > 0, whereas 
Z(0) is a priori unknown.

Equation (54) has been encountered in dierent physical contexts, among them non-
linear optics [37], decay of a false vacuum in theories of a single scalar field [38] and 
calculations of the density of states in disordered media [39]. This equation is exactly 
soluble only for d  =  1. The existence of a nontrivial solution vanishing at infinity was 
proved only for d  <  4 [40]. As we found numerically, for d � 4 such a solution does not 
exist. Furthermore, as d (treated as a real positive number) approaches 4 from below, 
Z(0) diverges, while the characteristic width of Z(χ) goes to zero. As a result, at d  <  4 
and suciently close to 4, and for larger d, the approximation of κ̄c(w) by the delta-
function breaks down, and one needs to deal with the integral term in equation (51). 
The integral term regularizes the solution, so that equation (51) has the required solu-
tion at any d and for any c � 0. Our analysis in this subsection, however, employs 
equation (54) and, therefore, is limited to d  <  4.
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Equation (54) can be easily solved numerically by the shooting method, using Z(0) 
as the shooting parameter. The left panel of figure 4 depicts the numerically found 
Z = Z0(χ) for d  =  3. Here we obtained Z0(0) � 4.3374.

Now we can evaluate, in the leading order in c � 1, the action accumulation rate 
ṡ(c). Using equation (53) with κ̄c(χ− χ′) replaced by the delta-function, we obtain

ṡ(c) = kdc
4−d
2 , c � 1, 2 < d < 4,� (55)

where

kd =
(2π)d/2

Γ(d/2)

∫ ∞

0

dχχd−1 Z4
0(χ).� (56)

Here we used the expression σd−1 = 2πd/2/Γ(d/2) for the surface area of the sphere of 
unit radius in Rd. Once the numerical solution Zd(χ) is known, the integral in equa-
tion (56) can be evaluated numerically. For d  =  3 we obtain k3 � 106.9.

Suppose that the ρ-soliton acts for time τ, and the traveling h-front (47) reaches the 
specified height H, we obtain τ � |H|/c. As a result, for d  =  3,

s(H) � ṡ(c) τ =
k3√
c
|H|, c � 1.� (57)

4.2.2.  Subleading order, 2  <  d  <  4.  Now let us return to equation (51) and calculate 
the correction O(c) to Z0(χ) by Taylor-expanding Z2(χ′) under the integral in the 
vicinity of χ′ = χ. The zeroth-order term yields, after the integration, the term  −Z3 as 
in equation (54). The first-order terms do not contribute to the integral. The first non-
vanishing correction, O(c), comes from the symmetric second-order terms of the Taylor 
series, and we obtain

∫
dχ′ κ̄c(χ− χ′)Z2 (χ′) � Z2(χ) +

cδ2

4d
∇2Z2(χ),� (58)

where

δ2 =

∫
w2κ (w) dw = O(1)� (59)

Z Z

Figure 4.  Numerical solutions of equation (54) (left panel) and (62) (right panel) 
for d  =  3. Here Z(χ) = Z0(χ) + cZ1(χ) + . . ., where c � 1.
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depends on the particular form of the noise correlator. (Note that it is κ, not κ̄c, which 
enters the definition (59)). As a result, equation (51) takes the form

∇2Z = Z − Z3 − cδ2

4d
Z∇2Z2.� (60)

For spherically-symmetric solutions at d  =  3, and for the correlator (42), for which 
δ2 = d/2, equation (60) becomes

d

dχ

(
χ2dZ

dχ

)
= χ2(Z − Z3)− c

4
Z

d

dχ

(
χ2Z

dZ

dχ

)
.� (61)

Now we can set Z(χ) = Z0(χ) + cZ1(χ) and treat the last term in equation (61) pertur-
batively. In the leading order we reproduce equation (54) for Z0. The subleading order 
yields a forced linear equation for Z1:

d

dχ

(
χ2dZ1

dχ

)
+ χ2(3Z2

0 − 1)Z1 = −Z0

4

d

dχ

(
χ2Z0

dZ0

dχ

)
.� (62)

This equation should be solved with the boundary conditions Z ′
1(0) = Z1(∞) = 0. The 

solution, obtained by shooting, is shown in the right panel of figure 4. Here Z1(0) � −7.805.
Now we evaluate, in the subleading order, ṡ from equation (53). The integration 

over χ′ was already performed, see equation (58). For d  =  3 and the correlator (42) we 
obtain

ṡ(c) =
√
2c

∫
dχZ4(χ) +

√
2c

3c

8

∫
dχZ3(χ)∇2Z2(χ).� (63)

Now we set Z(χ) = Z0(χ) + cZ1(χ) and obtain, in the leading and subleading orders,

ṡ(c) =
√
2c

∫
dχZ4

0(χ) +
√
2c · 3c

∫
dχZ3

0(χ)Z1(χ) +
√
2c · 3c

8

∫
dχZ3

0(χ)∇2Z2
0(χ).

� (64)
The first term brings us back to the leading-order results (55) and (56) (for d  =  3), as 
to be expected. The second and third terms give the subleading contribution, 137.7 c3/2. 
Collecting the leading and subleading terms, we obtain

s(H) � ṡ(c) τ �
(
106.9√

c
+ 137.7

√
c+ . . .

)
|H|, c � 1.� (65)

4.3. c � 1: narrow solitons

For c � 1 the soliton width is much smaller than the correlation length of the noise. 
In the language of equation (51), κ̄c is almost constant in the region where Z(χ) is not 
exponentially small. Therefore, equation (51) simplifies:

∇2Z(χ) = [1− A κ̄c(χ)] Z(χ) ,� (66)

where

A =

∫
dχZ2(χ) .� (67)
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Furthermore, in this region it suces to expand κ(w) to second order in w:

κ(w) � κ(0)− 1

2
κ′′(0)w2 .� (68)

In view of equation (52), we have

κ̄c(w) �
(
2

c

)d/2 (
κ(0)− |κ′′(0)| w

2

c

)
,� (69)

which we plug into equation (51) and obtain

∇2Z(χ) +

[(
2

c

)d/2

κ(0)A− 1− 1

2

(
2

c

) d+2
2

|κ′′(0)|Aχ2

]
Z(χ) = 0 .� (70)

For a fixed A this is a Schroedinger equation for an isotropic d-dimensional harmonic 
oscillator,

∇2Z +
2m

�2

(
E − mω2χ2

2

)
Z = 0,� (71)

where we can set

� = 1, m = 1/2, E =

(
2

c

)d/2

κ(0)A− 1 and ω2 = 2

(
2

c

) d+2
2

|κ′′(0)|A.

� (72)
As Z(χ) must be everywhere positive, we should find the ground-state wave function. 
The ground state energy is E = (d/2) �ω. This yields an algebraic equation for A, which 
solution, at c � 1, is

(
2

c

)d/2

A =
1

κ(0)

(
1 + d

√
|κ′′(0)|
κ(0)c

+ . . .

)
.� (73)

As a result,

ω � 2

√
|κ′′(0)|
κ(0)c

� (74)

and

Z(χ) = B exp

(
−χ2

2

√
|κ′′(0)|
κ(0)c

)
.� (75)

The constant B can found from equation  (67)8 but, in fact, there is no need in the 
explicit form of Z(χ) for the purpose of calculating the action in the leading order of 
c � 1. Indeed, let us evaluate the double integral in equation (53) for ṡ. As one can 
see from equation  (75), Z(χ) is localized in a region of the size  ∼c1/4, whereas the 

8 The solution (75) is valid for χ � c1/2, where the expansion (69) of κ̄c(w) still holds. It can be complemented 
by an evanescent WKB solution of equation (66) which is valid at distances χ � c1/4. The two solutions can be 
matched in their joint region c1/4 � χ � c1/2.

https://doi.org/10.1088/1742-5468/aabbcc


Nonequilibrium steady state of a weakly-driven Kardar–Parisi–Zhang equation

17https://doi.org/10.1088/1742-5468/aabbcc

J. S
tat. M

ech. (2018) 053201

characteristic length scale of κ̄c(w) from equation  (69) is  ∼c1/2 � c1/4. Therefore, we 
can replace in equation (53) κ̄c(χ− χ′) by κ̄c(0) and obtain
∫

dχ dχ′ Z2(χ)κ̄c(χ− χ′)Z2(χ′) � κ̄c(0)

∫
dχZ2(χ)

∫
dχ′ Z2(χ′) = κ̄c(0)A

2 � 1

κ(0)

( c
2

)d/2

,

� (76)
leading to

ṡ(c) =
c2

2κ(0)
, c � 1.� (77)

Suppose that the soliton acts for time τ, during which the traveling h-front reaches the 
height H. Therefore, τ � |H|/c and

s(H) � ṡ(c) τ =
|H|c
2κ(0)

.� (78)

4.4. Selection of c

At arbitrary c, the action s(H) can be written, for very large λH > 0, as s(H) = |H| f(c). 
The c � 1 and c � 1 asymptotics of f(c), as given by equations (65) and (78), are the 
following (for d  =  3):

f (c) =
ṡ(c)

c
�

{
106.9√

c
+ 137.7

√
c+ . . . , c � 1,

π3/2c
2

+ . . . , c � 1.
� (79)

The selected value of c is determined by the minimum of f(c) as a function of c. The 
minimum is located in the intermediate region c = O(1), where neither of the asymp-
totics (79) is valid. Therefore, we solved equation (51) numerically, using an algorithm 
briefly described in the appendix. Then we evaluated the action accumulation rate ṡ 
from equation (53), and the function f(c) = ṡ/c, for dierent c. At very small and very 
large c our numerical results for f(c) agree well with the asymptotics (79). A numer
ical graph of f(c) for intermediate c is shown in figure 5. The minimum is observed at 
c � 2.68, in a fair agreement with c � 2.8, observed in the plateau region of figure 2. 
The left panel of figure 6 shows the action (22) as a function of H  <  0, obtained by 

Figure 5.  The function f(c) = ṡ/c versus c in the region of its minimum for d  =  3. 
f(c) was calculated by numerically solving equation (51) for the correlator (42) and 
numerically evaluating the integral in equation (53).
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solving numerically the full time-dependent OFM equations. As one can see, at large 
negative H the action s is proportional to |H|. The proportionality coecient (which 
yields the coecient Cs in equation (9)) is close to 163. This value agrees fairly well 
with the theoretical minimum value f(c = 2.68) = 168.36, obtained from the numerical 
solution of equation (51).

For d � 4 a dierent asymptotic expansion at c � 1 is required, as explained in 
section 4.2.1. Still, our numerics shows that, similarly to the case of 2  <  d  <  4, the 
minimum action rate is achieved at an intermediate value of c. This is illustrated by 
figure 7, obtained for d  =  5.

To summarize this section, the action minimization with respect to c selects c = O(1) 
uniquely and brings us to the announced result (9) for the slower-decaying tail of P(H). 
The characteristic length scale of the optimal realization of noise ρ(x) is of the order of 
unity or, in the original variables, of the order of the correlation length of the noise � 
[15]. The characteristic formation time of the distribution tail (9) scales as the diusion 
time over the correlation length and grows linearly with |H|.

Figure 6.  The rescaled action s = s(H), see equation (22), for the correlator (42) 
at d  =  3. Left panel: H  <  0. The slope of the straight part of the line is close to 
163, which corresponds to equation (9) with Cs  =  163. Right panel: H  >  0. Shown 
are numerical results (symbols) and the fit s(H) � 0.23H3 + 7.12H2 which agrees 
with equation (10) with Cf � 0.23. Inset of the left panel: s(H) for small |H|; here 
the numerical results (symbols) agree with predictions from the linear theory, 
equations (8) and (43) (solid line).

Figure 7.  The function f(c) = ṡ/c versus c in the region of its minimum for d  =  5. 
f(c) was calculated by numerically solving equation (51) for the correlator (42) and 
numerically evaluating the integral in equation (53).
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5. The λH < 0 tail

Similarly to the case of d  =  1 [26–28], the λH < 0 tail is dominated by the nonlinear-
ity to such an extent that, in the leading order, the tail is independent of ν. Here the 
optimal realization of the noise field, ρ(x, t), for most of the time, is large-scale, and one 
can drop the diusion terms in the OFM equations (13) and (14). Furthermore, dur-
ing most of the dynamics the characteristic length scale of h(x, t) and ρ(x, t) is much 
larger than the noise correlation length. Here the function κ(x− x′) under the integral 
in equation (15) for π(x, t) can be approximated by the delta-function, and one arrives 
at π(x, t) � ρ(x, t), as if the noise were white in space. Taking the gradient of equa-
tion (13), we arrive at equations which describe an inviscid hydrodynamic flow of an 
eective gas with negative pressure:

∂tρ+∇ · (ρV) = 0 ,� (80)

∂tV + (V · ∇)V = ∇ρ ,� (81)
where ρ(x, t) can be interpreted as the gas density, and the height gradient field 
V(x, t) = ∇h(x, t) as the gas velocity. Equations  (80) and (81) appear in many con-
texts, where they provide a large-scale description of a plethora of hydrodynamic insta-
bilities [41]. In all these problems, however, one deals with an initial-value problem, 
whereas here we have to deal with a boundary-value problem in time. At t  =  0 we have 
V(x, 0) = 0 whereas, in view of equations (19) and (20), the solution must describe col-
lapse of a gas cloud of mass Λ into the origin. Close to the collapse time t  =  0, the size 
of the gas cloud (which we will determine shortly) becomes comparable with the cor-
relation length of the noise, and the term ∇ρ(x, t) in equation (81) should be replaced 
by the nonlocal term ∇π(x, t). But let us first solve equations (80) and (81) as they are. 
Assuming spherical symmetry, we rewrite these equations as

∂tρ+
1

rd−1
∂r

(
rd−1ρV

)
= 0 ,� (82)

∂tV + V ∂rV = ∂rρ .� (83)
These equations and the conditions (17) and (19) have no intrinsic length or time scale, 
so the solution must be self-similar [42]. With account of the conservation law (20), the 
similarity exponents can be determined immediately:

ρ(r, t) = (−t)−
2d
d+2 R(ξ), V (r, t) = (−t)−

d
d+2 W (ξ), where ξ = r (−t)−

2
d+2 ,

�
(84)

and R(ξ) � 0. Plugging this ansatz into equations  (82) and (83), we arrive at two 
coupled ODEs for R(ξ) and W (ξ):

(
W +

2ξ

d+ 2

)
R′ +RW ′ = − 2d

d+ 2
R− d− 1

ξ
RW ,� (85)

R′ −
(
W +

2ξ

d+ 2

)
W ′ =

d

d+ 2
W .� (86)
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These equations can be treated as linear algebraic equations for the derivatives R′ and 
W ′. The derivatives can be determined uniquely in terms of R(ξ),W (ξ) and ξ, except 
in a special point

R = 0, W = − 2ξ

d+ 2
,

where the determinant of equations (85) and (86),

det = −
(

2ξ

d+ 2
+W

)2

−R,� (87)

vanishes. Solving the resulting equations for R′ and W ′, we obtain two dierent solu-
tions for R(ξ) and W (ξ): a solution where R(ξ) does not vanish identically, and a solu-
tion where it does. The former solution has a compact support, and it is very simple:

R(ξ) =
d

(d+ 2)2
(�20 − ξ2) , W (ξ) = − 2ξ

d+ 2
, at 0 � ξ � �0,� (88)

where �0 > 0 is a temporary parameter that can be expressed through Λ and ultimately 
through H. In the language of hydrodynamic analogy, the solution (84) and (88) describes 
a uniform-strain flow. The radius of the imploding ‘gas cloud’ decreases with time as

r0(t) = �0(−t)
2

d+2 .� (89)

It is finite for −∞ < t < 0, and shrinks to zero at t  =  0. In the particular case d  =  3 
the similarity solution (84) and (88) was obtained in [43] in the context of a simplified 
model of gravitational collapse.

The second similarity solution has R(ξ) ≡ 0 and therefore ρ(r, t) ≡ 0, so it is deter-
ministic. This flow solves the Hopf equation ∂tV + V ∂rV = 0 or, in terms of the similar-
ity variable ξ, the equation

WW ′ +
2ξ

d+ 2
W ′ +

d

d+ 2
W = 0.� (90)

This equation  can be also obtained from equations  (85) and (86) by putting there 
R(ξ) = 0. The solution of equation (90) exists at ξ > �0, and can be matched continu-
ously with the ‘pressure-driven’ solution for W from equation (88). The Hopf solution 
can be obtained analytically, but we will not present it here, as it is unnecessary for 
the purpose of calculation of the action and of the interface height at the origin. We 
will only notice that the matching point of the internal and external solutions, ξ = �0, 
is exactly the point where the determinant (87) vanishes9.

Now let us see what happens if we attempt to use the similarity solution (84) and 
(88) for ρ(r, t) all the way to t  =  0 in order to calculate the action s from equation (22), 
or rather from its simpler local version, obtained by setting π(x, t) � ρ(x, t):

s � 1

2

∫ 0

−∞
dt

∫
dx ρ2(x, t) =

σd−1

2

∫ 0

−∞
dt

∫ r0(t)

0

dr rd−1 ρ2(r, t).� (91)

9 There are also solutions to equations (85) and (86), where R(ξ) > 0 at all ξ, and the Hopf flow is absent. For these 
solutions R(ξ) behaves as const ξ−d at ξ → ∞. As a result, 

∫
ρ(x, t) dx diverges, so these solutions should be ruled out.
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The change of variable r → ξ yields

s =
σd−1

2

∫ 0

−∞
dt (−t)−

2d
d+2

∫ �0

0

dξ ξd−1 R2(ξ).� (92)

The integral over ξ is well behaved, but the integral over time diverges at d � 2 at the 
upper limit t  =  0.

The interface height at the origin at t  =  0 also diverges in this case. In order to show 
it, we first notice that r  =  0 is the point of maximum of h(r, t). Using equation (13) 
(with π replaced by ρ) in the inviscid limit, we obtain

∂th(0, t) = π(0, t) � ρ(0, t) = �20(−t)−
2d
d+2 .� (93)

To obtain h(0, 0) we should integrate this expression over time from −∞ to 0, but at 
d � 2 this integral diverges at the upper limit t  =  0, in exactly the same way as in 
equation (92). The divergences of s and h(0, 0) as functions of �0 or Λ reflect the fact 
that P(H) is ill-defined when the noise is delta-correlated in space. In the context of 
short-time (non-stationary) statistics of the interface height of the KPZ equation these 
divergences were recognized earlier [27].

For a finite spatial correlation length of the noise s(H) is well defined. An accurate 
analytic theory would require solving equations (13) and (14) without the simplifying 
assumption π(x, t) � ρ(x, t) which breaks down close to t  =  0. In the absence of such a 
theory, we can obtain fairly satisfactory results by introducing a cuto in the similar-
ity solution (84) and (88) at time tc  <  0 such that the radius of the ‘gas cloud’ r0(tc) 
becomes comparable with the noise correlation length [which, in the rescaled units, is 

O(1)]. By virtue of equation (89), one has −tc ∼ �
−(d+2)/2
0 . Performing integrations over 

time from −∞ to tc, we obtain

s ∼ �
3(d+2)

2
0 and H ∼ �

d+2
2

0 ,� (94)

up to numerical pre-factors of order unity, which depend on d and on the exact form 
of the noise correlator. Eliminating �0 from equation (94), we obtain s = CfH

3, with 
Cf  =  O(1). In view of the scaling relation (7) this leads to the announced result (10) for 
the faster-decaying tail of P(H). As the rest of P(H), this tail is mostly contributed to 
by the noise with the length scale of order �.

The pre-factors O(1) can be determined numerically, by using the Chernykh–
Stepanov back-and-forth iteration algorithm [20]. A numerical solution is necessar-
ily finite-time. Because of the power-law behavior of the similarity solution (84) as a 
function of time, the rescaled action s and height h(x = 0, t = 0) = H converge to their 
steady-state values only algebraically in time. For d  =  3 this convergence is quite slow, 
as t−1/5. In order to avoid prohibitively long simulations, we determined the steady-
state values of s and h(0, 0) for each Λ by extrapolating our finite-time numerical 
results to t = ∞. The right panel of figure 6 shows the resulting dependence s = s(H) 
for suciently large positive H, for the noise correlator (42) at d  =  3. The numerics 
confirm the leading-order cubic behavior of s(H) and yield Cf � 0.23.

Figures 8 and 9 verify the self-similar character of the numerical solution at times 
that are suciently long, but not too close to t  =  0. The left panel of figure 8 shows the 
radial profiles of ρ(r, t) at four dierent moments of time. The right panel depicts the 
same four radial profiles in rescaled coordinates. Shown is the ratio ρ(r, t)/ρ(0, t) as a 
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function of r/r1/2(t) where, at each time, r1/2(t) is the radius where ρ(r, t) is equal to one 
half of its value at the center, ρ(0, t). The rescaled profiles make a single curve which 
agrees very well with the theoretical parabolic profile (88). Small, but pronounced 
deviations at the periphery of the ‘gas cloud’ come from small diusion eects, unac-
counted for by the inviscid hydrodynamic equations (82) and (83).

Figure 9 compares ρ(0, t) and r1/2(t), found numerically, and their self-similar 
asymptotics

ρ(0, t) =
3�20
25

(−t)−6/5 and r1/2(t) =
�0√
2
(−t)2/5 ,� (95)

respectively, see equations (84) and (88). Again, one can see a good agreement.

6.  Implications for directed polymer in random potential

The Hopf-Cole ansatz,

Z(x, t) = exp

[
λh(x, t)

2ν

]
,� (96)

r

ρ(
r,

t)
/ρ

(0
,t)

Figure 8.  Left panel: Numerically computed ρ(r, t) as a function of r for times 
t  =  −5 (1), −2 (2), −1 (3) and  −0.5 (4) in the regime corresponding to the λH < 0 
tail. Right panel: The same four profiles in rescaled coordinates: ρ(r, t)/ρ(0, t) 
versus r/r1/2(t). Dashed line: theoretical prediction (88). In this example H � 287, 
s � 7.25× 106 and �0 � 12.7.

r

Figure 9.  Numerically computed ρ(0, t) (left panel, solid line) and r1/2(t) (right 
panel, symbols) as functions of t for the same parameters as in figure 8. Dashed 
lines: theoretical predictions (95).
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transforms the KPZ equation  (1) into a linear diusion equation with a space-time 
random potential,

∂tZ = ∇2Z + ξ(x, t)Z,� (97)

whereas Z(x, t) can be interpreted as the partition function of a continuum directed 
polymer [1]. This partition function is a random quantity. At d  >  2 one is interested 
in the probability distribution F(Z) of Z at steady state, and in its moments 〈Zn〉, 
n = 0, 1, 2, . . .. It has been rigorously proven that, at d  >  2, the second moment 〈Z2〉 
diverges at a finite value ε = ε2 [44]. It is generally believed that ε2 is strictly less than 
the critical point εc of the phase transition between the weak and strong coupling. As 
we show now, the slower-decaying tail (9) has important implications in the behavior 
of the moments 〈Zn〉. Indeed, the steady-state distribution F(Z) is simply related to 
our P(H):

F(Z)dZ = P(H)dH.

As a result, the exponential tail (9) of P(H) becomes a power-law tail of F(Z) at 
Z → ∞:

F(Z → ∞) ∝ Z−γ−1, γ =
2Cs

ε
.� (98)

It is clear from equation (98) that the zeroth moment of the steady-state distribution 
F(Z) always exists, so the distribution is normalizable to unity. There is, however, a 
set of values

εn =
2Cs

n
, n = 1, 2, . . . ,� (99)

for which the higher distribution moments 〈Zn〉 diverge. These values are ordered as 
follows:

0 = ε∞ < · · · < εn+1 < εn < · · · < ε1 < ε0 = ∞ .� (100)
The set {εn} depends on d and on the particular form of the noise correlator. It is 
dominated by the processes on the correlation length �. There is some uncertainty in 
interpretation of these results, because the value of the critical point εc of the phase 
transition between the weak and strong coupling is presently unknown. In any case, the 
analysis of this section implies that the existence or non-existence of the moments 〈Zn〉 
is not necessarily related to the phase transition between the weak and strong coupling.

7. Summary and discussion

Nonequilibrium steady states (NESS) of driven, spatially extended stochastic systems 
have been in the focus of nonequilibrium statistical mechanics for the last two decades. 
A remarkable progress has been achieved in the analysis of NESS of diusive lattice 
gases driven from their boundaries, see [45, 46] for reviews. Here we found another 
interesting example of a nonequilibrium steady state by considering the one-point 
height distribution P(H) emerging when an initially flat interface is driven by a weak 
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noise, as described by the KPZ equation at d  >  2. The typical height fluctuations cor-
respond to the central part of P(H). These are Gaussian and belong to the Edwards–
Wilkinson universality class. They are completely described by the nonlocal free energy 
of the interface, equation  (31), which makes it redundant to deal with the interface 
dynamics. In contrast to these, the distribution tails (9) and (10) are non-Gaussian and 
highly asymmetric. Their activation paths, predicted by the OFM, are dierent from 
the time-reversed relaxation paths, as to be expected far from equilibrium. The char-
acteristic length scale of the noise, which dominates the contribution to P(H), is the 
noise correlation length � [15]. The slower-decaying tail (9) has immediate implications 
for the existence or non-existence of the distribution moments of the partition function 
Z of the directed polymer.

We hope that our theoretical predictions (7)–(10) will be tested in numerical solutions, 
at d  =  3, of the KPZ equation with a suciently weak short-correlated Gaussian noise. 
One should measure the (properly shifted) one-point height distribution, including its 
tails.

It is generally accepted that the transition between the weak and strong couplings 
in the KPZ equation at d  >  2, as measured by the interface roughness, has a character 
of a phase transition as a function of ε. The interface roughness is an integral quantity, 
dominated by the typical fluctuations of the interface. The one-point height distribu-
tion provides a more detailed characterization of the fluctuations. For finite ε, which are 
below the phase transition, the distribution of typical fluctuations may change compared 
with the prediction of equation (8). The far tails, however, should be still describable by 
equations (9) and (10). It would be interesting to see, in an ‘infinite’ system, how the sta-
tionary height distribution for the weak coupling, that we studied here, gives way (via a 
phase transition) to a non-stationary height distribution, which exhibits a universal scal-
ing behavior, as observed in numerical simulations of the strong-coupling regime [47, 48].

For d  =  1, an initially weak noise becomes eectively strong at long times. Still, it 
was conjectured in [28], that the far-tail asymptotics, predicted by the OFM (which 
formally is a ‘weak-noise’ theory), continue to hold at arbitrarily long times. For the 
sharp-wedge initial interface this conjecture was recently proved both for the λH > 0 
tail [49], and for the λH < 0 tail [50–53]. Based on this analogy, we argue that, at 
d  >  2, the time-independent asymptotics (9) and (10) persist, at any finite time and at 
suciently large |H|, in the strong-coupling regime as well.

Finally, what happens in the marginal case d  =  2? Here Pt(H) does not reach a 
steady state: at long times it continues to change with time, albeit logarithmically 
slowly. Similarly to the case of d  <  2, an initially weak noise ultimately becomes strong 
at d  =  2, but this happens only at times which, for a small correlation length �, are 
exponentially long [14]. In this special case, the OFM problem is technically more 
involved and demands a separate consideration.
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Appendix. Numerical algorithms

Here we will briefly describe the two numerical algorithms used in this work.

A.1. Solving the time-dependent OFM equations

Assuming d  =  3, spherical symmetry and the Gaussian correlator (42) with � = 1, we 
can integrate equation (15) over the spherical angles. The result can be written as

π(r, t) =
1√
π

∫ ∞

0

dr′(r′)2ρ(r′t)
e−(r−r′)2 − e−(r+r′)2

rr′
.� (A.1)

It is convenient to go over from ρ(r, t) to a new variable w(r, t) which eliminates the 
delta-singularity in the boundary condition (19):

w(r, t) =
Λ

4π

∫ r

0

dr′(r′)2ρ(r′t).� (A.2)

The problem, described by equations  (13)–(15) with the boundary condition (19), 
becomes

∂th =
1

r2
∂r(r

2∂rh)−
1

2
(∂rh)

2 +
Λ

4π3/2

∫ ∞

0

dr′∂r′w(r
′, t)

e−(r−r′)2 − e−(r+r′)2

rr′
,

� (A.3)

∂tw = −∂2
rw +

2

r
∂rw − ∂rw ∂rh ,� (A.4)

w(0, t) = 0, ∂rw(∞, t) = 0, w(r, 0) = 1/2.� (A.5)
The Hopf-Cole ansatz q(r, t) = exp[−h(r, t)/2] turns equation (A.3) into a linear equa-
tion for q(r, t):

∂tq = ∂rrq +
2

r
∂rq +

Λ

8π3/2
q

∫ ∞

0

dr′∂r′w(r
′, t)

e−(r−r′)2 − e−(r+r′)2

rr′
.� (A.6)

Once the solution of equations (A.4) and (A.6) is obtained, the action is

s = 2
√
π

∫ 0

−∞
dt

∫ ∞

0

dr′∂r′w(r
′, t)

∫ ∞

0

dr∂rw(r, t)
e−(r−r′)2 − e−(r+r′)2

rr′
.� (A.7)

We solved finite in time and space versions of discretized equations  (A.4)–(A.6) 
numerically by using the Chernykh–Stepanov back-and-forth iteration algorithm [20].

A.1.1.  Solving the integro-differential equation  (51).  We solved the spherically-sym-
metric version of equation (51) for the Gaussian correlator (42) with � = 1:

1

r2
d

dr

(
r2
dZ

dr

)
= Z(r)

[
1−

∫ ∞

0

dr′(r′)2Z2(r′)κc(r, r
′)

]
, κc(r, r

′) =

√
2

πc

e−
2
c
(r−r′)2 − e−

2
c
(r+r′)2

rr′
.

� (A.8)
The solution should be everywhere positive and satisfy the boundary conditions
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dZ(0)

dr
= 0, Z(∞) = 0.� (A.9)

Consider a modified and truncated version of the problem (A.8) and (A.9), where 
the infinity at the upper integration limit is replaced by some X  >  0, and the second 
condition in equation (A.9) is replaced by a dierent condition:

1

r2
d

dr

(
r2
dz

dr

)
= z(r)

[
1−

∫ X

0

dr′(r′)2z2(r′)κc(r, r
′)

]
,� (A.10)

dz(0,X)

dr
= 0,� (A.11)

z(0,X) = z0.� (A.12)
Let us call its solution z  =  z(r, X, z0). We solve this problem (A.10)–(A.12) iteratively. 
We start from a very small X, X � 1/

√
c, and approximate the problem on three 

grid points: r  =  0, r  =  X/2, and r  =  X. z(0) is given by equation (A.12), whereas equa-
tions (A.10) and (A.11) give two algebraic equations: a linear one and a non-linear one, 
which can be solved. The quantity X/2 for this first iteration serves as the mesh size in 
the subsequent iterations, and we will call it δr.

In the next step we increase X by adding δr to the previous value of X. Now we 
have four grid points. z(0) is still given by equation (A.12). Equation (A.11) still gives 
one (linear) algebraic equation, whereas equations (A.10) now gives two nonlinear alge-
braic equations at the points r = δr and r = 2δr. Importantly, the values of z(r = δr) 
and z(r = 2δr) from the previous step serve as initial guesses in the iterative solution 
of the algebraic equations.

Continuing increasing X by adding δr in this way we can, in principle, solve the 
modified problem for large X. This solution, however, would not satisfy the second 
boundary condition (A.9), as it either becomes negative at some r or increases with 
r, which is inadmissible. Therefore, we change the value of z0 in equation (A.12) and 
repeat the iterations. This ‘shooting’ procedure can be conveniently organized by bisec-
tions, and it continues until the solution converges with desired accuracy.
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