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Abstract.  We study atypically large fluctuations of height H in the 
1  +  1-dimensional Kardar–Parisi–Zhang (KPZ) equation at long times t, when 
starting from a ‘droplet’ initial condition. We derive exact large deviation 
function of height for λH < 0, where λ is the nonlinearity coecient of the 
KPZ equation. This large deviation function describes a crossover from the 

Tracy–Widom distribution tail at small |H|/t, which scales as |H|3/t, to a 

dierent tail at large |H|/t, which scales as |H|5/2/t1/2. The latter tail exists 
at all times t  >  0. It was previously obtained in the framework of the optimal 
fluctuation method. It was also obtained at short times from exact representation 
of the complete height statistics. The crossover between the two tails, at long 
times, occurs at |H| ∼ t as previously conjectured. Our analytical findings are 
supported by numerical evaluations using exact representation of the complete 
height statistics.

Keywords: kinetic growth processes, large deviations in non-equilibrium 
systems, fluctuation phenomena, interfaces in random media
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1.  Introduction

The celebrated Kardar–Parisi–Zhang (KPZ) equation [1] defines an important univer-
sality class of non-equilibrium surface growth [2–6]. In 1  +  1 dimension this equation,

∂th = ν∂2
xh+ (λ/2) (∂xh)

2 +
√
D ξ(x, t),

� (1)
describes the evolution of the interface height h(x, t) driven by a Gaussian white noise 
ξ(x, t) with zero mean and covariance

〈ξ(x, t)ξ(x′, t′)〉 = δ (x− x′) δ (t− t′) .� (2)
The diusion term describes relaxation of the interface, whereas the nonlinear term 
breaks the symmetry h ↔ −h in an essential way. At long times the interface width, 
governed by equation  (1), grows as t1/3, whereas the horizontal correlation length 
grows as t2/3. These power laws—the hallmarks of the KPZ universality class—were 
confirmed in experiments [7]. In the recent years the focus of interest in the KPZ equa-
tion shifted toward a more detailed characterization of the fluctuating interface, such 
as the complete one-point probability distribution Pt(H) of height H at a specified time 
t at a specified point in space [4–6]. For the KPZ equation in 1  +  1 dimension several 
groups derived exact representations for a generating function of Pt(H) at any t  >  0. 
These remarkable results have been obtained for three classes of initial conditions (and 
for some combinations of them): flat interface [8], ‘droplet’ [4, 9–12], and Brownian, 
stationary interface [13, 14]. In the long-time limit, and for typical fluctuations, Pt(H) 
converges to the Tracy–Widom (TW) distribution for the Gaussian orthogonal ensem-
ble (GOE) [15] for the flat interface, to the TW distribution for the Gaussian unitary 
ensemble (GUE) [16] for the droplet, and to the Baik–Rains distribution [18] for the 
stationary interface. A series of ingenious experiments with liquid-crystal turbulent 
fronts fully confirmed these long-time results for typical fluctuations [19].
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Less is known about large deviations, that is atypically large fluctuations of the sur-
face height, which are described by the far tails of Pt(H). Extracting these tails from 
the exact representations requires considerable eort. As of present, there have been 
only two attempts in this direction, made by Le Doussal et al for the droplet initial 
condition: for long [20] and short [21] times. We will comment on their results as we 
proceed.

Given the diculties in extracting the tails from the exact representations, one can 
look for alternatives that would directly probe the far tails of Pt(H). One such alterna-
tive has existed long before the exact representations for the height distribution of the 
1  +  1 dimensional KPZ equation were found. It appears in dierent areas of physics 
under dierent names: the optimal fluctuation method (OFM), the instanton method, 
the weak noise theory, the macroscopic fluctuation theory, etc. In the context of the 
KPZ equation the OFM was employed in [22–30]. The crux of the method is a saddle-
point evaluation of the path integral for the KPZ equation conditioned on a specified 
large deviation. Correspondingly, it requires a small parameter (hence the term ‘the 
weak noise theory’). In 1  +  1 dimension this small parameter turns out to be propor-
tional to t1/2 [25–30]. As a result, at short times, the OFM correctly describes the com-
plete large-deviation function (LDF) of the interface height. For a whole class of initial 
conditions, including the three initial conditions described above, the tails of this short-
time LDF, determined with the OFM, scale as |H|3/2/t1/2 (for λH > 0) and |H|5/2/t1/2 
(for λH < 0). For the droplet initial condition these tails agree with the corresponding 
short-time tails obtained by Le Doussal et al [21].

When is the OFM applicable at long times? A necessary condition is that the LDF 
of height, predicted by the OFM (it is equal to the action of the classical field theory 
emerging in the OFM) is much larger than unity [25, 26, 28–30]. At arbitrarily long but 
finite times this condition is always satisfied suciently far in the tails of Pt(H). It is 
possible, however, that a dominant contribution to Pt(H) comes from non-saddle-point 
histories h(x,t). This is indeed what happens at long times in the λH < 0 part of Pt(H) 
for the KPZ equation. At small |H|/t the GOE TW tail, the GUE TW tail and the 
Baik–Rains tail all scale as |H|3/t, and this is much smaller than |H|5/2/t1/2 predicted 
by the OFM. The situation is reversed at large |H|/t. Therefore, it was conjectured in 
[28–30] that, at |H| ∼ t, each of the |H|3/t tails of the GOE TW, GUE TW and the 
Baik–Rains distributions crosses over to the corresponding |H|5/2/t1/2 tail that predicts 
a higher probability at large |H|/t.

In this work we employ the exact representations for the droplet initial condition [4, 
9–12] to derive exact λH < 0 LDF of height of the 1  +  1-dimensional KPZ equation at 
long times. As we show, this LDF describes a smooth crossover between the |H|3/t tail 
and the |H|5/2/t1/2 tail, in support of the above conjecture.

Here is how the remainder of this paper is structured. In section 2 we present the 
governing equations and the mathematical formulation of the problem. The problem 
is solved in section 3. In section 4 we discuss the properties of the LDF of height at 
λH < 0. Section 5 presents results of a numerical evaluation of the LDF. Section 6 
includes a brief summary and discussion.

https://doi.org/10.1088/1742-5468/aa73f8
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2. Governing equations

Let us assume that λ > 0, so that the λH < 0 is the left tail of Pt(H)4. Following [20], 
we will use in this paper the units of distance x0 = (2ν)3/(Dλ2), time t0 = 2(2ν)5/(D2λ4) 
and height h0 = 2ν/λ. In these units equation (1) has ν = 1 and λ = D = 2 with the 
noise covariance (2). We consider the ‘droplet’ initial condition, conveniently repre-
sented by the L → 0 limit of parabolic interface [29]:

h(x, 0) = −x2

L
.� (3)

We will study the probability distribution Pt(H) of the shifted height H at the origin 
at time t,

H := h(x = 0, t) +
t

12
+

bt

δ
.� (4)

The t/12 term is universal, whereas the bt/δ term is not: the coecient b = O(1) 
depends on the exact way of introducing a finite spatial correlation length δ (an ultra-
violet cuto) of the Gaussian noise [31].

The exact representation for Pt(H) is the following [9–12]. Introduce the generating 
function

Qt(s) =
〈
exp

(
−eH−t1/3s

)〉
,� (5)

where the averaging is over the distribution Pt(H). This generating function is given 
by a Fredholm determinant:

Qt(s) = det
[
I − P̂sK̂tP̂s

]
,� (6)

where the kernel Kt, corresponding to the integral operator K̂t, is

Kt(x, x
′) =

∫ ∞

−∞

Ai(x+ v) Ai(x′ + v)

1 + e−t1/3v
dv ,� (7)

P̂s is the projector on the interval [s,+∞), and Ai(. . . ) is the Airy function. Using 
this representation for typical fluctuations, H = O(t1/3), one obtains at long times 
Pt(H) = t−1/3f(H/t1/3), where f(s) is given by the GUE TW distribution [4, 9–12]. For 
the far right tail of Pt(H) one obtains [20]:

− lnPt(H) � tΦ+

(
H

t

)
, where Φ+(z) =

4

3
z3/2.� (8)

This leading-order asymptote coincides with the positive tail of the GUE TW distribu-
tion. It was derived from equations (5)–(7) in [20]. It was also obtained in [29] by apply-
ing the OFM to the KPZ equation with the parabolic initial condition (3) for arbitrary 
L, including the limits of L → 0 and L → ∞5.

4 Note that [28–30] assumed λ < 0. Changing the sign of λ is equivalent to changing the sign of h.
5 Note that [29] used a dierent rescaling of the variables. As a result, their LDF of height—the action S(H)—is 
related to Φ(H) via S(H) = 8Φ(−H/2)

https://doi.org/10.1088/1742-5468/aa73f8
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The left tail of the GUE TW probability density, conjectured in [16] and proved in 
[17], is equal to

f(s) � 2−47/24 eζ
′(−1) |s|15/8 e−

|s|3
12 ,� (9)

where ζ(. . . ) is the Riemann zeta function, and ζ ′(−1) = −0.165 421 . . .. As we will see, 
the far left tail of Pt is quite dierent from the TW left tail (9). To determine the far 
left tail of Pt, |H| ∼ t, we will use an alternative exact representation, established in 
[12]. The logarithm of the generating function Qt(s) can be expressed as

lnQt(s) =

∫ ∞

s

dr(s− r)Ψt(r),� (10)

where

Ψt(r) =
t1/3

4

∫ ∞

−∞
dv sech2

(
t1/3v

2

)
[qt(r, v)]

2 .� (11)

The function qt(r, v) of three arguments r, v and t satisfies a nonlinear integro-dierential 
equation,

∂2
r qt(r, v) = [v + r + 2Ψt(r)] qt(r, v),� (12)

subject to the boundary condition

qt(r, v)
∣∣
r→+∞ → Ai(r + v).� (13)

As this boundary condition is specified at plus infinity, we will need to know the behav-
ior of Ψt(r) in its right tail, r  >  0. This behavior, at s ∼ t2/3 � 1, has been recently 
established in [20]. Omitting pre-exponential factors,

Ψt(s) ∼



e−

4s3/2

3 , 0 < s � 1
4
t2/3,

e
−t

(
s

t2/3
− 1

12

)
, s � 1

4
t2/3.

� (14)

Our calculation of the LDF of height for the left tail, H  <  0, relies on an asymptotically 
exact solution of the problem (12) and (13), and asymptotic evaluation of the integrals 
(10) and (11), at t � 1.

3. Solution

We are interested in the regime of t � 1 and (−s) � 1 (and, therefore, −r � 1). Let us 
introduce the new variables

X =
r

t2/3
and V =

v

t2/3� (15)

and make the ansatz

Ψt(r) = t2/3gt(X) and qt(r, v) = t−1/6q̃t(X, V ),� (16)

https://doi.org/10.1088/1742-5468/aa73f8
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where gt(X )  >  0. As it turns out, the function gt(X ) is independent of t. We will not 
use this property in our calculations until later, but will suppress the subscript t in the 
function gt and in the related functions U(X ), a(V ) and p(X,V ) which we will introduce 
shortly. In the new variables equation (12) takes the form

∂2
X q̃t(X, V ) + t2 [−V − U(X)] q̃t(X, V ) = 0,� (17)

where U(X)  =  X  +  2g(X). The boundary condition (13) becomes

q̃t(X, V )
∣∣
X→+∞ → t1/6Ai [t(X + V )] �

exp
[
−2

3
t(X + V )3/2

]
2
√
π (X + V )1/4

,� (18)

where we have used the asymptotic of the Airy function for a large positive argument 
[32]. In its turn, equation (11) can be rewritten as

g(X) =
1

4

∫ ∞

−∞
dV sech2

(
tV

2

)
[q̃t(X, V )]2 .� (19)

For given g(X ) (a monotonic function) and t, equation (17) is the Schrödinger equa-
tion  for the wave function q̃t(X, V ) of a quantum particle with mass m  =  1/2 and 
energy  −V moving in the potential U(X). The factor t2 � 1 in front of the square 
brackets plays the role of 1/�2. Employing the small parameter 1/t, we will solve equa-
tion (17) in the WKB approximation. As we will see, under some condition that we will 
specify, the WKB approximation holds for all X ∈ (−∞,∞) except in a small vicinity 
of the (unique) ‘classical turning point’ of the ‘particle’ X  =  a(V). The turning point is 
defined by the equality U(a)  +  V  =  0. Let us introduce the classical momentum of the 
‘particle’,

p(X, V ) =
√
−V − U(X) =

√
−V −X − 2g(X).� (20)

It is a (positive) real function of X in the classically allowed region X  <  a and a purely 
imaginary function in the classically forbidden region X  >  a. The wave function oscil-
lates in the classically allowed region, and decays exponentially in the classically forbid-
den region. The general form of the WKB solution is well known [33, 34]:

q̃t(X, V ) �





Ct(V )√
p(X,V )

cos

[
t

∫ X

a(V )

p(X ′, V )dX ′ − π

4

]
, X < a, (21)

Ct(V )

2
√

| p(X,V )|
exp

[
−t

∫ X

a(V )

| p(X ′, V )|dX ′
]
, X > a. (22)

To determine the function Ct(V ), we use the boundary condition (18). This yields

Ct(V ) =
1√
π

lim
X→+∞

exp

[
t

(∫ X

a

| p(X ′, V )| dX ′ − 2

3
(X + V )3/2

)]
,� (23)

which can be rewritten as

Ct(V ) =
1√
π

exp

[
t

(∫ −V

a

| p| dX ′ +

∫ +∞

−V

(
| p| −

√
X + V

)
dX

)]
.� (24)

https://doi.org/10.1088/1742-5468/aa73f8
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The second integral in the right hand side of equation (24) converges at +∞ because 
Ψt(s) rapidly goes to zero as s → +∞ (see equation (14)) and therefore g(X) rapidly 
goes to zero as X → ∞. Now we should plug the asymptotic solutions (21) and (22) 
into equation (19) and solve the resulting equation for g(X ). Continuing to use the large 
parameter t � 1, we make the following simplifications:

	•	 We neglect in equation (24) an exponentially small contribution of g(X ) to the 
integral in the region of X  >  0 and obtain

Ct(V )|V >0 �
1√
π
exp

[
t

(∫ 0

a(V )

| p(X, V )| dX − 2

3
V 3/2

)]
.� (25)

	•	 We neglect small contributions to the integral in equation (19) which come from 
(i) the classically forbidden region X  >  a and (ii) the small non-WKB region 
around the classical turning point X  =  a.

	•	 For r ∼ t2/3 � 1, the dominant contribution to the integral (11) comes from 
the region of t1/3v � 1. Correspondingly, the dominant contribution to the 
integral (19) comes from the region of tV � 1. Therefore, we can approximate 
sech2 (tV/2) � 4 e−tV  at V  >  0 and neglect an exponentially small contribution 
from the region V  <  0.

	•	 We replace the rapidly oscillating factor cos2(. . . ) in equation (19), coming from 
equation (21), by 1/2.

As a result, equation (19) takes the form of a formidable-looking nonlinear integral 
equation for g(X � 0):

g(X) =
1

2π

∫ −X−2g(X)

0

dV√
|V +X + 2g(X)|

e
t
(
2
∫ 0
a

√
V+X+2g(X) dX− 4

3
V 3/2−V

)
, X � 0.

�

(26)

Its solution, however, is amazingly simple and, as we announced earlier, independent 
of t:

g(X) =
1

π2

(√
1− π2X − 1

)
, X � 0.� (27)

Miraculously, this g(X ) not only ‘kills’ the t-dependent exponent in equation (26),

2

∫ 0

a(V )

√
V +X + 2g(X) dX − 4

3
V 3/2 − V = 0,� (28)

but also solves the remaining equation

g(X) =
1

2π

∫ −X−2g(X)

0

dV√
−V −X − 2g(X)

, X � 0.� (29)

https://doi.org/10.1088/1742-5468/aa73f8
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For the WKB approximation to be valid, we must demand that the characteristic 
WKB action be large [33, 34]:

t

[∫ 0

a(V )

√
V +X + 2g(X) dX

]
� 1.

Using equation (28), we can rewrite this condition as

t

(
2

3
V 3/2 +

1

2
V

)
� 1.� (30)

Further, for the WKB solution to give a dominant contribution to the integral over V 
in equation (11), the strong inequality (30) must hold for V  =  −X  −  2g(X), the upper 
integration bound in Equation (29). For |X| � 1 we obtain −X − 2g(X) � (π2/4)X2, 
and the applicability condition is tX2 � 1, or |r| � t1/6 � 1. For |X| ∼ 1 the applica-
bility condition is simply t � 1.

Going back to equation  (16), we see that Ψt(r) is a self-similar function of its 
arguments:

Ψt(r) =
t2/3

π2

(
−1 +

√
1− π2 r

t2/3

)
.� (31)

Now we are in a position to evaluate Qt(s) from equation (10). As Ψt(r > 0) � 0, we 
can write

− lnQt(s) �
∫ 0

s

dr(s− r)Ψt(r) = t2Φ−

( s

t2/3

)
, (−s) � t1/6,� (32)

where

Φ−(z) =

∫ 0

z

dX(X − z)g(X) =
4

15π6

(
1− π2 z

)5/2 − 4

15π6
+

2

3π4
z − 1

2π2
z2.

� (33)
This leads to the exact LDF we are after:

− lnPt(H)
∣∣
−H�

√
t�1

= t2Φ−

(
H

t

)
.� (34)

4. Tale of two tails

The leading-order −z � 1 asymptote Φ−(z) � −z3/12 yields the height distribution

− lnPt(H) � |H|3

12t
, |H| � t.� (35)

Although the WKB approximation demands |H| � t1/2, the leading-order result (35) 
actually holds under a weaker condition |H| � t1/3, because it coincides with the left 
tail of the Tracy–Widom distribution that describes typical fluctuations of height at 
long times. The asymptote (35) was obtained in [20]. Furthermore, the authors of [20] 

https://doi.org/10.1088/1742-5468/aa73f8
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arrived at a conclusion that this asymptote holds at |H| ∼ t. This conclusion is in con-
tradiction with our exact large-deviation function (33) and (34)6.

The leading-order −z � 1 asymptote of Φ−(z) is Φ−(z) � 4|z|5/2/(15π). 
Correspondingly, the |H| � t asymptote of the height distribution is the following:

− lnPt(H) � 4|H|5/2

15π t1/2
, |H| � t.� (36)

This asymptote was obtained in [29] by using the OFM, and in [21] in the short-time 
limit t � 1. As it is clear now, the tail (36) is present at all times t  >  0. This tail is inde-
pendent of the diusion coecient ν [29]. Indeed, in the physical variables one obtains

− lnPt(H) �
4
√
2|λ|

15πD

|H|5/2

t1/2
, |H| � |λ|3D2t

ν4
.� (37)

Therefore, we will call this far-tail asymptote ‘diusion-free’. For comparison, the tail 
(35) in the physical variables is

− lnPt(H) � 2 ν2|H|3

3 |λ|D2 t
,

(
|λ|D2t

ν2

)1/3

� |H| � |λ|3D2t

ν4
.� (38)

Here too the KPZ nonlinearity dominates over the diusion, but the tail still depends 
on ν.

The exact LDF (34) describes a smooth crossover between the Tracy–Widom tail 
(35) and the far tail (36) in the region of |H| ∼ t. For reference purposes, we present 
more accurate small- and large-|z| asymptotics:

Φ−(z) =

{
− 1

12
z3 − π2

96
z4 − π4

320
z5 − . . . , −z � 1,

4
15π

|z|5/2 − 1
2π2 z

2 − 2
3π3 |z|3/2 + . . . , −z � 1.

� (39)

5. Numerical evaluation

The probability distribution of H can be extracted from the exact generating function 
(5) and (6) [10]. It is equal to

Pt(H) =

∫ ∞

−∞
du eH−t1/3u exp(−eH−t1/3u)Gt(u),� (40)

where Gt is given by the dierence of two Fredholm determinants,

Gt(u) = det[I − P̂u(B̂t − Â)P̂u]− det[I − P̂uB̂tP̂u].� (41)

6 The authors of [20] made an a priori assumption that the function qt(r,v) exhibits the following scaling  
behavior at t → ∞: qt(r, v) � t1/3φ(r/t2/3, vt1/3). It follows from our results that this assumption is incorrect already 
at −s � t1/6.
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The operators Â and B̂t have respective kernels A(x, x′) = Ai(x)Ai(x′) and

Bt(x, x
′) =

∫ ∞

0

dv

[
Ai(x+ v)Ai(x′ + v)

1− e−t1/3v
+

Ai(x− v)Ai(x′ − v)

1− et1/3v

]
.� (42)

The central part of Pt(H), corresponding to typical fluctuations, was computed 
numerically in [35] using the method introduced by Bornemann in [36] for accurate 
evaluations of Fredholm determinants. Here we push the computations further in order 
to reach the left tail of Pt(H).

Bornemann’s method consists in approximating a Fredholm determinant det[I − L̂] 
by evaluating the multiple integrals in the Fredholm expansion by Gauss–Legendre 
quadrature with M points, which is exact for integrands of degree at most 2M  −  1, 
and converges exponentially fast with M quite generally. The approximate Fredholm 
expansion with discretized integrals can then be resummed as a single determinant, 
and one has

det[I − L̂] � det[δ�,�′ +
√
w�w�′ L(x�, x�′)]�,�′=1,...,M .� (43)

Figure 1.  Log–log plot of −t−2 lnPt(tz) versus  −z for t  =  100 (top) and t  =  1000 
(bottom). The black curve corresponds to the numerical evaluation of equation (40) 
described in section 5. The spurious oscillations at small |z| in the bottom plot 
result from a crude discretization of the integral over u in equation  (40). The 
red curve is the exact large deviation function Φ−(z) from equation  (33). The 
blue curve is the Tracy–Widom asymptotics −t−2 ln(t−1/3f(t2/3z)) computed from 
equation (9), which takes into account the pre-exponential factor.
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For Gauss–Legendre quadrature the points x� are the zeroes of the M-th Legendre 
polynomial

PM(x) = (2MM !)−1∂M
x (x2 − 1)M ,

and the corresponding weights w� are given by

w� =
2

MPM−1(x�)P ′
M(x�)

.

An additional step is needed if the kernel L has infinite support, since Gauss–Legendre 
quadrature requires integrals on a finite segment. This can be remedied by a change of 
variables A(ϕ(y), ϕ(y′)) in the kernel.

An additional diculty in the application of Bornemann’s method to equation (40) 
is that the kernel Bt is itself given by an integral (42). We also evaluate this integral by 
Gauss–Legendre quadrature, after a change of variables v = ϕ(y) which maps the inter-
val [0,∞) to a finite segment. We used ϕ(u) = 10 tan(πu/2) for the Gauss–Legendre 
quadrature of both the Fredholm determinants and the kernel Bt.

The computation of the left tail of Pt(H) is much more demanding than the com-
putation of the central part of the distribution [35], where it was sucient to use 
M  =  30 and double-precision numbers. In order to go deeper into the left tail, we had 
to evaluate Gt(u) for larger negative values of u, for which the approximation (43) of 
the Fredholm determinants in (41) converges more slowly as M increases. Besides, the 
oscillations of Gt(u) for u  <  0 lead to cancelations in the integration over u in equa-
tion (40), and require higher floating-point precision. Both issues of course increase the 
computation time. We found that M  =  150 and floating-point numbers with 150 digits 
was a good compromise between how far to the tail we could go and how long the com-
putation would take. With these parameters, each value of Gt(u) took about 8 hours 
with ‘Mathematica’ [37] on a single core of a personal computer. The integral over u in 

Figure 2.  Log–log plot of −t−2 lnPt(tz) versus  −z for t  =  1, 2.5, 5, 10, 100 and 
1000. The black curves correspond to the numerical evaluation of equation (40) 
described in section 5, with longer times toward the left. The horizontal plateaux 
at the right end of each curve are artefacts due to the finite value of the number 
of points of discretization M. The dashed red curve is the exact large deviation 
function Φ−(z) from equation (33). The dashed blue curve is the Tracy–Widom 
asymptotics |z|3/12.
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(40) is then evaluated by simple rectangular quadrature between u  =  −15 and u  =  10 
with step δu = 0.25.

With the numerical scheme described above, we evaluated the left tail of Pt for 
t  =  1, 2.5, 5, 10, 100 and 1000. The results are plotted in figures 1 and 2 alongside with 
the exact LDF Φ−(z) from equation (33) and the Tracy–Widom asymptotic. The agree-
ment between the numerical results and the exact LDF is rather good. As one can see 
from figure 1, a deviation from the Tracy–Widom asymptotic appears already at quite 
small |z|, and this deviation is well described by the exact Φ−(z).

6. Discussion

Starting from the exact representation (10)–(13) [12], we derived the exact LDF of 
height of the 1  +  1 KPZ equation with the droplet initial condition at long times for 
λH < 0. This LDF, see equations (33) and (34), describes a smooth crossover from the 
Tracy–Widom distribution tail at small |H|/t, which scales as |H|3/t, to a diusion-free 
tail at large |H|/t, which scales as |H|5/2/t1/2. The diusion-free tail exists at all times 
t  >  0, but it is ‘pushed’ to larger and larger |H| as time grows.

Le Doussal et al [20] argued that, at long times, models in the KPZ universality 
class exhibit a third-order phase transition from a strong-coupling to a weak-coupling 
phase. Their argument was based on equation  (35). Here we have shown that the 
asymptotic (35) is not valid at −H ∼ t. Still, their interpretation of the large deviations 
of height in terms of a third-order phase transition holds. Indeed, suciently close to 
the ‘critical point’ H  =  0 one still has

lim
t→∞

− 1

t2
lnP(H = zt, t) =

{
z3/12, 0 < −z � 1,

0, z > 0.� (44)

In the light of our results, at |H|/t � 1, the strong-coupling phase becomes diusion-free. 
Here the height fluctuations are dominated by a large-scale optimal noise history [29].

The diusion-free tails ∼ |H|5/2/t1/2 at very large negative λH have been also 
obtained with the OFM for the KPZ equation in 1  +  1 dimensions with other types 
of initial conditions [25, 27–30], including the flat and stationary initial conditions. It 
would be interesting to reproduce them from exact representations of the height distri-
bution at long times.

Finally, the KPZ universality class is defined in terms of typical fluctuations at long 
times. It should not come as a surprise, therefore, that statistics of large deviations are 
in general dierent among dierent models belonging to the KPZ universality class.
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