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Abstract.  We study a Brownian excursion on the time interval |t| � T , 
conditioned to stay above a moving wall x0 (t) such that x0 (−T ) = x0 (T ) = 0, 
and x0 (|t| < T ) > 0. For a whole class of moving walls, typical fluctuations 
of the conditioned Brownian excursion are described by the Ferrari–Spohn 
(FS) distribution and exhibit the Kardar–Parisi–Zhang (KPZ) dynamic scaling 
exponents 1/3 and 2/3. Here we use the optimal fluctuation method (OFM) 
to study atypical fluctuations, which turn out to be quite dierent. The OFM 
provides their simple description in terms of optimal paths, or rays, of the 
Brownian motion. We predict two singularities of the large deviation function, 
which can be interpreted as dynamical phase transitions, and they are typically 
of third order. Transitions of a fractional order can also appear depending on 
the behavior of x0 (t) in a close vicinity of t = ±T . Although the OFM does 
not describe typical fluctuations, it faithfully reproduces the near tail of the 
FS distribution and therefore captures the KPZ scaling. If the wall function 
x0 (t) is not parabolic near its maximum, typical fluctuations (which we probe 
in the near tail) exhibit a more general scaling behavior with a continuous one-
parameter family of scaling exponents.
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1.  Introduction

Random processes, conditioned to stay away from moving walls, appear in many appli-
cations of probability theory and statistical mechanics. We will focus on an impor-
tant sub-class of these processes: a Brownian excursion x (t) with x (−T ) = x (T ) = 0, 
conditioned to stay away from a moving wall x0(t) such that x0(−T ) = x0(T ) = 0 and 
x0 (|t| < T ) > 0. This model describes a Brownian particle which (a) exits the origin at 
time t  =  −T, (b) returns to the origin at t  =  T, and (c) stays above the moving wall 
x0 (t) at all |t| < T .

Frachebourg and Martin [1] encountered this setting when studying the one- 
dimensional Burgers equation in the inviscid limit with white-noise initial condition, 
and applying the Hopf–Cole transformation. In this case the eective moving wall is 
parabolic, x0 (t) = T 2 − t2. Earlier the parabolic case was studied by Groeneboom [2]. 
Ferrari and Spohn [3] (FS) considered a semicircle x0 (t) =

√
T 2 − t2. In both cases (the 

parabola and the semicircle) one is interested in the statistical properties of x (t)− x0 (t): 
the deviations of x (t) away from the moving wall. FS observed that the semicircle 
case captures some basic features of the more dicult problem of extreme statistics of 
N � 1 non-intersecting Brownian bridges in one dimension [4–8]. Because of the non-
intersection, the uppermost Brownian bridge—an excursion—typically has a shape of 
a semicircle. Therefore, as a crude approximation, one can eectively replace all lower-
lying Brownian bridges by the single semicircle x0 (t) [3]. Apart from the semicircle, FS 
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considered a family of more general parabolas x0 (t) = T γ (1− t2/T 2) and very briefly 
discussed general shape functions x0 (t) = T g (t/T )1.

Let us introduce the probability distribution P (X, τ ,T ) of the constrained Brownian 
excursion x (τ) reaching the value X at an intermediate time τ ∈ (−T ,T ), see figure 1. FS 
obtained the central part of this distribution, which corresponds to typical fluctuations 
of the Brownian excursion away from the moving wall. They found, both for the semi-
circle and for a parabola x0 (t) = T (1− t2/T 2), that typical fluctuations of X scale as 
X − x0 (τ) ∼ T 1/3, and that temporal correlations scale as T2/3. Somewhat surprisingly, 
the exponents 1/3 and 2/3 coincide with the growth exponent and the correlation expo-
nent, respectively, of the Kardar–Parisi–Zhang (KPZ) equation [14] which describes an 
important class of stochastic surface growth. This is in spite of the fact that the con-
strained Brownian excursion does not belong to the KPZ universality class2.

Here we are interested in atypically large fluctuations of the constrained Brownian 
excursion. These fluctuations have not been previously studied. They are described by 
the tail of the distribution P (X, τ ,T ), where X − x0 (τ) is much larger than its typi-
cal value. In order to evaluate this tail we will employ the optimal fluctuation method 
(OFM), also known as the weak noise theory. In the context of Brownian motion the 
OFM is essentially the geometrical optics approximation of Brownian motion. Using the 
OFM, we approximate the probability of observing an unlikely value of X by the prob-
ability of the optimal (that is, most likely) path, or ray x (t), conditioned on reaching 
the location X at time τ . Mathematically, this approximation corresponds to a saddle-
point evaluation of the path integral of the constrained Brownian excursion.

The geometrical optics provides a lucid and instructive insight into the problem by 
eectively reducing it to an elementary geometric construction. As we show, the opti-
mal path x (t) is composed of straight-line segments and segments which go along the 

Figure 1.  A realization of a Brownian excursion which reaches location X  =  1.55 
at time τ = 0.3 (in rescaled units, see equation (5)) while avoiding the absorbing 
wall moving according to g (t) = 1− t2.

1 In the recent years there has been a remarkable progress in the solution of the problem of extreme statistics of 
non-intersecting Brownian excursions [5–8]. As a result of this progress the semicircular case may have lost some 
of its initial motivation. However, Brownian excursion, conditioned to stay away from a moving wall, continues to 
attract attention, and it has been recently generalized in several directions [9–13].
2 Already in their original paper [3] the authors noticed that finer details of their model dier from those of mod-
els of the KPZ universality class. For example, the time correlations on the T2/3 scale decay exponentially rather 
than as a power law [3]. The modern classification identifies the KPZ universality class and its subclasses not only 
as regards to scaling exponents, but also as regards to the complete one-point probability distribution (in this 
case, of X) at long times [15–18]. These distributions are also dierent. Therefore, the FS model shares the scaling 
exponents with the KPZ class, but does not belong to it.

https://doi.org/10.1088/1742-5468/ab00e8


Geometrical optics of constrained Brownian excursion: from the KPZ scaling to dynamical phase transitions

4https://doi.org/10.1088/1742-5468/ab00e8

J. S
tat. M

ech. (2019) 023205

wall very close to it, x (t) � x0 (t). Further, the geometrical optics reveals critical lines—
straight lines in the τ ,X plane, where the number of the segments changes. These lines 
are the boundaries of complete and partial space-time ‘shadows’, see figure 2. Their 
presence leads to singularities in the large deviation function which describes (the loga-
rithm of) P (X, τ ,T ) at long times. Singularities of large deviation functions are often 
interpreted as ‘dynamical phase transitions’, and we adopt this terminology here. The 
constrained Brownian excursion is a remarkably simple model, and yet it can exhibit 
dynamical phase transitions (DPTs) of dierent orders, which depend on some local 
properties of the wall function x0 (t) that we identify. The physical mechanism behind 
these transitions—the space-time shadows—is markedly dierent from mechanisms of 
DPTs in other systems.

The remainder of this paper is organized as follows. In section 2 we recap the model 
and present its OFM formulation. In section 3 we use the OFM to calculate P (X, τ ,T ) 
for a generic convex upward wall function x0 (t), and also consider several particular 
cases of convex upward walls. The non-convex case is briefly discussed in section 4. 
Our main results are summarized and discussed in section 5. A detailed discussion of 
the semicircle case, and a comparison of our results with those of FS [3], are relegated 
to the appendix.

2. Constrained Brownian excursion and geometrical optics

The Brownian motion x = x (t) can be described by the Langevin equation

dx

dt
= ξ (t) ,� (1)

where ξ is a delta-correlated Gaussian noise with zero mean and magnitude 2D:

〈ξ (t1) ξ (t2)〉 = 2D δ (t1 − t2) .� (2)
We consider a Brownian excursion which starts from x  =  0 at t  =  −T and returns to 
x  =  0 for the first time at t  =  T. The excursion is conditioned on escaping absorption 
by a wall moving according to the equation

Figure 2.  Optimal paths for the parabolic wall, g (t) = 1− t2. Solid line: the 
wall. Dotted line: the optimal path constrained on x (t = τ) = X , at times where 
x (t) �= g (t), in the subcritical (a), intermediate (b) and supercritical (c) regimes. 
The boundaries between the regimes (dashed) are given by the tangents to g (t) 
at t = ±1. Crossing these boundaries in the vertical direction is accompanied by a 
third-order dynamical phase transition: a jump in the third derivative ∂3s/∂X3 of 
the large deviation function s (X, τ).

https://doi.org/10.1088/1742-5468/ab00e8
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x0 (t) = CT γg (t/T ) ,� (3)
such that g (±1) = 0, g (0) = 1 and γ > 0. C  >  0 is a constant with dimensions length/
time

γ
. A realization of this process for the particular case g (t) = 1− t2 is plotted in 

figure 1.
What is the probability density P (X, τ ,T ) of the conditioned Brownian excursion 

reaching a point X at time τ ∈ (−T ,T )? Clearly P  is nonzero only if X > x0 (τ). We 
will evaluate P  by using the OFM (or geometrical optics approximation). This approx
imation (also known as weak noise theory, WKB theory, etc) can be implemented in 
several ways. In one of them the WKB ansatz can be applied to the diusion equa-
tion which describes the evolution of the probability density of the position of the 
Brownian particle [19]. Here we will use a more direct approach. Starting from equa-
tions (1) and (2), one can express the unconstrained path probability of the Brownian 
excursion as a path integral ∝ exp (−S), where

S =
1

4D

∫ T

−T

(
dx

dt

)2

dt,� (4)

see e.g. [20]. The conditional probability distribution P (X, τ ,T ) is given by the ratio 
of the probabilities of a Brownian excursion with and without the additional constraint 
x (τ) = X . Each of these two probabilities is given by a path integral over all possible 
paths. The OFM assumes that each of the path integrals is dominated by the action 
along a single ‘optimal’ path, or ray, x (t), for which the action (4) is minimum. This 
observation, combined with a simple rescaling of variables, brings important implica-
tions. Indeed, let us rescale the coordinate and time as follows:

t

T
→ t, and

x

CT γ
→ x.� (5)

Correspondingly, the intermediate time τ  is rescaled by T, X is rescaled by CT γ, and 
the rescaled wall function is simply g (t). As a result, the distribution, as predicted by 
the OFM and equation (4), has the following scaling form:

− lnP (X, τ ,T ) � C2T 2γ−1

D
s

(
X

CT γ
,
τ

T

)
.� (6)

The large deviation function s (. . . ) is given by s = sc − su where sc and su are the 
rescaled actions

1

4

∫ 1

−1

(
dx

dt

)2

dt,� (7)

evaluated over the optimal constrained and unconstrained optimal paths xc (t) and 
xu (t), respectively. Here the terms ‘constrained’ and ‘unconstrained’ refer only to the 
constraint x (τ) = X , and they are the origin of our notations ‘c’ and ‘u’ (respectively) 
for the subscripts.

Equation (6) has two immediate implications. First, for γ = 1 the large-deviation 
scaling form (6) is, in general, dierent from the KPZ scaling X − x0 (T ) ∼ T 1/3, 
observed for typical fluctuations [3]. As we will see shortly, there is a joint region (that 

https://doi.org/10.1088/1742-5468/ab00e8


Geometrical optics of constrained Brownian excursion: from the KPZ scaling to dynamical phase transitions

6https://doi.org/10.1088/1742-5468/ab00e8

J. S
tat. M

ech. (2019) 023205

we call the near tail) where the two scalings coincide. Secondly, equation (6) implies 
that, for γ > 1/2, the OFM becomes asymptotically exact in the limit T → ∞, as long 
as the function s is not too small. The latter condition requires that the deviations from 
the wall, X − x0 (t), be much larger than the typical fluctuations (which, for γ = 1, 
exhibit the KPZ scaling ∼ T 1/3 [3]).

3. Optimal path for convex upward x0 (t)

The optimal path of the constrained Brownian excursion must minimize the action (7) 
under the condition that the path stays above the wall x (t) � g (t). This problem of one-
sided variations is a standard problem of the variational calculus, see e.g. [21]. Its solu-
tion consists of alternating segments of two dierent types: (i) where x (t) = g (t) and (ii) 
where x (t) satisfies the Euler–Lagrange equation d2x/dt2 = 0, that is it is a straight line. 
At points where two segments meet they must have a common tangent [21].

We will begin by considering the particular case where the location of the wall is 
described by a parabola,

g

(
t

T

)
= 1−

(
t

T

)2

.� (8)

This case is exactly OFM-solvable, and it exhibits all of the generic features of the 
model. We then generalize some of the results to a generic convex upward wall function 
g′′ (t) < 0. Afterwards, we focus on several somewhat less generic, but still interesting 
examples: a family of generalized parabolas:

g

(
t

T
, ν

)
= 1−

∣∣∣∣
t

T

∣∣∣∣
ν

,� (9)

where ν > 1, the cosine

g

(
t

T

)
= cos

(
πt

2T

)
� (10)

and the ‘tent’ 

g

(
t

T

)
= 1−

∣∣∣∣
t

T

∣∣∣∣ .� (11)

A detailed study of the semicircle

g

(
t

T

)
=

√
1−

(
t

T

)2

� (12)

is presented in the appendix.

3.1. Parabola

Here we consider the parabolic wall function g (t) = 1− t2 [1–3]. The optimal uncon-
strained path coincides with the wall’s location xu (t) = 1− t2, and the only nontrivial 

https://doi.org/10.1088/1742-5468/ab00e8


Geometrical optics of constrained Brownian excursion: from the KPZ scaling to dynamical phase transitions

7https://doi.org/10.1088/1742-5468/ab00e8

J. S
tat. M

ech. (2019) 023205

part of the OFM problem is finding the optimal constrained path xc (t). There are 
three regimes of interest: subcritical, intermediate and supercritical, see figure 2. In the 
subcritical regime

1− τ 2 < X < 2 (1− |τ |)

the optimal constrained path xc (t) is obtained via the construction of two tangents 
from the point (τ ,X) in the tx plane to the graph of the function g (t) [21]. The left (t−) 
and right (t+ ) points of tangency are the solutions to the equation

X − 1 + t± = −2t± (τ − t±) ,� (13)
and are given by

t± = τ ±
√

τ 2 − (1−X).� (14)

The optimal constrained path is given in terms of t± by

xc (t) =



1− t2 t /∈ [t−, t+] ,

1− t2− − 2t− (t− t−) , t− � t � τ ,

X − 2t+ (t− τ) , τ � t � t+.
� (15)

Since xc (t) �= xu (t) only at times t ∈ [t−, t+], it is sucient to evaluate the rescaled 
actions over the interval [t−, t+], that is s (X, τ) = s̃c − s̃u where

s̃c =
1

4

∫ t+

t−

(
dxc

dt

)2

dt = (τ − t−) t
2
− + (t+ − τ) t2+ = 2

√
τ 2 − 1 +X

(
2τ 2 − 1 +X

)
,� (16)

s̃u =
1

4

∫ t+

t−

(
dxu

dt

)2

dt =
1

4

[
(t+ − t−)−

1

3

(
t3+ − t3−

)]
=

2
√
τ 2 − 1 +X (4τ 2 − 1 +X)

3
.� (17)

As a result,

s (X, τ) = s̃c − s̃u =
4

3

(
τ 2 +X − 1

)3/2
, 1− τ 2 � X � 2 (1− |τ |) .� (18)

This result is valid at X � 2 (1− |τ |), when the tangency points t± lie within the inter-
val [−1, 1].

In the intermediate regime,

2 (1− |τ |) � X � 2 (1 + |τ |) ,

the calculation is modified as follows: if τ > 0, we replace t+ by 1, and if τ < 0, we 
replace t− by  −1. The result is

s (X, τ) = −
(√

τ2 +X − 1− |τ |
)3

+ 1

3
+

1

4





X2

1− |τ |
+

[(
|τ | −

√
τ2 +X − 1

)2
+X − 1

]2
√
τ2 +X − 1





, 2 (1− |τ |) � X � 2 (1 + |τ |) .

� (19)
In the supercritical regime X � 2 (1 + |τ |) the optimal constrained path is unaected 

by the wall and given by two straight lines:

https://doi.org/10.1088/1742-5468/ab00e8
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xc (t) =

{ 1+t
1+τ

X, −1 � t � τ ,
1−t
1−τ

X, τ � t � 1.� (20)

As a result, in this regime

sc =
X2

2 (1− τ 2)
.� (21)

It is straightforward to calculate the action along the optimal unconstrained path:

su =
1

4

∫ 1

−1

(
dxu

dt

)2

dt =

∫ 1

−1

t2dt =
2

3
.� (22)

Altogether, we find

s (X, τ) =
X2

2 (1− τ 2)
− 2

3
, X � 2 (1 + |τ |) ,� (23)

so that the far tail of the P -distribution is Gaussian, and the wall only contributes the 
constant  −2/3.

The large deviation function s (X, τ), as described by equations (18), (19) and (23), 
is continuous together with its first and second derivatives, ∂s/∂X and ∂2s/∂X2, at 
each of the two transition lines X = 2 (1± |τ |). The third derivative ∂3s/∂X3, how-
ever, jumps at the transition lines, which corresponds to a third-order dynamical phase 
transition. In the particular case τ = 0 these two phase transitions merge into one 
third-order transition at X  =  2, and the intermediate regime disappears. s (X, τ = 0) is 
plotted in figure 3.

In analogy with geometrical optics, the supercritical, intermediate and subcritical 
regimes correspond (respectively) to lit, partially lit and dark areas in the tx plane, if 
one were to interpret t as a spatial coordinate, and given point light sources at the 
points (±1, 0) and an opaque wall g (t).

Figure 3.  The large-deviation function s (X, τ = 0) for the parabola g (t) = 1− t2, 
see equations (18) and (23). At X  <  2 the scaling s ∼ (X − 1) 3/2 is observed. This 
scaling breaks down at X  =  2 where a third-order dynamical phase transition 
occurs, corresponding to a jump in the third derivative d3s/dX3. At X > 2 s (X) 
is a quadratic function of X, corresponding to a Gaussian tail of the distribution 
P (X, τ ,T ).

https://doi.org/10.1088/1742-5468/ab00e8
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3.2. General

We now extend some of the results of the previous subsection to a generic convex 
upward wall function g′′ (t) < 0. The extension is fairly straightforward, and the quali-
tative properties of the system remain mostly unaected.

In the subcritical regime, the optimal constrained path is given by a similar con-
struction to the one we showed for the parabola. Equations (13) and (15) give way to

X − g (t±) = (τ − t±) g
′ (t±)� (24)

and

xc (t) =




g (t) , t /∈ [t−, t+] ,

g (t−) + g′ (t−) (t− t−) , t− < t < τ ,

X + g′ (t+) (t− τ) , τ < t < t+,
� (25)

respectively. Defining s̃c and s̃u as we did for the parabola, we find that s (X, τ) = s̃c − s̃u 
where

s̃c =
1

4
(τ − t−) [g

′ (t−)]
2
+

1

4
(t+ − τ) [g′ (t+)]

2
=

[X − g (t−)]
2

4 (τ − t−)
+

[X − g (t+)]
2

4 (t+ − τ)
,

� (26)

s̃u =
1

4

∫ t+

t−

[g′ (t)]
2
dt.� (27)

In the intermediate regime, where equation (24) admits exactly one solution within 
the interval [−1, 1], one proceeds by replacing t− by  −1 or t+ by 1, in a similar manner 
to that described in the previous subsection.

In the supercritical regime, where equation  (24) admits no solutions within the 
interval [−1, 1], the optimal constrained path and its corresponding action are given 
by equations  (20) and (21) respectively, so that the far tail of the P -distribution is 
Gaussian. This tail is universal and independent of the wall function g (t). The wall 
function only contributes a constant, which arises from su, and we obtain

s = sc − su =
X2

2 (1− τ 2)
− 1

4

∫ 1

−1

[g′ (t)]
2
dt.� (28)

The boundaries between the regimes are given by the tangents to g (t) at t = ±1, as 
we already showed for the parabola, see figure 2.

In the near tail, |X − g (τ)| � g (τ), we can solve equation (24) by expanding the 
function g (t) around t = τ  up to second order3, yielding

t± = τ ±

√
−2

X − g (τ)

g′′ (τ)
.� (29)

Plugging equation (29) into equations (26) and (27) and keeping leading-order terms in 
the expansion of g (t) around t = τ , we obtain

3 We assume here that that g′′ (τ) < 0 is finite. We will relax these conditions in sections 3.3 and 3.5.

https://doi.org/10.1088/1742-5468/ab00e8
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s (X, τ) � 2
√
2

3

√
−g′′ (τ) (∆X)3/2 ,� (30)

where ∆X ≡ X − g (τ). Plugging equation (30) into (6), we obtain the near tail of the 
P -distribution. In the original variables

− lnP �
2
√

−2Cg′′
(
τ
T

)
[X − x0 (τ)]

3/2

3D
√
T

,� (31)

in full agreement4 with the result quoted in section 5(i) of [3].
Ferrari and Spohn [3] mostly dealt with typical fluctuations away from the semi-

circle g (t) =
√
1− t2. We determine the entire large-deviation function for the semi-

circle in the appendix. As we show there, the near-tail asymptotic of the large deviation 
function coincides with the tail of the FS distribution, up to pre-exponential corrections 
which are beyond the accuracy of the leading-order OFM.

According to equation (31), the scaling of typical fluctuations is

X − x0 (τ) ∼
D2/3T 1/3

C1/3
[
−g′′

(
τ
T

)]1/3 .� (32)

The correlation time tc can be evaluated by calculating τ − t− (or equivalently t+ − τ ) 
for a typical X. This yields

tc ∼
D1/3T 2/3

C2/3
[
−g′′

(
τ
T

)]2/3 .� (33)

The scalings X − x0 (τ) ∼ T 1/3 and tc ∼ T 2/3 were found by FS [3]. Interestingly, the 
exponents 1/3 and 2/3 coincide with β and 1/z—the growth and correlation exponents, 
respectively—of the KPZ equation [14].

As the reader may have noticed, the optimal constrained path xc (t) always has a 
corner singularity at t = τ . This singularity can be better understood by considering an 
alternative (but equivalent) formulation of the OFM’s variational problem, where the 
constraint x (τ) = X is taken into account by adding the integral term

Λ

∫ 1

−1

x (t) δ (t− τ) dt ≡ Λx (τ)

(where Λ is a Lagrange multiplier) to the action (7). The solution xc (t) of the ensuing 
Euler–Lagrange equation,

d2x (t)

dt2
+ 2Λδ (t− τ) = 0,

has a corner singularity at t = τ .
The following three subsections deal, through examples, with somewhat less generic, 

but still interesting cases. In section 3.3 we consider a family of generalized parabo-
las in order to understand how the local properties of the wall function g (t) near the 

4 Note that in [3] D  =  1/2 and C  =  1.
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measurement time aect the scaling behavior of typical fluctuations (that we probe in 
the near tail).

As mentioned above, the tangents to the function g (t) at t = ±1 are phase trans
ition lines for a generic convex upward g (t), when g′ (t = ±1) is finite. In this case the 
order of the phase transitions is determined by the local properties of g (t) near t = ±1, 
and it can be dierent from the ‘typical’ third order, see section 3.4 below. The crucial 
role of the points t = ±1 is in sharp contrast to typical fluctuations, which are deter-
mined only by local properties of the wall function g (t) near the measurement time 
t = τ , see equation (31).

If the wall function g (t) has a corner singularity, the scaling of typical fluctuations 
and the critical behavior are both strongly aected. We show this in section 3.5 by 
considering the ‘tent’ function g (t) = 1− |t|.

If g′ (t) diverges at one of the end points t = ±1, the supercritical regime disap-
pears, and one of the two phase transition is absent. If g′ (t) diverges at both end points 
t = ±1, there are no phase transitions in the system. This is what happens for the 
semicircle g (t) =

√
1− t2, see the appendix.

3.3. Generalized parabolas

In this subsection we briefly consider a family of ‘generalized parabolas’: g (t) = 1− |t|ν 
with ν > 1 (so g is convex upward), thus extending the results of section 3.1 where we 
dealt with ν = 2. Our main goal here is to understand the behavior of the system when 
g (t) is not locally parabolic around the measurement time; hence we will only consider 
the measurement time τ = 0.

In the subcritical regime X � ν , the solution to equation (24) gives the points of 
tangency

t± = ±
(
X − 1

ν − 1

)1/ν

.� (34)

Plugging g (t) = 1− |t|ν and equation (34) into equations (26) and (27) gives the res-
caled actions

s̃c =
ν2

2

(
X − 1

ν − 1

) 2ν−1
ν

,� (35)

s̃u =
ν2

2 (2ν − 1)

(
X − 1

ν − 1

) 2ν−1
ν

.� (36)

As a result,

s (X) = s̃c − s̃u =
ν2 (ν − 1)

2ν − 1

(
X − 1

ν − 1

) 2ν−1
ν

, 1 < X � ν.� (37)

In the supercritical regime, X � ν , the optimal path xc (t) is given by equation (20) 
(with τ = 0). Evaluating the action (28) we find

https://doi.org/10.1088/1742-5468/ab00e8
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s (X) =
X2

2
− ν2

2 (2ν − 1)
, X � ν.� (38)

As expected, the first (Gaussian) term in equation (38) is universal, whereas the con-
stant second term is contributed by the wall.

As τ = 0, there is no intermediate regime. The third derivative d3S/dX3 jumps at 
X = ν, corresponding to a third-order dynamical phase transition. The order of the 
transition does not depend on ν (to remind the reader, ν > 1 here) because the wall 
function g (t) has the same asymptotic behavior (up to numerical coecients) at t = ±1.

Now let us consider the near tail X − 1 � 1. The analysis, which we performed in 
equations (29)–(33), is not valid for ν �= 2, because g′′ (t = 0) either vanishes or diverges. 
A slightly modified analysis yields the ν-dependent scaling behaviors

X − 1 ∼ T
ν−1
2ν−1� (39)

and

tc ∼ T
2(ν−1)
2ν−1 .� (40)

The growth exponent β and the correlation exponent 1/z are

β =
ν − 1

2ν − 1
and

1

z
= 2β =

2 (ν − 1)

2ν − 1
.� (41)

The KPZ exponents β = 1/3 and 1/z  =  2/3 are recovered for ν = 2. As ν increases from 
1 to ∞, β increases monotonically from 0 to 1/2, and 1/z increases monotonically from 
0 to 1. Note that, as ν → ∞, s̃c tends to ∆X2/2 while s̃u goes to zero. In this limit 
g (t) becomes a rectangle, and the statistical properties of ∆X  coincide with those of a 
Brownian excursion without an absorbing wall.

Remarkably, the exponents β and 1/z coincide with their counterparts for a dierent 
model: Brownian motion in 2  +  1 dimensions, conditioned to stay away from a station-
ary absorbing wall, see [12], equations (7) and (8). One only needs to identify the char-
acteristic size R of their absorbing wall with our T, their coordinate x with our tc, and 
their coordinate y  with our X. The authors of [12] obtained the same exponents from 
simple scaling arguments, based on geometrical considerations. It would be interesting 
to investigate the origin of the coincidence of the exponents in these two models.

3.4. Fractional-order phase transitions

Up to now we have seen in this system dynamical phase transitions of the third order. 
We now show that phase transitions of other orders are possible too. As a first example, 
consider the cosine wall g (t) = cos (πt/2) in the case τ = 0. Here the tangent lines to 
g (t) at t = ±1 yield the critical value X = π/2. In the subcritical regime 1 � X � π/2, 
equations (24), (26) and (27) yield the large deviation function s (X) in a form param-
etrized by t− ∈ [−1, 0]:

X = cos
(
πt−
2

)
+ πt−

2
sin

(
πt−
2

)
,

s = π
16
[πt− cos(πt−)− sin(πt−)] ,

X �
π

2
.� (42)
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In the supercritical regime X � π/2, equation (28) leads to

s (X) = sc − su =
X2

2
− π2

16
, X �

π

2
.� (43)

As expected, the behavior of s (X) around X = π/2 is non-analytic:

s (X) =

{
π2

16
+ 1

2
π
(
X − π

2

)
+ 1

2

(
X − π

2

)2
, X � π

2
,

π2

16
+ 1

2
π
(
X − π

2

)
+ 1

2

(
X − π

2

)2
+ 16

5π3/2

(
π
2
−X

)5/2
+ . . . , π

2
−X � 1.

�

(44)

However, in contrast to the previous cases, the phase transition here at X = π/2 is 
of the fractional order 5/2 [22]. What is the reason for this special behavior? Looking 
closely at the behavior of the cosine wall at t  =  −1, we find that it is non-generic 
because the quadratic term in the expansion

g (t) = cos

(
πt

2

)
=

π (t+ 1)

2
− π3 (t+ 1)3

48
+ . . .� (45)

is absent (and similarly at t  =  1).
We now show that it is indeed the local behavior of g (t) near t = ±1 which deter-

mines the order of the transition. Let us consider a (convex upward) g (t) whose behav-
ior around t  =  −1 is

g (t) = a (t+ 1)− b (t+ 1)n + . . . ,� (46)
with a, b > 0 and n  >  1, and consider arbitrary τ . A phase transition occurs along the 
line X = (τ + 1) g′ (−1) which is tangent to g (t) at t  =  −1. The nonanalytic behavior of 
s at the transition is entirely captured by the nonanalytic behavior of the action along 
the optimal constrained path evaluated up to time t = τ

s(1)c =
1

4

∫ τ

−1

(
dxc

dt

)2

dt,� (47)

because the remaining terms which contribute to s are (in general) analytic at the 
transition point. At supercritical X, the optimal constrained path is given by equa-
tion (20), so that

s(1)c =
X2

4 (τ + 1)
, X � (τ + 1) g′ (−1) .� (48)

When X approaches the transition point from below, the scaling behavior of the 
quantities

δX = (τ + 1) g′ (−1)−X and δs = s(1)c − X2

4 (τ + 1)
� (49)

is the following:

δX ∼ (t− + 1)n−1 and δs ∼ (t− + 1)2n−1 ,� (50)

leading to

δs ∼ δX
2n−1
n−1 ,� (51)
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that is, the phase transition is of order (2n− 1)/(n− 1). The generic third-order trans
ition (see for instance section 3.3) and the 5/2-order transition for g (t) = cos (πt/2) are 
particular cases of equation (51) with n  =  2 and n  =  3, respectively. The analogy with 
phase transitions is enhanced by the fact that t−  +  1 is a natural order parameter: it 
vanishes above the transition, but is nonzero below the transition. The scaling behav-
iors (50) yield nontrivial exponents which describe the critical behavior of the system 
near the transition.

The same arguments apply to the other phase transition line, X = (τ − 1) g′ (1), 
which is the tangent to g (t) at t  =  1. The order of the corresponding phase transition 
depends on the local behavior of g (t) near t  =  1.

3.5. Tent

In most of our derivations so far we assumed that g (t) is smooth and strictly convex 
upward. What happens if the wall function g (t) has a corner singularity? It is known 
that, if a corner singularity coincides with the observation time t = τ , the scaling of 
typical fluctuations is strongly aected [3]. Here we show that the critical behavior of 
the system also changes: the transition becomes of the second order. A simple example 
is provided by the ‘tent’ function g (t) = 1− |t|.

Since g (t) is now (weakly) convex upward, the optimal unconstrained path still 
follows the wall, xu (t) = g (t) = 1− |t|. The action (7), evaluated along this path, is 
su = 1/2. Regarding the optimal constrained path xc (t), the tangent construction 
described in section 3.2 is not applicable because g′′ (t) either vanishes or does not exist. 
There are two regimes of interest, see figure 4. In the subcritical regime X � 1 + |τ | we 
obtain for τ > 0:

xc (t) =





1 + t, −1 � t � 0,

1 + t(X−1)
τ

, 0 � t � τ ,
(1−t)X
1−τ

, τ � t � 1.

� (52)

(For τ < 0 the optimal path is the mirror image of equation (52).) That is, the tangent 
of section 3.2 is replaced by a straight line which connects the point (τ ,X) with the 
point (t = 0, x = 1) of the corner singularity of g (t). The action (7), evaluated along 
xc (t), is

Figure 4.  Solid line: the wall function g (t) = 1− |t|. Dotted line: the optimal path 
constrained on x (t = τ) = X , at times where x (t) �= g (t), in the subcritical (a), and 
supercritical (b) regimes. A second-order phase transition occurs along the dashed 
line x = 1 + |t|.
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sc =
(1−X)2 + |τ | (2X − |τ |)

4 |τ | (1− |τ |)
,� (53)

yielding the large deviation function in the subcritical regime:

s (X, τ) = sc − su =
(1−X)2 + |τ | (2X + |τ | − 2)

4 |τ | (1− |τ |)
, X � 1 + |τ | .� (54)

In the supercritical regime X � 1 + |τ | the optimal path is given by equation (20), and 
s is found from equation (28) to be

s (X, τ) = sc − su =
X2 + τ 2 − 1

2 (1− τ 2)
, X � 1 + |τ | .� (55)

From equations (54) and (55) we find that it is the second derivative ∂2s/∂x2 which 
jumps along the transition line X = 1 + |τ |. That is, the dynamical phase transition is 
of the second order. One way to understand this result is to think of the tent as the 
n → ∞ limit of the class of functions g (t) from equation (46). That the transition is 
of the second order for the tent then corresponds to the n → ∞ limit of equation (51).

In the particular case τ = 0 there is no subcritical regime and therefore no phase 
transition. Here the large-deviation function

s (X, τ = 0) =
X2 − 1

2
� (56)

describes a distribution which has the form of a Gaussian tail. In the near tail, X − 1 � 1, 
equation (56) yields

− lnP � C (X − CT )

D
, X − CT � CT ,� (57)

predicting a T-independent scaling of typical fluctuations of X. This result can be also 
obtained by taking the limit ν → 1 in equation (39). Also, this result is in agreement 
with the corresponding result quoted in [3]5.

4. Non-convex x0 (t)

The OFM formulation of section 2 is valid regardless of the convexity of g (t). However, 
if g (t) is not convex upward, finding the optimal paths can become more involved tech-
nically. Still, we can make some general observations.

Importantly, for non-convex g (t) the optimal unconstrained path xu (t) does not 
coincide with g (t), but rather with its convex envelope gc (t), see figure 5. As a result, 
the peak of the distribution of X, at given τ , is around X = gc (τ). This is in contrast 
to the convex-upward case, where the distribution is peaked at a point which is much 
closer to the wall. In the regime where g (τ) �= gc (τ), typical fluctuations of X around 

5 Plugging the parameters C  =  1, and D  =  1/2 of [3] into equation (57), we obtain P ∼ e−2(X−T ), which agrees with 
the result obtained in section 5 (i.a) of [3] with g (t) = 1− |t| (up to a preexponential factor which is beyond the 
accuracy of our leading-order OFM approximation).
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gc (τ) are normally distributed, and this Gaussian asymptotic of the distribution can 
be described by the OFM. Moreover, now the complete distribution has another tail, 
where X − g (τ) is negative and much larger in absolute value than its typical value. 
This tail can also be obtained using the OFM.

At X � gc (τ) the large-deviation function s (X, τ) depends on g (t) only through 
its convex envelope gc (τ). A similar observation for typical fluctuations in the regime 
where g (τ) �= gc (τ) was made in [3], section 5(iii). As a result, dynamical phase trans
itions occur along lines in the tx plane which are tangent to gc (t) at t = ±1 where these 
lines do not coincide with gc itself, see figure 5.

5. Summary and discussion

We studied the distribution P (X, τ ,T ) of the position X = x (t = τ) of a Brownian 
excursion x (t) conditioned on staying away from a moving wall x0 (t) [1–3]. We focused 
on large deviations of X and calculated the corresponding large deviation function 
s (X, τ) by using the optimal fluctuation method (OFM), which in this context coin-
cides with geometrical optics. The ensuing standard variational problem can be solved 
by means of a simple geometric construction. Despite the simplicity of the model, its 
behavior is quite rich. The OFM correctly describes the near tail of the distribution and 
therefore captures the scaling behavior of typical fluctuations of X. The system exhibits 
dynamical phase transitions—singularities of the large deviation s (X, τ)—for a broad 
class of wall functions x0 (t). The transitions occur due to a qualitative change in the 
character of the optimal path as X and/or τ  are changed.

Until now, many instances of dynamical phase transitions—that is, singularities of 
large-deviation functions—have been observed in one-particle and multi-particle sys-
tems [23–37]. Many of them have been described by the OFM [25–29, 31–33, 35–37]. 
In the OFM description, the singularities are usually caused either by a switching 
between two dierent optimal paths at the critical point (for first order transitions), 
or by a spontaneous symmetry breaking of the optimal path (for second order trans
itions). In contrast, the mechanism which causes the phase transitions of the con-
strained Brownian excursion is geometrical by its nature and is analogous to shadows 

Figure 5.  Solid line: the wall function g (t) = (1− t2)2. The optimal unconstrained 
path xu (t) (the dotted line) coincides with gc (t), the convex envelope of g (t). 
Dashed line: the continuation of the tangents of gc (t) at t = ±1. The latter line 
signifies a dynamical phase transition.
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in optics. The transition occurs when the observation point (τ ,X) enters a complete or 
partial space-time ‘shadow’ of the wall x0 (t). Remarkably, this simple mechanism can 
lead to dierent orders of the transition. For a generic convex upward x0 (t), it is of the 
third order. However, fractional orders are also possible. We showed that the order of 
transition depends on the local behaviors of x0 (t) at t = ±T . Second order transitions 
are possible if x0 (t) has a corner singularity at some time.

Recently third-order transitions have been discovered in large deviation functions 
of several stochastic many-body systems, see [30] for a concise review. These systems 
include Gaussian random matrices, nonequilibrium stochastic growth models belong-
ing to the KPZ universality class and, tantalizingly, N � 1 non-intersecting Brownian 
excursions in 1  +  1 dimension [30, 38]. It may be tempting to lump together all these 
third order transitions. There are, however, important dierences between the FS model 
and the other models mentioned above. First, in the FS model the phase transition 
point is located outside the region of typical fluctuations. Second, the large-deviation 
function of the FS model has the same scaling behavior, as a function of T, below and 
above the transition. Third, the typical fluctuations of the FS model are described 
by the FS distribution [3], rather than the Tracy–Widom distribution [39]. These 
dierences and the simple geometric mechanism, which is present in the FS model 
transition and apparently absent in the other models, show that the third-order trans
ition in the FS model has a dierent nature.

For a wall function x0 (t) which is not convex upward, we found that the peak of 
the distribution P (X, τ ,T ) is near the convex envelope of x0 (t). At times τ  where 
x0 (τ) is not equal to its convex envelope, typical fluctuations around this peak follow 
a Gaussian distribution which can be calculated with the OFM.

Somewhat counter-intuitively, the leading-order OFM approximation, which we 
used here, yields the same large-deviation function s (X, τ) for absorbing and reflecting 
walls. So all of our large-deviation results can be immediately extended to reflecting 
walls. The dierence between absorbing and reflecting walls should be very pronounced 
in the region of typical, small fluctuations which are beyond the OFM validity. The 
dierence should also appear in the pre-exponential factors that we did not calculate.

Finally, there is a fascinating connection between the geometrical optics of con-
strained Brownian motion and the recently suggested tangent method of determining 
the so called Arctic curve [40]. The Arctic curve is the boundary between ‘frozen’ 
and ‘liquid’ regions in several two-dimensional discrete models of statistical mechanics 
which exhibit phase-separation because of finite-size eects. As shown in [40], basic 
excitations in these models ‘form random walks from a given boundary point to the 
Arctic curve, which are almost straight in the thermodynamic limit, and reach the 
curve tangentially’. Not surprisingly, the tangent method has considerably simplified 
the calculations of Arctic curves [41, 42].
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Appendix. Semicircle g (t) =
√
1 − t2

Here we consider the particular case of a semicircle g (t) =
√
1− t2 in some detail. The 

solutions to equation (24) are

t± =
τ ±X

√
τ 2 +X2 − 1

τ 2 +X2
.� (A.1)

We plug g (t) =
√
1− t2 and equation (A.1) into equations (26) and (27) to obtain

s̃c =
X
√
τ 2 +X2 − 1 (2τ 2 +X2 − 1)

2 (1− τ 2) (τ 2 +X2)
� (A.2)

and

s̃u =
1

4

∫ t+

t−

t2

1− t2
dt =

1

4
arctanh

(
2X

√
τ 2 +X2 − 1

τ 2 + 2X2 − 1

)
− X

√
τ 2 +X2 − 1

2 (τ 2 +X2)
.

�

(A.3)

As a result, the large deviation function s (X, τ), for all X > g(τ), is the following:

s (X, τ) = s̃c − s̃u =
X
√
τ 2 +X2 − 1

2 (1− τ 2)
− 1

4
arctanh

(
2X

√
τ 2 +X2 − 1

τ 2 + 2X2 − 1

)
.� (A.4)

Together with equation  (6), equation  (A.4) gives, up to pre-exponential factors, the 
probability distribution P (X, τ ,T ) in the original variables. The near-tail asymptotic 
of equation (A.4) is

s (X, τ) � 2
√
2 (∆X)3/2

3 (1− τ 2)3/4
, where ∆X = X −

√
1− τ 2 �

√
1− τ 2.� (A.5)

The same result follows from equation (30) with g (t) =
√
1− t2. The plot of s (X, τ = 0) 

is shown in figure A1, alongside with the near tail asymptotic (A.5) and the far tail 
asymptotic

s (X, τ) =
X2

2 (1− τ 2)
− 1

4
ln

(
X2

1− τ 2

)
− 1

4
− ln 2

2
+ . . . , X �

√
1− τ 2.

�

(A.6)

Now let us return to the near-tail asymtotic (A.5) and plug it into (6) with γ = 1. 
We obtain

− lnP �
2
√
2C

(
X − C

√
T 2 − τ 2

)3/2

3D
(
1− τ2

T 2

)3/4
T 1/2

, X − C
√
T 2 − τ 2 � C

√
T 2 − τ 2,

�

(A.7)

in the original variables. We now show that this result agrees with the tail of the 
Ferrari–Spohn (FS) distribution [3] of typical fluctuations of X away from the circle6. 
FS introduced a stationary diusion process A(t), described by the Langevin equation

dA
dt

= a(A) + ξ (t) ,� (A.8)

6 See footnote 4.
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with the Gaussian white noise ξ (t), as described by equation (2) with D  =  1/2, and the 
drift term

a (A) =
Ai′ (A− ω1)

Ai (A− ω1)
.� (A.9)

Here Ai(. . . ) is the Airy function, and −ω1 = −2.338 107 . . . is its first zero. The equilib-
rium probability distribution of this process,

ρ [A (t) = z] =
[Ai (z − ω1)]

2

[Ai′ (−ω1)]
2 ,� (A.10)

is depicted in figure  A2. As FS proved, at T → ∞, typical fluctuations of 
∆X = X − C

√
T 2 − τ 2 away from the circle are distributed as A (2/T ) −1/3 (1− τ 2/T 2) 1/2. 

That is, in terms of ∆X  the distribution is

P (∆X, τ ,T ) =

(2/T )1/3
{
Ai

[
(2/T )1/3∆X(
1− τ2

T2

)1/2 − ω1

]}2

(
1− τ2

T 2

)1/2
[Ai′ (−ω1)]

2
.

� (A.11)

The tail of this distribution is given by the large-argument asymptotic of the Airy 
function:

Figure A1.  The large-deviation function s (X, τ = 0) for the semicircle 
g (t) =

√
1− t2 (solid), see equation  (A.4), together with its near- and far-tail 

asymptotics (A.5) and (A.6) (dotted and dashed, respectively).

Figure A2.  The equilibrium probability distribution of the Ferrari–Spohn process, 
equation (A.10).
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P (∆X → ∞, τ ,T ) =

exp

[
− 4

√
2 (∆X)3/2

3
(
1− τ2

T2

)3/4
T 1/2

]

211/6T 1/6π [Ai′ (−ω1)]
2
(∆X)1/2

(
1− τ2

T 2

)1/4 .
� (A.12)

Our near-tail result (A.7) coincides with this asymptotic up to the pre-exponential 
factor, which is unaccounted for by the leading-order OFM. This comparison confirms 
that the OFM is valid for large deviations, − lnP � 1, starting from the near tail and 
toward larger X.

References

	 [1]	 Frachebourg L and Martin P 2000 J. Fluid Mech. 417 323–49
	 [2]	 Groeneboom P 1989 Probab. Theory Relat. Fields 81 79–109
	 [3]	 Ferrari P L and Spohn H 2005 Ann. Probab. 33 1302
	 [4]	 Prähofer M and Spohn H 2002 J. Stat. Phys. 108 1071–106
	 [5]	 Tracy C A and Widom H 2007 Ann. Appl. Probab. 17 953
	 [6]	 Schehr G, Majumdar S N, Comtet A and Randon-Furling J 2008 Phys. Rev. Lett. 101 150601
	 [7]	 Schehr G 2012 J. Stat. Phys. 149 385
	 [8]	 Corwin I and Hammond A 2014 Inventiones Math. 195 441
	 [9]	 Ioe D, Shlosman S and Velenik Y 2015 Commun. Math. Phys. 336 905
	[10]	 Ioe D, Velenik Y and Wachtel V 2018 Probab. Theory Relat. Fields 170 11
	[11]	 Ioe D and Velenik Y 2018 Markov Process. Relat. Fields 24 487
	[12]	 Nechaev S, Polovnikov K, Shlosman S, Valov A and Vladimirov A 2019 Phys. Rev. E 99 012110  
	[13]	 Caputo P, Ioe D and Wachtel V 2018 (arXiv:1809.03209)
	[14]	 Kardar M, Parisi G and Zhang Y-C 1986 Phys. Rev. Lett. 56 889
	[15]	 Corwin I 2012 Random Matrices: Theory Appl. 1 1130001
	[16]	 Spohn H 2015 Stochastic Processes and Random Matrices (Lecture Notes of the Les Houches Summer School 

vol 104) ed G Schehr et al (Oxford: Oxford University Press)
	[17]	 Dotsenko V 2017 Order, Disorder and Criticality: Advanced Problems of Phase Transition Theory ed 

Y Holovatch (Singapore: World Scientific) ch 1
	[18]	 Takeuchi K A 2018 Physica A 504 77
	[19]	 Freidlin M I and Wentzell A D 1984 Random Perturbations of Dynamical Systems (New York: Springer)
	[20]	 Majumdar S N 2006 Brownian functionals in physics and computer science The Legacy of Albert Einstein 

ed S R Wadia (Singapore: World Scientific) ch 6 pp 93–129
	[21]	 Elsgolts L 1977 Dierential Equations and the Calculus of Variations (Moscow: Mir Publishers) p 360
	[22]	 Hilfer R 2000 Applications of Fractional Calculus in Physics (Singapore: World Scientific)
	[23]	 Schütz G 2001 Exactly solvable models for many-body systems far from equilibrium Phase Transitions and 

Critical Phenomena vol 19, ed C Domb and J L Lebowitz (London: Academic)
	[24]	 Derrida B 2007 J. Stat. Mech. P07023
	[25]	 Graham R and Tél T 1985 Phys. Rev. A 31 1109
	[26]	 Jauslin H R 1987 Physica A 144 179
	[27]	 Dykman M I, Millonas M M and Smelyanskiy V N 1994 Phys. Lett. A 195 53
	[28]	 Bertini L, De Sole A, Gabrielli D, Jona-Lasinio G and Landim C 2010 J. Stat. Mech. L11001
	[29]	 Lecomte V, Garrahan J P and van Wijland F 2012 J. Phys. A: Math. Theor. 45 175001
	[30]	 Majumdar S N and Schehr G 2014 J. Stat. Mech. P01012.
	[31]	 Hurtado P I, Espigares C P, del Pozo J J and Garrido P L 2014 J. Stat. Phys. 154 214
	[32]	 Baek Y and Kafri Y 2015 J. Stat. Mech. P08026
	[33]	 Janas M, Kamenev A and Meerson B 2016 Phys. Rev. E 94 032133
	[34]	 Tsobgni Nyawo P and Touchette H 2017 Europhys. Lett. 116 50009
		  Tsobgni Nyawo P and Touchette H 2018 Phys. Rev. E 98 052103
	[35]	 Baek Y, Kafri Y and Lecomte V 2017 Phys. Rev. Lett. 118 030604
	[36]	 Baek Y, Kafri Y and Lecomte V 2018 J. Phys. A: Math. Theor. 51 105001
	[37]	 Smith N R, Kamenev A and Meerson B 2018 Phys. Rev. E 97 042130
	[38]	 Le Doussal P, Majumdar S N and Schehr G 2016 Europhys. Lett. 113 60004

https://doi.org/10.1088/1742-5468/ab00e8
https://doi.org/10.1017/S0022112000001142
https://doi.org/10.1017/S0022112000001142
https://doi.org/10.1017/S0022112000001142
https://doi.org/10.1007/BF00343738
https://doi.org/10.1007/BF00343738
https://doi.org/10.1007/BF00343738
https://doi.org/10.1214/009117905000000125
https://doi.org/10.1214/009117905000000125
https://doi.org/10.1023/A:1019791415147
https://doi.org/10.1023/A:1019791415147
https://doi.org/10.1023/A:1019791415147
https://doi.org/10.1214/105051607000000041
https://doi.org/10.1214/105051607000000041
https://doi.org/10.1103/PhysRevLett.101.150601
https://doi.org/10.1103/PhysRevLett.101.150601
https://doi.org/10.1007/s10955-012-0593-8
https://doi.org/10.1007/s10955-012-0593-8
https://doi.org/10.1007/s00222-013-0462-3
https://doi.org/10.1007/s00222-013-0462-3
https://doi.org/10.1007/s00220-014-2277-5
https://doi.org/10.1007/s00220-014-2277-5
https://doi.org/10.1007/s00440-016-0751-z
https://doi.org/10.1007/s00440-016-0751-z
https://doi.org/10.1103/PhysRevE.99.012110
https://doi.org/10.1103/PhysRevE.99.012110
http://arxiv.org/abs/1809.03209
https://doi.org/10.1103/PhysRevLett.56.889
https://doi.org/10.1103/PhysRevLett.56.889
https://doi.org/10.1142/S2010326311300014
https://doi.org/10.1142/S2010326311300014
https://doi.org/10.1016/j.physa.2018.03.009
https://doi.org/10.1016/j.physa.2018.03.009
https://doi.org/10.1088/1742-5468/2007/07/P07023
https://doi.org/10.1103/PhysRevA.31.1109
https://doi.org/10.1103/PhysRevA.31.1109
https://doi.org/10.1016/0378-4371(87)90151-8
https://doi.org/10.1016/0378-4371(87)90151-8
https://doi.org/10.1016/0375-9601(94)90426-X
https://doi.org/10.1016/0375-9601(94)90426-X
https://doi.org/10.1088/1742-5468/2010/11/l11001
https://doi.org/10.1088/1751-8113/45/17/175001
https://doi.org/10.1088/1751-8113/45/17/175001
https://doi.org/10.1088/1742-5468/2014/01/P01012
https://doi.org/10.1007/s10955-013-0894-6
https://doi.org/10.1007/s10955-013-0894-6
https://doi.org/10.1088/1742-5468/2015/08/P08026
https://doi.org/10.1103/PhysRevE.94.032133
https://doi.org/10.1103/PhysRevE.94.032133
https://doi.org/10.1209/0295-5075/116/50009
https://doi.org/10.1209/0295-5075/116/50009
https://doi.org/10.1103/PhysRevE.98.052103
https://doi.org/10.1103/PhysRevE.98.052103
https://doi.org/10.1103/PhysRevLett.118.030604
https://doi.org/10.1103/PhysRevLett.118.030604
https://doi.org/10.1088/1751-8121/aaa8f9
https://doi.org/10.1088/1751-8121/aaa8f9
https://doi.org/10.1103/PhysRevE.97.042130
https://doi.org/10.1103/PhysRevE.97.042130
https://doi.org/10.1209/0295-5075/113/60004
https://doi.org/10.1209/0295-5075/113/60004


Geometrical optics of constrained Brownian excursion: from the KPZ scaling to dynamical phase transitions

21https://doi.org/10.1088/1742-5468/ab00e8

J. S
tat. M

ech. (2019) 023205

	[39]	 Tracy C A and Widom H 1994 Commun. Math. Phys. 159 151
		  Tracy C A and Widom H 1996 Commun. Math. Phys. 177 727
	[40]	 Colomo F and Sportiello A 2016 J. Stat. Phys. 164 1488
	[41]	 Di Francesco P and Lapa M F 2018 J. Phys. A: Math. Theor. 51 155202
	[42]	 Di Francesco P and Guitter E 2018 J. Phys. A: Math. Theor. 51 355201 

https://doi.org/10.1088/1742-5468/ab00e8
https://doi.org/10.1007/BF02100489
https://doi.org/10.1007/BF02100489
https://doi.org/10.1007/BF02099545
https://doi.org/10.1007/BF02099545
https://doi.org/10.1007/s10955-016-1590-0
https://doi.org/10.1007/s10955-016-1590-0
https://doi.org/10.1088/1751-8121/aab3c0
https://doi.org/10.1088/1751-8121/aab3c0
https://doi.org/10.1088/1751-8121/aad028
https://doi.org/10.1088/1751-8121/aad028

	﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿Geometrical optics of constrained Brownian excursion: from the KPZ scaling to dynamical phase transitions﻿﻿﻿﻿
	﻿﻿Abstract
	﻿﻿1. ﻿﻿﻿Introduction
	﻿﻿2. ﻿﻿﻿Constrained Brownian excursion and geometrical optics
	﻿﻿3. ﻿﻿﻿Optimal path for convex upward ﻿﻿
	﻿﻿3.1. ﻿﻿﻿Parabola
	﻿﻿3.2. ﻿﻿﻿General
	﻿﻿3.3. ﻿﻿﻿Generalized parabolas
	﻿﻿3.4. ﻿﻿﻿Fractional-order phase transitions
	﻿﻿3.5. ﻿﻿﻿Tent

	﻿﻿4. ﻿﻿﻿Non-convex ﻿﻿
	﻿﻿5. ﻿﻿﻿Summary and discussion
	﻿﻿﻿Acknowledgments
	﻿Appendix. ﻿﻿﻿Semicircle ﻿﻿
	﻿﻿﻿References﻿﻿﻿﻿


