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Theoretical ecologists have long sought to understand
how the persistence of populations depends on biotic
and abiotic factors. Classical work showed that demo-
graphic stochasticity causes the mean time to extinction
to increase exponentially with population size, whereas
variation in environmental conditions can lead to a
power-law scaling. Recent work has focused especially
on the influence of the autocorrelation structure (‘color’)
of environmental noise. In theoretical physics, there is a
burst of research activity in analyzing large fluctuations
in stochastic population dynamics. This research pro-
vides powerful tools for determining extinction times
and characterizing the pathway to extinction. It yields,
therefore, sharp insights into extinction processes and
has great potential for further applications in theoretical
biology.

The importance and challenge of understanding
population extinction
One of the most fundamental questions in population
biology concerns the persistence of species and popula-
tions, or conversely their risk of extinction. Extinction risk
is influenced by a myriad of factors, including interaction
between species traits and various stochastic processes
leading to fluctuations and declines in population size
[1–7]. Assessment of extinction risk is necessarily scale-
dependent [8,9]; for example, a metapopulation might
persist in a balance between local extinctions and re-colo-
nizations, even though none of the local populations would
persist alone [10–12]. Modeling approaches for quantifying
extinction, such as population viability analyses, are often
faced with so many levels of uncertainty that their utility
has been questioned by some researchers [13,14]. However,
others have argued that models can be meaningfully used
to quantify extinction risks [15,16], and that the predicted
extinction risk can be a more objective measure for classi-
fying species as red-listed thanmany othermetrics [17,18].

Conducting a population viability analysis involves the
steps of choosing an appropriate model, fitting themodel to
data, and using the fitted model to predict the extinction
risk [15]. In this review, we consider the last step only,
asking how predicted extinction risk depends on the struc-
ture and parameters of a stochastic population model.
Motivated by the material summarized in Box 1, we focus
especially on studies that have derived explicit formulae
for the mean time to extinction (MTE). We further narrow
down our scope to the scale of a single local population
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Glossary

Allee effect: refers to a variety of processes that reduce the per-capita growth

rate at small population density.

Bistability: presence of two different stable populations sizes, as predicted by

deterministic rate equation.

Colored noise: refers to temporal autocorrelation structure of the noise

associated with environmental stochasticity. White noise is uncorrelated in

time, so that future environmental conditions do not depend on earlier

environmental conditions. Different colors refer to situations where the

environmental conditions vary slower (red or pink noises, positive

correlation) or faster (blue noise, negative correlation) than for the white

noise.

Demographic heterogeneity: variation in the intrinsic birth and death rates

among individuals.

Demographic stochasticity: random variation in the number of births and

deaths in a population caused by the discrete nature of individuals and

stochastic character of these processes. Present even if all individuals have

identical birth and death rates.

Diffusion approximation: see Fokker–Planck approximation.

Entity type: different entity types can refer to different species, different local

populations, different age classes, or any other structure that requires

differentiating between classes of individuals in a population model.

Environmental stochasticity: irregular variation in environmental conditions

that affect the birth and death rates of a population.

Extinction threshold: in deterministic models, the population either goes

eventually extinct or persists for an indefinite time. The part of the parameter

space that separates these two qualitative behaviors comprises the extinction

threshold.

Fokker–Planck (FP) approximation: transforms the master equation into a

simpler but approximate partial differential equation (Box 3).

Markov process: a stochastic process without memory, i.e. a process in which

the transition rates depend only on the current state of the system.

Master equation: an exact equation for population dynamics in Markov

process models. Describes how the probability distribution of population sizes

evolves in time (Box 3).

Monte-Carlo simulation: produced by a computational algorithm that repeat-

edly utilizes a random number generator to construct realizations of a

stochastic process (Figure I in Box 2).

Probability distribution: defines the state of the system, i.e. the probability pn(t)

that the population consists of n individuals at time t.

Quasi-stationary probability distribution: the limit of the probability distribu-

tion at large time, conditional on the population being not yet extinct.

In models that eventually lead to extinction, the stationary probability

distribution describes the state where the population is extinct, whereas

the quasi-stationary distribution describes the shape of the distribution

of population sizes long after an initial transient but before extinction

(Box 3).

Single-step and multi-step models: in single-step models, the population

increases or decreases by one individual at a time, whereas in multi-step

models multiple simultaneous births or deaths are allowed for (Box 2).

Stationary probability distribution: the limit of the probability distribution at

large time.

System size parameter N: a model parameter that describes the population

size at which density dependence has a substantial effect (for example, death

rate doubled from the density-independent level, birth rate equals zero, or so

on). If the population persists in the deterministic approximation, N is

proportional to the equilibrium population size K (the carrying capacity), but

the proportionality constant is somewhat arbitrary and depends on how N is

defined in the particular model.

Wentzel–Kramers–Brillouin (WKB) approximation: a mathematical tool for

transforming the master equation into a simpler but approximate set of

ordinary differential equations (Box 3).
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consisting of one (or few) species. While extinction risk can
be greatly influenced by spatial structure [10–12,19–24]
and the community context [25], understanding the fate of
a single local population is the fundamental building block
that is also required in the analyses of more complex
models [10,26].

We start by briefly reviewing the classical results on
extinction risk in the context of stochastic population
modeling.We then comment on themathematical methods
available for extinction studies, especially highlighting the
methodological advances in the physics literature. We
cover a sequence of biologically relevant models, starting
from single-species models in a stable environment, and
then extending this to include environmental variability,
Allee effects, and models with multiple entity types.

Classical results
To place the recent developments into a perspective, we
start by reviewing the highly influential works of Leigh
[27], Lande [28] and Foley [29]. These authors showed, for
different variants of the canonical model (Box 2), that in a
stable environment the MTE of a local population grows
exponentially with the carrying capacity K [27,28],

MTE ¼ C1expðbKÞ; (Eq. 1)

whereas under sufficiently strong, uncorrelated environ-
mental stochasticity, the dependence is a power law [27–29],

MTE ¼ C2K
c: (Eq. 2)

The parameters b > 0 and c > 0 determine, to the lead-
ing order, how MTE depends on K. The parameters C1 and

C2 (called pre-factors) can also depend on K, but their
relative role becomes unimportant when the carrying ca-
pacity K is large. In his pioneering work, Leigh [27] mod-
eled demographic stochasticity by considering a birth and
death process in a finite population (Box 1). Assuming a
self-regulating population, Leigh ended up with the expo-
nential scaling law (Eq. 1) with parameter b ¼ r=vd, where
r denotes the population growth rate and vd is the variance
of the growth rate due to demographic stochasticity. Lande
[28] used a continuous variable for population size, and
assumed that the population grows without regulation
until it reaches the carrying capacity, at which point the
growth rate becomes zero. He arrived at the result b ¼
2r=vd; where vd includes not only the variance due to
demographic stochasticity but also the variance due to
demographic heterogeneity [5] (i.e. variation in the birth
and death rates among individuals).

All three papers [27–29] considered the impact of envi-
ronmental stochasticity by assuming that the growth rate
varies randomly over time with variance vs, and showed
that the power-law scaling (Eq. 2) holds with c ¼ 2r=vs (we
have reformulated some of the results to account for dif-
ferent interpretations of environmental noise [26]). In
summary, the classical papers Refs [27–29] showed that
environmental stochasticity can lead to a substantial ex-
tinction risk also for large populations, not just small ones,
and especially so if the population growth rate is low. These
studies have been very influential because their results
were summarized into simple mathematical formulae (Box
1), and because the qualitative results are independent of
many details of model structure, such as the exact form of
the density dependence.

Methods for estimating time to extinction
The process of extinction is difficult to study mathemati-
cally, and consequently most results in this area are
approximations. It has recently become apparent that
the approximations adopted in the classical papers
[27–29] can give wrong answers for large parts of the
parameter space. As the choice of themethod can critically
influence the results, we next review the methods avail-
able for estimating MTE in stochastic models of popula-
tion dynamics.

To start with, given almost any kind of stochastic popu-
lation model, Monte-Carlo simulations (Figure I in Box 2)
can be used to characterize any aspect of population dy-
namics such as MTE. This approach is widely applied in
the ecological literature [30–35] because of its ease of
implementation. A serious disadvantage of this approach
is that the results come in a numeric format, and so can be
difficult to interpret and generalize.

The first step towards an analytical insight is to write
down the master equation corresponding to the stochas-
tic model (Box 3), and solve it numerically [36,37].
This approach can be used mostly in models with a
single or two entity types but it is not feasible for models
with many entity types, as the size of the state-space
becomes prohibitively large. This approach avoids the
Monte-Carlo error associated with simulations, but
shares the drawback of the results being in numerical
format.

Box 1. What are formulae for the mean time to extinction

needed for?

This review focuses on studies that have derived mathematical

formulae for the MTE. One might argue that there is no need to

solve simple population models mathematically, as with greatly

increased computer power it is possible to simulate the behavior of

much more realistic and complex models. Furthermore, such

simulations can be used to predict not only the MTE, but also the

full distribution of extinction times or any other statistic of interest.

So why bother to derive an explicit formula for the MTE, especially

given that doing so can be mathematically challenging (Box 3)?

Let us first ask whether MTE is a meaningful statistic or if it would

be more informative to focus on other aspects of the extinction

process. The answer turns out to be very simple. Assuming that the

initial population size is large enough for the population to avoid a

rapid initial extinction, the distribution of extinction times is

exponential in almost any kind of population model, including very

complex individual-based models [92]. Thus, in this case, the MTE is

a sufficient statistic for predicting the full distribution of extinction

times. However, if the initial population size is so low that the risk of

extinction is initially much greater than after the population has

reached the quasi-stationary state, the MTE can give a very

misleading picture of the extinction risk [93].

Explicit formulae for the MTE, such as Eqs. 1 and 2, provide

insight into how extinction risk depends on model parameters. Such

information might be obtained with simulations as well, though it

can be computationally very challenging to tabulate the MTE for all

relevant parameter combinations. However, the main caveat with

the simulation approach is that it is difficult to synthesize the

numerical results into a format that can be applied and commu-

nicated as easily as an explicit equation. Simple mathematical

formulae for the MTE have for example been used as building

blocks in more complex models [10,94]. It would be very difficult to

use simulation results for this purpose.
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In addition to providing numerical solutions, themaster
equation is a natural starting point for deriving analytical
results. For any single-step model of a single entity type
inhabiting a stable environment (Box 2), it is possible to

derive an exact formula for the MTE [38]. Unfortunately,
this formula is too cumbersome to give any analytical
insight. However, for models in which density dependence
either monotonically increases the per-capita death rate or

[(Figure_I)TD$FIG]

Figure I. Extinction risk and variability among replicate simulations depends on the presence and type of environmental noise and parameter regime. The panels show

Monte-Carlo simulations of the symmetric logistic model without (a,b) and with (c,d) environmental noise modulation. In all panels, N = n(0) = 100, d = 1 and R0 = 2,

except in (b) where R0 = 1. In (c), v ¼ 1 and tc = 1, in (d) v ¼ 1 and tc = 30. The dashed lines depict the deterministic carrying capacity K = N(1 � 1/R0), and the colored

lines show four independent realizations.

Box 2. Standard models of stochastic population dynamics

In single-step models, the only allowed transitions are births

(transition n! n + 1 with rate ln) and deaths (transition n! n � 1

with rate mn) of single individuals. Archetypal models include the

Verhulst model [43], in which the per-capita birth rate Ln = ln/n = dR0

is independent of the density, and the per-capita death rate Mn = mn/

n = d(1 + R0n/N) increases with the density. In the susceptible-

infective-susceptible model, also called the stochastic logistic model

[40–42,44], density dependence operates on births only,

Ln = dR0(1 S n/N) and Mn = d. In the symmetric logistic model

[27,37], density dependence operates on both births and deaths,

Ln = dR0(1 S n/2N) and Mn = d(1 + R0n/2N). We have parameterized

the models so that the death rate at low density is d, the basic

reproductive ratio is R0, and the carrying capacity (the equilibrium

population size predicted by the deterministic approximation) is

K = N(1S1/R0).

Above the extinction threshold (R0 > 1), and starting from suffi-

ciently many individuals to avoid a rapid initial extinction, for

example the susceptible-infected-susceptible model yields the ex-

ponential scaling law [39–43]

MTE ¼ R0

dðR0 � 1Þ2

ffiffiffiffiffiffi
2p

N

r
exp

��
ln R0 � 1þ 1

R0

�
N

�
: (Eq. I)

This result is an example of a mathematically rigorous large-N

approximation, which can be obtained using either the special

technique for single-step models [39], or the more general WKB

method [45]. Eq. I illustrates the nature of the pre-factor C1, which can

depend on N (or K, which is proportional to N), but is asymptotically

negligible at large N, compared to the exponential behavior. The

Verhulst model and the symmetric logistic model also lead to an

exponential scaling of the MTE with N, with somewhat different

exponents and pre-factors [45].

Any of the single-step models can be extended to a birth-death-

catastrophe model [46] by assuming that catastrophes arrive at a

given rate and for example wipe out a binomially distributed number

of individuals.

Environmental stochasticity can be added in a multitude of ways.

As an example, the environmental-noise-modulated symmetric
logistic model [76] extends the symmetric logistic model by adding

the terms Sj(t)/2 and j(t)/2 to the per-capita birth and death rates,

respectively. Ref. [76] parameterized the noise j(t) in terms of its

variance ve (describing how greatly the environment varies) and

autocorrelation time tc (describing how fast the environment

varies).

Treating the population size as a continuous variable, the above

population models can be approximated by the Langevin equation

dn

dt
¼ dðR0 � 1Þnð1� n=K Þ þ sdjd ðtÞ

ffiffiffiffi
n
p
þ sejeðtÞn: (Eq. II)

Here the demographic noise jd is white and Gaussian with zero

mean and variance one (Box 3). The environmental noise je can in

general be colored. For the particular case of white environmental

noise, Eq. II has been termed the canonical model [26,49].
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decreases the per-capita birth rate, the exact formula can
be simplified to yield a large-K approximation [39], i.e. an
approximation that becomes asymptotically exact as the
carrying capacity K increases (see Box 2 for an example).
The method of Ref. [39] generalizes many of the earlier
approaches applied separately for specific single-step mod-
els [40–44]. Although in some cases it misses pre-exponen-
tial factors in the MTE [45], the most important
exponential dependence is described correctly.

A different approach is needed for models that incorpo-
rate additional features, such as variation in environmen-
tal conditions, Allee effects, multiple simultaneous births
or deaths, or multiple entity types. In the ecological litera-
ture, the most widely used mathematical method for these
types of problems is the Fokker–Planck (FP) approxima-

tion (also called the diffusion approximation) [27–

29,46,47], that replaces the original master equation by
a partial differential equation or an equivalent stochastic
differential equation called the Langevin equation [38]
(Box 3), and the related moment-closure approximation
[44]. These approximations can be used to derive a formula
for the MTE [27–29,46,48] and to fit population models to
time-series data [29,46–50].

Unfortunately, the FP approximation in general fails to
correctly describe large fluctuations, such as those leading
to population extinction [36,39,51]. The FP approximation
faithfully describes typical population fluctuations around
the carrying capacity, and the predictedMTE is essentially
based on an extrapolation from these typical fluctuations
to large ones. One notable exception to the failure of the FP

Box 3. Master equation and its approximations

The dynamics of any continuous-time population model in a stable

environment can be mathematically described by the master

equation. We denote by pn(t) the probability that the population has

n individuals at time t, and by p(t) the probability distribution of

population sizes, i.e. the vector with elements pn(t) . By the theory of

Markov processes [38], p(t) evolves in time as

d pðtÞ
dt

¼ QpðtÞ: (I)

Here Q is called the transition rate matrix, with elements describing the

rates (probabilities per unit time) with which the system moves from

the current population size to any other population size. When even-

tual extinction is certain, the limiting (stationary) distribution p(1) is

such that p0(1) = 1 and pn(1) = 0 for n > 0. If the time to extinction is

sufficiently long, the system approaches a quasi-stationary state, with

a time-independent shape distribution pn of population sizes with

n > 0 [42,43,83]. In this state p0(t) ffi 1 � exp( � t/MTE) and

pn(t) ffi pnexp( � t/MTE) for n > 0, whereas the time to extinction is

exponentially distributed with average equal to MTE [45,92]. Mathe-

matically, pn is the probability distribution of the population sizes

conditional on non-extinction.

The diffusion, or Fokker–Planck approximation, can be obtained by

treating the population size n as a continuum, expanding the master

equation in a Taylor series, and truncating the expansion at the second

order [38]. The resulting partial differential equation has the form

@Pðn; tÞ
@t

¼ � @

@n
½F ðnÞPðn; tÞ� þ 1

2

@2

@n2
½DðnÞPðn; tÞ�: (Eq. II)

Here F(n) is the right-hand side of the deterministic rate equation

(Eq. 3) which, for the single-step models of Box 2, reads F(n) = ln�mn.

The diffusion term D(n) = ln+mn. describes the intrinsic noise that

arises from demographic stochasticity. The FP equation can be

transformed into an equivalent Langevin equation that describes the

fate of individual realizations:

dn

dt
¼ F ðnÞ þ

ffiffiffiffiffiffiffiffiffiffiffi
DðnÞ

p
jd ðtÞ; (Eq. III)

where jd is Gaussian white noise with zero mean and unit variance.

In the WKB-approximation [45,55,56–59,64], the quasi-stationary

solution pn to the master equation is approximated by an exponen-

tiated expansion in powers of 1/K:

pn ¼ expð�KSðn=K Þ � S1ðn=K Þ � S2ðn=K Þ=K � � � � Þ; (Eq. IV)

The term S(n/K), called the action, determines the leading-order

behavior of the system, and is sufficient for calculating the coefficient

b in the exponential scaling of Eq. 1. Substituting Eq. IV into the

master equation (Eq. I) results in a differential equation for the leading

term S(n/K). This equation has a form of the Hamilton–Jacobi

equation of classical mechanics [95]. The quasi-stationary distribution

pn corresponds, in the language of Hamiltonian mechanics, to a

phase trajectory with zero energy. The zero-energy trajectory with

zero momentum corresponds to the deterministic component F(n),

whereas a zero-energy trajectory with a nonzero momentum

describes how the rare event of population extinction is most likely

to happen (Figure I).
[(Figure_I)TD$FIG]

Figure I. An illustration of the WKB method for estimating the extinction risk in a model without (a) and with (b) an Allee effect. The zero-energy trajectories with zero

momentum ( p = 0), shown by the horizontal brown lines, correspond to the deterministic rate equation. The zero-energy trajectories with a nonzero momentum, shown

by the blue lines, describe how the rare event of population extinction is most likely to happen. The total action along such a special trajectory, given by the area of the

shaded region, is sufficient for calculating the MTE to the leading order. Redrawn from Ref. [45].
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approximation occurs when the population is close to the
extinction threshold as predicted by the deterministic rate
equation [36,39]. Thus, the classical results [27–29], which
are based on the FP approximation, are correct only for
small values of the growth rate parameter r.

Interestingly, the difficulty of characterizing extinction
mathematically is similar to the difficulty of studying
extinction empirically: in empirical research, direct obser-
vations of local extinctions are seldom so numerous that
the dependence of the extinction risk on the underlying
factors can be statistically analyzed (but see Refs [52,53]
for counterexamples). Thus, indirect measures, such as the
amplitude of population fluctuations, are often used as
proxies for the extinction risk [50,54]. Similarly to the
FP approximation, this approach is also based on an
extrapolation, i.e. on the assumption that extinction will
be caused by similar though somewhat stronger fluctua-
tions than those observed empirically.

In contrast to the FP approximation, the Wentzel–Kra-
mers–Brillouin (WKB) approximation [55], first employed
in the context of the master equation in Refs [56–59], is
ideally suited for rare event statistics in large populations,
as it accurately predicts quantities such as the MTE and
the most likely pathway to extinction [36,60–63] (Box 3).
Both the FP and WKB approximations replace the master
equation with an analytically tractable equation, but in the
case of the WKB approach, the approximation is mathe-
matically controlled. The WKB approach has gained much
recent attention in the physics literature [36,45,60–

62,64,65] but is still to make its headway into ecological
modeling.

Both the FP and the WKB approximations treat the
scaled population size n/K as a continuous variable, and
therefore they are invalid for a very small population size
n. The WKB approximation, however, can be combined
with a small-n approximation [36,45] to obtain accurate

results over the entire state-space (Figure 1). Small-n
approximations are usually based on the observation that
density dependence is negligible if the population size is
small, in which case a linearized master equation can be
exactly solved by recursion.

This section would not be complete without mentioning
the earlier works in the ecological literature that used the
WKB approximation: for a calculation of the stationary
probability distribution of a population that does not ex-
hibit extinction [58], and for a calculation of the MTE of a
population on the way to extinction, in the case of weak
environmental and demographic noises [66,67]. Unfortu-
nately, the pioneering works [66,67] employed the WKB
method in conjunctionwith the FP approximation, and as a
consequence, their results for the MTE were inaccurate.

Birth–death processes in a stable environment
Equipped with the mathematical methods, we next review
the insight that stochastic populationmodels have brought
to the understanding of extinction processes.We start from
the simplest case of a birth–death process in a stable
environment. Depending on the species life-cycle, it might
be natural to formulate population models either in dis-
crete or in continuous time [1,37]. In the latter case, a large
class of models can be described in the framework of
Markov processes, examples being given in Box 2. In the
deterministic rate equation (Box 3), all the single-step
models of Box 2 follow logistic growth, with population
size n evolving as

dnðtÞ
dt
¼ rnðtÞð1� nðtÞ=KÞ: (3)

Here r is the growth rate of the population at low
population density, and K is the carrying capacity that
determines the equilibrium population size. The growth
rate parameter can be represented as r = d(R0 � 1), where d

denotes the death rate at low density. The basic reproduc-
tion number R0 is the average number of offspring pro-
duced by a single individual in the absence of intraspecific
competition. Density dependence can increase the death
rate, decrease the birth rate, or act simultaneously on both
processes (Box 2). Density-dependence is usually modeled
through a system size parameter N, which in our example
models is related to the carrying capacity asK = N(1�1/R0)
(Box 2).

The prediction of the deterministic approximation (Eq.
3) is that for R0 > 1 (or equivalently r > 0), population size
approaches the carrying capacity K exponentially in time
and persists there for an indefinite time. For R0 < 1,
population size decreases to extinction exponentially in
time. At the threshold, R0 = 1, population size decreases to
extinction as n(t) = n0(1+dR0n0t/N)�1: much slower than for
R0 < 1.

In the full stochastic model, the extinction state is an
absorbing state, meaning that the population cannot re-
cover once its size becomes zero. Monte-Carlo simulations
above the extinction threshold (R0 > 1) can give the im-
pression of an indefinite persistence (Figure Ia in Box 2).
However, the system eventually goes extinct with proba-
bility one [38], though the mean time until extinction is
exponentially long in K (Box 2).

[(Figure_1)TD$FIG]

Figure 1. The domains of validity for mathematical approximations used to

analyze stochastic population models. The FP approximation is valid in the vicinity

of the carrying capacity (K = 100 in this case), but not for large fluctuations of the

population size. As suggested by its name, the small-n approximation is valid only

for the smallest population sizes. The WKB approximation very accurately mimics

the true distribution for the entire range of population sizes. Modified from Ref.

[36], to which the reader is referred for the model description and parameter

values.
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Close to the deterministic extinction threshold, with R0

only marginally greater than one, all models in this class
predict that the rate of exponential scaling in Eq. 1 is
proportional to the population growth rate r [45]. This result
also coincides with the classical results, which is expected,
as the FP equation is valid close to the extinction threshold
[39,45]. An exponential scaling with the carrying capacity
alsoholds fordiscrete-timemodelsdefinedasMarkovchains
[68], but such models are harder to analyze than their
continuous-time counterparts, and mathematically rigor-
ous large-N approximations are generally not available.

In the threshold case R0 = 1 (illustrated by Figure Ib in
Box 2), the MTE scales with the square-root of the system

size parameter N, and the formula MTE ¼ p
2

� �3
2
ffiffiffiffiffi
N
p

=dþ
lnnð0Þ holds in the large-N limit for all single-step models
of Box 2 [39]. For R0 < 1, the MTE predicted by the
stochastic model coincides with that predicted by the
deterministic model, giving (for large N) MTE = ln n(0)/
(d(1 � R0)) [39].

Effects of environmental variability
The message from the stable environment models is that
the MTE scales exponentially with the carrying capacity,
and thus large populations practically never go extinct
during ecological timescales. The main reason for the
discrepancy between this prediction and reality is that
real populations are also exposed to deleterious processes
other than demographic stochasticity. Adding any kind of
stochasticity into a population model usually increases the
amplitude of population fluctuations and thus extinction
risk, but the exact nature of the stochastic process can
make a major difference (Figure 2).

Probably the most important single source of stochas-
ticity affecting population viability is variability in the
environmental conditions. Environmental stochasticity
can be modeled by assuming that the birth and death rates
vary randomly in time [27–29,49,69–72], or by assuming
that occasional catastrophic events lead to large perturba-
tions in either the birth and death rates [63] or directly in
the population size [28,46,73]. Environmental noise is
filtered through the demographic population processes,
and induces non-trivial fluctuations in the population
dynamics [74,75].

In some models, demographic stochasticity is neglected
altogether by treating the population size as a continuum
[71,72], so that extinction needs to be defined as the
population size reaching a prescribed (low) threshold value
[72]. Here we focus on models which combine both demo-
graphic and environmental stochasticity and thus lead to
true extinctions.

The classical papers [27–29] considered variants of the
canonical model (Box 2) under the assumption that envi-
ronmental variations are temporally uncorrelated (white
noise) and normally distributed (Gaussian noise). For
strong environmental stochasticity they derived the pow-
er-law scaling of Eq. 2 using the FP approximation, so this
result is well established only when the population is close
to the extinction threshold. The power-law scaling has
been verified numerically [49,70] and reproduced, in the
same parameter regime, by the WKB method [76]. To our

knowledge, the case of a high growth rate is still an open
mathematical problem.

Much recent emphasis has been put on the effect of the
color of the environmental noise [1,12,31–35,69,74–76]. In-
tuitively, slow environmental variations are expected to
increase the extinction risk compared to rapid fluctuations.
This is because the extinction risk can be strongly elevated
by a consecutive series of years with adverse conditions
[34,77], an observation made already by Foley [29]. Theo-
retical studies, however, have produced conflicting results
evenwhenpredicting thesignof theeffect [77], dependingon
the time-frame for measuring extinction [34], on interac-
tions between the environmental noise and demographic
processes [31,34,35,74], and on the time scale at which the
amplitude of environmental noise is measured [32].

Most studies of extinction risks in colored environments
are based on Monte-Carlo simulations, analytical results
being scarce [69]. Recently, the WKB approach has been
used to study extinction of populations affected by a large
perturbation [63] or a continuous noise-modulation of the
birth and death rates [76]. In the latter case, the MTE
depends on the strength of the noise and on its autocorrela-
tion time (Box 4). With weak noise, the model still predicts
an exponential dependence on the carrying capacity (Eq. 1),
but with a smaller parameter b than with demographic
stochasticity alone. If the noise is sufficiently strong and
short-correlated, the power-law scaling arises. If the noise
has a sufficiently long autocorrelation time, the extinction
risk becomes independent of the carrying capacity (Box 4).

Allee effects
The models considered above assume that the per-capita
growth rate is highest when population density is low, and

[(Figure_2)TD$FIG]

Figure 2. The amplitude of population fluctuations and thus the extinction risk

strongly depend on the underlying processes generating stochasticity. Each line

corresponds to a variant of the stochastic Ricker model. All models include

demographic stochasticity (D), and a combination of environmental stochasticity

(E) affecting the birth rates, demographic heterogeneity (H) causing variation in

birth rates among the individuals, and the stochasticity associated with sex

determination (S). The vertical line at n = 20 marks the carrying capacity. Modified

from [5].

Review Trends in Ecology and Evolution Vol.25 No.11

648



Author's personal copy

they thus ignore many problems faced by small popula-
tions, such as the difficulty of finding mates, increased
vulnerability to predation [78], inbreeding depression [7],
or more generally Allee effects [1,20,79,80]. An Allee effect
canmodify the deterministic rate equation (Eq. 3) in such a
way that the population growth rate becomes negative
below a critical population size nc < K. Then, an unstable
fixed point arises at density n = nc in addition to a stable
equilibrium at the carrying capacity K [20]. As the extinc-
tion state n = 0 also becomes a stable equilibrium, the
model exhibits bistability. The critical density nc thus
determines, in the deterministic model, the minimum
initial population size required for a successful establish-
ment of a population [20].

The consequences of Allee effects have been analyzed
extensively with deterministic models [20,79] and Monte-
Carlo simulations [79,81], but very few analytical results
are available for stochastic models [79]. Dennis [82] used
the diffusion approximation to show that extinction in a
stochastic model with an Allee effect strongly depends on
the initial population size in the vicinity of the critical
density nc.

The WKB approach has been recently applied to models
with bistability [45,65]. Therefore, the general mathemat-
ical machinery required for the analysis of stochastic mod-
els with Allee effects is now available [45], and we expect
biological applications in this area to emerge. In ecological
research, the influence of an Allee effect has sometimes
been modeled non-mechanistically by assuming that the
population goes extinct if its size hits the critical size nc [1].
The results from the WKB approach give justification for
this intuitive scenario, as the leading term in the MTE is
determined by the demographic-noise-induced transition
from the carrying capacity K to the critical population size
nc (Box 3) [45].

[(Figure_I)TD$FIG]

Figure I. Most likely paths to an epidemic outbreak and to disease extinction as

predicted by the WKB method. The dashed blue line shows the prediction of

the deterministic susceptible-infected model after a few infected individuals

have been introduced into the host population. Here, after the first epidemic

outbreak, the number of infected individuals oscillates towards a fixed point,

where the disease persists indefinitely. In the stochastic model, the

introduction of a few infected individuals can lead either to the deterministic

pathway, or to two other major possibilities: a rapid extinction of the disease

after the introduction (not shown), or the extinction of the disease after the first

epidemic outbreak (red line). Even if the disease reaches the endemic state (the

fixed point of the deterministic model), it eventually goes extinct in the

stochastic model, the black line showing the most likely path for this to

happen. Redrawn from Ref. [85].

Box 4. Pathways to extinction under environmental noise

Here we illustrate the power of the WKB method by characterizing

population extinction in the environmental-noise-modulated sym-

metric logistic model (Box 2) [76]. This analysis is restricted to the

parameter regime where the basic reproductive ratio R0 is only

slightly above one and the carrying capacity K is large. Without

environmental noise, the MTE in this model behaves (up to the pre-

factor C1 of Eq. 1) as exp(b0K), where b0 = r/(2d).

The qualitative effect of environmental noise depends on its

autocorrelation time tc compared to the relaxation time tr=1/r

needed for the population to reach the carrying capacity in the

deterministic model. For short-correlated (tc� tr) and weak

(ve� rd=K ) noise, the MTE still scales exponentially with K, but

with a reduced coefficient b ¼ b0 � vetcrK 2=ð6d2Þ [76]. Thus, a large

population will have a negligible extinction risk if the environmental

fluctuations are sufficiently mild and if they vary at a short time scale

so that the effects of adverse conditions cannot accumulate in time.

Very adverse environmental conditions lead to a quick extinction,

but if such conditions are extremely rare, there is a trade-off

between the statistical weight of the noise and its impact on

population dynamics [34,76]. For strong (ve� rd=K ) but short-

correlated noise, the time to extinction scales as the power-law

ðvetcK=dÞr=ve tc [27–29,76]. The WKB method yields the optimal

realization of noise which determines the most probable path to

extinction, and thus explains where the power-law scaling comes

from. In the optimal realization, the noise attains, for some time, the

value j(t) = 2r leading the system on a deterministic pathway to

extinction. The duration of this event is relatively small,

lnðKvetc=2dÞ=r : Thus, if the environmental conditions undergo

strong and fast fluctuations, extinctions are mostly caused by

catastrophes (short-lived but very severe conditions).

In case of long-correlated noise (tc� tr), the optimal realization of

noise, predicted by the WKB method, is such that the adverse

conditions continue much longer than the relaxation time of

population dynamics. However, they are relatively mild in the sense

that the population growth rate stays above the deterministic

threshold even during the extinction process.

Ref. [76] gives an explicit formula for the MTE for both weak and

strong long-correlated noises. In the latter case, the expression for

the MTE is especially simple, MTE� expðr2=2veÞ. Thus, the WKB

method predicts that, while short-correlated noise leads to a power-

law scaling, with long-correlated noise MTE becomes (up to a pre-

factor) independent of carrying capacity.

Box 5. Pathways to epidemic outbreak and disease

extinction

Here we illustrate how the WKB method can be used to quantify

extinction in models with two or more entity types. We consider the

susceptible-infected model with population turnover [62,85,89–91],

with S standing for the number of susceptible and I for the number

of infected individuals. A susceptible individual becomes infective at

per capita rate (b/N)I, where b is the infection rate, and N scales as

the size of the entire population. Susceptible individuals die at rate

m, infected individuals die at rate mI, and new susceptibles are

brought into the population at rate mN.

In the deterministic version of the susceptible-infected model, the

infection rate needs to exceed the critical threshold b>mI for the

disease to persist [90]. Above the threshold, the deterministic model

has a stable fixed point, with a constant proportion of the

individuals remaining infected (Figure I). In the full stochastic

model, demographic stochasticity causes the ultimate extinction of

the disease for any parameter values. Applying the WKB approx-

imation, one can calculate numerically the mean time to disease

extinction, the probability of the disease going extinct immediately

after the first epidemic outbreak, and the most likely paths of the

system to disease extinction [62,85] (Figure I). Analytical results can

be obtained in special cases, for example, close to the critical

threshold. Similar to problems with one entity type, the mean time

to disease extinction grows exponentially with the parameter N

[62,85].
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Models with more than one entity type
Models with more than one entity type can be used to
extend the biological context in various ways. Examples
include demographic heterogeneity [5] due to e.g. age [83]
or sex [5,33] structure, a set of local populations connected
by dispersal [26,69], and the dynamics of interacting spe-
cies [20].

The analysis of large fluctuations and population
extinction in models with multiple entity types is a
hot area of research in physics [61,62,84–87], especially
in the context of disease dynamics. Quantitative studies
on the mean time to extinction of diseases, caused for
example by stochasticity of the disease transmission and
recovery, were initiated in the pioneering works of Bart-
lett [88]. Archetypical epidemiological models include
the susceptible-infected and susceptible-infected-recov-
ered models [62,64,89–91], and the susceptible-infected-
susceptible model [61,84,87] with population turnover.
In these epidemiological models, the mean time to dis-
ease extinction is a direct analogue of the MTE in models
of ecology.

The mathematical challenges of finding the mean time
to disease extinction increase with the number of entity
types in every method used. The FP and WKB approaches
bring about high-dimensional problems that are generally
analytically intractable, except for special cases, e.g. in the
parameter regime close to the extinction threshold
[61,62,85]. In cases where analytical solutions are not
available, numerical solutions based on theWKB approach
can provide sharp insights into large fluctuations andmost
likely pathways to disease extinction. Examples of such
calculations for the susceptible-infected model are shown
in Box 5.

Understanding population extinction remains a
challenge
Stochastic population models can be used to gain insight
into how endogenous and exogenous factors interact in
determining the fate of populations and in particular for
assessing their extinction risk. In this review, we have
focused on a relatively simple class of models, in which
mathematical analysis beyond stochastic simulations can
be used to provide an analytical insight. In spite of
extensive research efforts over the past decades, we
argue that there is a lack of a general synthesis that
would extend much beyond qualitative predictions of the
classical models [27–29]. This is partly because there
has been a lack of appropriate mathematical machinery
for characterizing extinction events, and thus most
results are based on either Monte-Carlo simulations or
uncontrolled mathematical approximations. However,
approaches suitable for the study of large fluctuations
and centered on the WKB approximation have been
recently developed by physicists. These approaches make
it possible to accurately evaluate the mean time to ex-
tinction and to determine the most probable pathway of
the population on the way to extinction. We propose that
research in theoretical ecology takes advantage of these
new methods to reach a new level of understanding of the
process of population extinction and other rare events of
interest to ecologists.
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