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A new mechanism is proposed for the ionization of atoms highly excited by
electromagnetic radiation.

PACS numbers: 32.80.Fb, 31.20.Lr, 41.90. 4 ¢

Processes of nonlinear photoionization of atoms are currently being studied in-
tensely both experimentally and theoretically."" This note investigates the perturbation
of the spectrum and proposes a new mechanism for the cascade ionization of highly-
excited atoms (specificially hydrogen) under the action of a linearly-polarized mono-
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chromatic radiation with a frequency of w<E ©, where E? is the binding energy of
the electron.” This mechanism is based on the classical effect of stochastic instability
of a nonlinear oscillator.”

The condition #>1 (n is the principal quantum number that corresponds to the
canonical momentum of the classical Keplerian motion of the electron) permits apply-
ing a quasi-classical approximation. The Hamiltonian of the classical motion of the
electron in the atom under the action of an electric field € cosw? has the form:

1 2 \1/2 =

H=- + € cos wt( -t ) by (xksinl//cos kA+ y, cos i sinkA)
2n? M2 k=1
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Here, 4 is the phase conjugated by »n (in the unperturbed case, e =0 4 = 2t + A,,
where £2 = n7* is the frequency of Keplerian motion of the electron), ¢ and ¢ are the
Euler angles,” and M and M, are their conjugate momenta (the moment of the elec-
tron and its projection on €). Because phase ¢ is cyclical, M, = const. Further, x, and
y, are the Fourier components of the dipole moment of the electron in a hydrogen
atom."

If the field intensity of wave € is sufficiently small (see the criteria below), it is
possible to distinguish between nonresonance and resonance. In the first case
| — k{2 | ~ 2, the motion of the electron is determined in accordance with the conven-
tional perturbation theory, which makes it possible to described the small “fluctu-
ations” of the electron near the initial values of # and M. In the resonance case
|@ — k2 | €£2 and the Fourier series (Eq. 1) contains only the resonance term. Then, a
simple canonical transformation eliminates the explicit temporal dependence of the
Hamiltonian in Eq. (1). The relatively small size of the resulting displacement An<n
makes it possible to expand the first term in Eq. (1) close to the resonance value
n = n, with an accuracy up to the terms ~(n — n,)’, where n, = (k /w)'"”. The pairs
of variables A, n and i, M are the fast and slow subsystems, respectively, which makes
it possible to bring Eq. (1) to the following form

1/2
3 m.4/3 _ 2 -f—- Mg \
fe=y 77) (rom™ 2( M2)
X(x/erin2¢+ylfr°0‘sz¢)1/2sin(k)« 4.‘(1)), @

where

%y = %0y g, = Vk(n)hy g®=(%4, /Y4, Jt8Ys Y= const, M = const.

The above Hamiltonian (Eq. 2)) is formally equivalent to the Hamiltonian of a
mathematical pendulum of finite amplitude, while the equations of motion are inte-
grated in elliptic functions."”’ The characteristic “beat” frequency of both phase (1 )-
“captured” and fly-by particles is

\/i 1/8,1/2,2/3 M: L 2 in2 2 24)1/4
V=2—k € ) (—;{-2- (xj,sinyY + y;, cos “y , 3)

For k=1, Eq. (3) yields v,,,, = (3€)"?/2n. The range of beats of n equals
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4 k 2/3 M2 1/4
an = m(3) V(1= 22) G aintge gl cosP/h @

Substituting the resultant functions n(z ) and 4 (¢ ) into Eq. (2), we may determine M (¢),
¥(t) and ¢ (¢t ) Quantization of the arbitrarily-periodic motion investigated'® permits
determination of the quasi-energetic state (QES) in both the non-resonant and reso-
nant case. A separate article by the authors will be devoted to these findings.

Approximation of the isolated resonance is valid when v&(2,"” i.e., e€n™ (let us
recall that w €n7?). Rigorous examination'” has shown that when v<#2, for most initial
conditions An remains small right up to = «. For the remaining initial conditions,
the “exit” velocity of n (the Arnold diffusion) is exponentially small."® Thus, in the
classical formulation when e<£n™, ionization is practically nonexistent."’

An erroneous assertion was expressed in a recent work"” concerning the “diffu-
sion” ionization of a hightly-excited atom in the case e ~n~<n™*. Without dwelling on
the specific errors, let us note that the estimated “diffusion time” (Eq. (9) in Ref. 10) is
classical. However, application of the corresponding results"” to celestial mechanics
would lead to the conclusion of the rapid escape of, for example, Saturn from the solar
system occasioned by Jupiter, which contradicts observations.

The stochastic instability of an atomic oscillator and, as a consequence, ioniza-
tion, occur when v/£2 is not very small. In this case, various resonances overlap, while
the separation of electrons into resonant and non-resonant electrons loses its mean-
ing."” Moreover, the electron drifts chaotically through the levels until it returns to the
continuum. The stochasticity threshold for systems with a Hamiltonian close to Eq.
(1) is presented in Ref. 11 and has the form v {2 /6 which, in our case, is equivalent to
€ €, = 1/27n*. When n = 66, we get €, = 10 V/cm, which corresponds with the ex-
perimental results. A rough estimate of the ionization time (drifting of the electron
among the resonances) close to the instability threshold yields 7~ 10°z°. For n = 50,
we find 7~3X 107 sec, which corresponds with the experiments."” The presence of
maxima in the dependence of the ionization probability on »"* can be explained by the
incomplete overlapping of the resonance close to the stochasticity threshold.

Thus, the proposed mechanism of stochastic ionization apparently plays a signifi-
cant role and must be taken into account when formulating a sequential quantum
theory. After completion of this work, Ref. 14 appeared; it contains results of numeri-
cal modeling, by the Monte Carlo method, of the ionization and perturbation of hy-
drogen atoms for the experimental conditions."? In Ref. 14 the classical trajectories of
electrons were computer-calculated. The good agreement of results of “classical” mod-
eling"* with experiment"? is an additional agrument in support of our theory. It is
important to mention that an appreciable portion of the trajectories obtained in Ref.
14 manifest properties of stochasticity, which was not noted by the authors of Ref. 14.

""Here and elsewhere, atomic units are used.

2’Note that for e<n™, the corresponding quantum-mechanical problem is unsolved, with the exception of the
region w<{2 (where the probability of ionization is exponetially small).”
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