

MAX PLANCK INSTITUTE FOR GRAVITATIONAL PHYSICS (ALBERT EINSTEIN INSTITUTE)

Modelled searches in LIGO data for Compact Binary Coalescences

Ofek Birnholtz on behalf of LIGO & VIRGO Collaborations

Gravitational Waves and Compact Objects Workshop הטכניון הטכניון גי דנכואוי וא ממון טכנולוגי Israel Institute of Technology

23 November 2016

[1] GW150914 Detection, arXiv:1602.03837 [2] CBC Searches, arXiv:1602.03839 [3] Parameter Estimation (PE), arXiv:1602.03840, arXiv:1606.01210 [4] Testing GR, arXiv:1602.03841 [5] Detector Characterization (DetChar), arXiv:1602.03844 [6] Basic Physics, arXiv:1608.01940 [7] GW151226, arXiv:1606.04855 [8] O1 BBH, arXiv:1606.04856

Modelled CBC Searches

- What we search for
- How we do it
- What we do when we find it

- The post-Newtonian parameter x: $\sqrt{x} = v/c = \omega r/c = \sqrt[3]{\pi GM f_{GW}}/c$
- For $x \sim 0.1$: $\frac{M}{20 \,\mathrm{M_\odot}} \sim \frac{100 \,\mathrm{Hz}}{f_{GW}}$

• $M = m_1 + m_2$ $\left(\frac{G M_{\odot}}{c^3} \sim 5\mu s\right)$

What a signal *really* looks like

The window

• The Quadrupole Formula: $h_{ij} = \frac{2 G}{c^4 d_L} \frac{\mathrm{d}^2 Q_{ij}}{\mathrm{d}t^2}$

$$\frac{\mathrm{d}E_{\mathrm{GW}}}{\mathrm{d}t} = \frac{c^3}{16\pi G} \iint |\dot{h}|^2 \mathrm{d}S = \frac{1}{5} \frac{G}{c^5} \sum_{i,j=1}^3 \frac{\mathrm{d}^3 Q_{ij}}{\mathrm{d}t^3} \frac{\mathrm{d}^3 Q_{ij}}{\mathrm{d}t^3}$$

• Defining the chirp mass:

$$\mathcal{M} = \frac{(m_1 m_2)^{3/5}}{(m_1 + m_2)^{1/5}}$$

Frequency evolution:

$$\dot{f} = \frac{96}{5} \pi^{8/3} \left(\frac{G \mathcal{M}}{c^3}\right)^{5/3} f^{11/3}$$

• Time in the band:

$$\tau_0 = \frac{5}{256} \left(\pi f_{ref} \right)^{-8/3} \left(\frac{G\mathcal{M}}{c^3} \right)^{-5/3}$$

Matched Filtering

- Measure the Noise Power Spectrum Density (PSD) $S_n(f)$
- Define Scalar product

$$<\!a|b\!>=4\int_0^\infty \frac{\tilde{a}^*(f)\,\tilde{b}(f)}{S_n(f)}df$$

 Signal-to-(Gaussian)Noise Ratio (SNR) of template h in measured strain s

$$\rho = \frac{|\!<\!h|s\!>\!|}{\sqrt{<\!h|h\!>}}$$

• Find *Triggers*, which maximize $\rho(t)$

The Template "Über"-bank

- 4 free parameters:

 - $m_{1,2}$ Massee $\chi_{1,2} = \frac{c \mathbf{S}_{1,2} \cdot \hat{\mathbf{L}}}{G m_{1,2}^2}$ aligned spins \mathbf{S}_{10^1} models:
- 2 waveform models:
 - TaylorF2 $M < 4M_{\odot}$
 - SEOBNRv2 $M > 4M_{\odot}$
- 2 population methods:
 - Geometric $\mathcal{M} < 1.5 M_{\odot}$
 - Stochastic $M > 1.5 M_{\odot}$
- Mismatch >3% for <1% of signals (ER8 PSD)
- ~250,000 templates

Precession

- Überbank effectual if only little precession
- Generally, precession adds ~10 spin+sky free parameters

Aligned search + precession in post-analysis

- Background not Gaussian
 - Many loud triggers
 - Remove triggers with SNR > 300
- Measure distance to template:
 - Divide template h to bins $\{h_i\}$
 - Bins of equal power $\{<h_i|s>\}$
 - Calculate SNR bin-by-bin
 - Variance:

$$\chi_r^2 = \frac{p}{2p-2} \frac{1}{<\!h|h\!>} \sum_{i=1}^p \left|<\!h_i|s\!> - \frac{<\!h|s\!>}{p}\right|^2$$

 χ^2 -test

• Penalize triggers using χ^2 :

Coincidence test

- Still many significant triggers in each detector
- If astrophysical, should trigger both
 - light-travel-time 10ms
 - template auto-correlation time 5ms
 - => 30ms window for trigger coincidence
- Must be same template
- Combined coincident SNR (incoherent):

$$\tilde{\rho}_c = \sqrt{\tilde{\rho}_H^2 + \tilde{\rho}_L^2}$$

H1

ms

Background estimation

- Estimated using single-detector triggers
- By time-sliding between detectors
 - Ns = 10⁷
 - ∆t = 100ms
- How many louder?

 $\operatorname{FAR}(\tilde{\rho}_c) \sim \frac{n_b(\tilde{\rho}_c)}{N_s T}$

Data Quality

- Monitor possible external sources: earthquakes, lightnings, solar events, traffic...
- Auxiliary Channels:
 - ~200K Channels mostly internal to detectors
 - Physical Environmental Monitoring (PEM): RF, microphones, magnometers, barometers, thermometers, wind & rain, cosmic ray detector...

PEM at LHO

Data Veto Categories

- 1: critical issue in key detector component
 - global
- 2: active noise source with known physical coupling
 - search-specific
 - must be demonstratedly advantageous
 - must be safe

Characterizing Glitches

Begins manually...

... and continues to machine learning algorithms

Data Summary Page

https://ldas-jobs.ligo.caltech.edu/~detchar/summary/day/20151123/

Parameter Estimation (PE)

- Follow-up on Events
- "Opposite" problem to Searches:
 - maximum resolution, few triggers
- Stochastic Sampling Engines:
 - Markov Chain Monte-Carlo
 - Nested Sampling
- Priors from identified trigger (time)

PE – sample results

PE – richer physics

- Sky Location
- More waveform approximants:
 - IMRPhenomD
 - Precession: IMRPhenomP, SEOBNRv3
 - Little precession / small mass ratio
 - Effective spin
- Modified waveforms:
 - Eccentricity
 - Matter effects, NS E.O.S
 - Modifications to GR

Focus on particular parts (inspiral, ringdown...)

Testing GR Consistency

Testing GR Modifications

What next?

- New sources: Neutron Stars, BH-NS
- Matter effects: Tides, Disruptions, E/M Fields...
- New waveforms: Precession, GR modifications
- 3rd detector => signal coherence
- Louder SNR, Higher modes
- With new data come new surprises:
 - New noise analyses, new reduction techniques
 - New tests constrain theory => new theories...

2nd Observation Run (O2): Next week!

[1] GW150914 Detection, arXiv:1602.03837 [2] CBC Searches, arXiv:1602.03839 [3] Parameter Estimation (PE), arXiv:1602.03840, arXiv:1606.01210 [4] Testing GR, arXiv:1602.03841 [5] Detector Characterization (DetChar), arXiv:1602.03844 [6] Basic Physics, arXiv:1608.01940 [7] GW151226, arXiv:1606.04855 [8] O1 BBH, arXiv:1606.04856