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Abstract. We examine the coexistence of spherical and γ-unstable deformed nuclear shapes,
described by an SO(5)-invariant Bohr Hamiltonian, along the critical-line. Calculations are
performed in the Algebraic Collective Model by introducing two separate bases, optimized to
accommodate simultaneously different forms of dynamics. We demonstrate the need to modify
the β-dependence of the moments of inertia, in order to obtain an adequate description of such
shape-coexistence.

1. Introduction
The Geometric Collective Model (GCM) [1] plays a central role in the study of nuclear shapes
and, more recently, in providing a convenient framework for incorporating beyond mean-field
effects, essential for understanding phase transitions between such shapes. Of particular current
experimental and theoretical interest, are first-order transitions involving coexistence of distinct
shapes in the same nucleus. In the present contribution, we examine such coexistence of spherical
and γ-unstable deformed shapes in the vicinity of the critical-line. In this case, the relevant Bohr
Hamiltonian involves a γ-independent potential, supporting two degenerate minima. We employ
an algebraic formulation of the GCM, the Algebraic Collective Model (ACM) [2, 3], which makes
exact numerical calculations feasible, without recourse to approximations such as β-rigidity and
adiabaticty, hence can reveal general capabilities and limitations of the GCM.

2. The Geometric Collective Model with SO(5) symmetry
The Bohr Hamiltonian in the quadrupole variables reads

Ĥ = − h̄2

2B

(
1

β4

∂

∂β
β4 ∂

∂β
− Λ̂2

β2

)
+ V (β, γ) . (1)

Here B is a mass parameter and Λ̂2 = − 1
sin 3γ

∂
∂γ sin 3γ

∂
∂γ +

1
4

∑
k

L2
k

sin2(γ− 2
3
πk)

is the Casimir

operator of SO(5), acting on the γ and three Euler angles Ω. When the potential depends only
on β, V (β, γ) �→ V (β), the Hamiltonian has SO(5) symmetry and the wave functions can be
separated into two parts, Ψ(β, γ,Ω) = f(β)YτnΔLM (γ,Ω), satisfying the following equations

Λ̂2YτnΔLM (γ,Ω) = τ(τ + 3)YτnΔLM (γ,Ω) , (2a)[
− 1

β4

∂

∂β
β4 ∂

∂β
+

τ(τ + 3)

β2
+ v(β)

]
f(β) = εf(β) . (2b)
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Here ε = 2B
h̄2 E and v(β) = 2B

h̄2 V (β) are the reduced energy and potential, respectively. Yτ,nΔ,L,M

are SO(5) basis states with good SO(5) ⊃ SO(3) quantum numbers (τ, L), and nΔ a multiplicity
label. By setting φ(β) = β2f(β), Eq. (2b) can be cast in the form of a radial Schrödinger equation

−d2φ

dβ2
+

[
(τ + 1)(τ + 2)

β2
+ v(β)

]
φ = ε φ . (3)

with an effective τ -dependent potential

v
(τ)
eff (β) =

(τ + 1)(τ + 2)

β2
+ v(β) . (4)

The ACM provides a tractable algebraic scheme for an exact numerical diagonalization
of the Bohr Hamiltonian (1), in a basis of SU(1, 1)× SO(5) product wave functions,
Rλ

ν (aβ)YτnΔLM (γ,Ω). The angular part are the SO(5) spherical harmonics of Eq. (2a), and
the radial part are SU(1,1) modified oscillator wave functions given by [2, 3]

Rλ
ν (aβ) = (−1)ν

√
2ν!a

Γ(ν + λ)
(aβ)λ−1/2e−a

2β2/2L(λ−1)
ν (a2β2) ν = 0, 1, 2, . . . (5)

where L
(λ−1)
ν is a generalized Laguerre polynomial of oder ν. Any choice of λ > 0 defines

an orthonormal SU(1,1) basis, in which matrix elements of the potential can be evaluated in
closed form. For λ = τ + 5/2, the above set reduces to the spherical harmonic oscillator
basis. In general, the scaling parameter a and λ affect the width and localization of Rλ

ν (aβ),
respectively. An optimal choice of (a, λ), enables a faster convergence as a function of basis size.
For γ-independent potentials, with even powers of β, this implies that converged results can be
obtained with only a few basis states (small νmax) in the expansion of the radial wave function

φ(β; a, λ) =

νmax∑
ν=0

c(τ)ν Rλ
ν (aβ) , (6)

where the expansion coefficients, c
(τ)
ν , depend on τ . The ACM has so far been tested for

potentials with a single minimum [2, 3]. In the present work, we extend this approach to
accommodate potentials v(β) with multiple minima.

3. Shape coexistence in the GCM with γ-independent potentials
The dynamics associated with γ-independent potentials with a single minimum, has been studied
extensively. For a single minimum at β = 0, the spectrum resembles that of a spherical vibrator,
describing quadrupole excitations of a spherical shape. The levels are arranged in nd-multiplets
composed of states with quantum numbers (nd = 0, τ = 0, L = 0), (nd = 1, τ = 1, L = 2),
(nd = 2, τ = 0, L = 0; τ = 2, L = 2, 4) and (nd = 3, τ = 3, L = 0, 3, 4, 6; τ = 1, L = 2), in
increasing order. For a single minimum at β > 0, the spectrum resembles that of a γ-unstable
deformed roto-vibrator, with β excitations of the deformed equilibrium shape. The ground
band is composed of τ -multiplets with quantum numbers (τ = 0, L = 0), (τ = 1, L = 2),
(τ = 2, L = 2, 4) and (τ = 3, L = 0, 3, 4, 6), in increasing order. The same pattern repeats
itself in excited β-bands. The dynamics at the critical-point of a second-order shape-phase
transition, where the spherical minimum evolves continuously into a deformed minimum, can be
modeled by a flat-bottomed potential. Analytic benchmarks for these three limits of structure
are the harmonic spherical vibrator model [4] (similar to the U(5) dynamical symmetry of the
interacting boson model (IBM) [5]), the β-rigid Jean-Wilets model [4] (similar to the SO(6)
dynamical symmetry of the IBM), and the E(5) critical-point model [6] (an infinite square-well
potential), respectively. Characteristic signatures for these solvable limits are listed in Table 1.
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Table 1. Characteristic properties of yrast states for GCM paradigms: a spherical vibrator [4],
E(5) critical-point [6] and γ-unstable deformed rotor [4]. B(E2) values are in units of
B(E2; 2+1 → 0+1 ) = 100. The E2 operator is proportional to the quadrupole coordinate α2μ.

Observable Spherical vibrator [U(5)] E(5) γ-unstable deformed rotor [SO(6)]

E(4+1 )/E(2
+
1 ) 2 2.20 2.5

E(6+1 )/E(2
+
1 ) 3 3.59 4.5

B(E2; 4+1 → 2+1 ) 200 168 143
B(E2; 6+1 → 4+1 ) 300 221 167

In the present work, we explore the dynamics of shape coexistence in the GCM, with an
SO(5)-invariant Bohr Hamiltonian. We focus the discussion to the critical-line of a first-order
phase transition involving the coexistence of spherical and γ-unstable deformed shapes. This
can modeled by the following sextic potential in the Bohr Hamiltonian

v(β) = v0β
2(β2 − β2

0)
2 , (7)

where v0 =
2B
h̄2 V0 is the reduced strength. v(β) is an even function of β and is independent of

γ, ensuring an SO(5) symmetry for the Hamiltonian. For v0 > 0, it supports two degenerate
global minima, spherical (β = 0) and deformed (β = β0 > 0), at zero energy. A local maximum
at β = 1√

3
β0 creates a barrier of height Bh =

4
27v0β

6
0 , separating the two minima. The two wells

are asymmetric with different stiffness, v′′(β=β0) = 4v′′(β=0) = 8v0β
4
0 . The barrier-height and

potential stiffness are related, both increasing linearly with v0 and as a power-law with β0. The
spherical well is finite, while the deformed well has a finite interior boundary and an exterior
wall rising as β6 for β →∞. Both wells become wider for higher energy.

Finite-N aspects of the dynamics in such potentials have been studied [7] in the framework
of the IBM, based on a compact U(6) spectrum generating algebra. Here we examine the
analogous dynamics in the GCM, which has an inherent non-compact algebraic structure. The
sextic potential in question, does not belong to a class of solvable nor quasi-solvable potentials,
hence the radial equation (3) necessitates a numerical solution. For that purpose, we employ
the ACM approach. To facilitate the identification and convergence of different types of states,
we diagonalize the Bohr Hamiltonian with v(β), Eq. (7), in two different SU(1, 1)× SO(5) bases

Ψs = β−2φs(β; as, λs)YτnΔLM (γ,Ω) , (8a)

Ψd = β−2φd(β; ad, λd)YτnΔLM (γ,Ω) . (8b)

Here the radial wave functions are defined as in Eq. (6), and are characterized by different
parameters (as, λs) �= (ad, λd). In particular, the basis Ψs of Eq. (8a) [Ψd of Eq. (8b)] is
appropriate for spherical [deformed] type of states, associated with the spherical [deformed]
minimum, and consequently, λs << λd. The convergence is verified by examining the energies,
B(E2) values and orthogonality of the calculated states, Ψs and Ψd.

4. Evolution of structure along the critical-line
The spectrum and eigenstates of the Bohr Hamiltonian is governed by the competition between
the potential and kinetic-rotational terms. The potential term is attractive and tends to localize
the wave functions in the vicinity of its minima. In general, “deepening” a potential lowers the
energies of levels confined within it, while “narrowing” a potential raises the level energies. The
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Figure 1. Spectrum of the Bohr Hamilto-
nian overlayed on the potentials v(β), Eq. (7),

(blue solid lines) and v
(τ=0)
eff (β) = v(β)+2/β2,

Eq. (4), (grey dashed lines), with parameters
(a) (β0, v0) = (1, 1.4), (b) (β0, v0) = (2, 2),
(c) (β0, v0) = (3, 3), corresponding to low,
intermediate and high barriers, respectively.

Absolute energies are in units of h̄2

2B = 1.
Numbers to the left of the drawn levels, indi-
cate relative energies.

kinetic term, 1
β2 Λ̂

2, is repulsive and tends to delocalize the wave-functions. Its strength depends

on τ and the 1/β2 dependence energetically penalizes small β values and tends to “push” the
wave function towards larger β. This affects strongly the spherical minimum in the effective

potential v
(τ)
eff (β), Eq. (4), shifting its position to larger values of β and distorting its shape.

In contrast, the kinetic term has a marginal effect on the shape of the deformed well, yet it
governs the rotational splitting of states in the associated ground and excited bands. These
effects are seen clearly in Fig. 1, displaying the energy spectrum overlayed on the potentials

v(β) and v
(τ=0)
eff (β), for representative values of (v0, β0). Fig. 1(a) corresponds to the case of

a low-barrier. The energy levels are well above the barrier and experience essentially a flat
bottomed potential. The spectrum resembles that of the E(5) critical-point model (see Table 1
for comparison). Higher levels show the spectral character of a β6 potential. The kinetic term
present in the effective potential, completely washes out the spherical minimum. Fig. 1(b)
corresponds to the case of an intermediate-barrier. Here a spherical minimum develops in

v
(τ=0)
eff (β) but is shifted to higher energy and is distorted by the kinetic term to such an extent,
that it does not support bound states. The spectrum consists only of deformed type of states,
forming a ground band with and SO(6)-like structure. Fig. 1(c) corresponds to the case of a high
barrier. Here both the spherical and deformed minima are well developed and support bound
states localized in their vicinity. The deformed states comprise the ground and β bands. Their
rotational splitting, shown in Fig. 2, exhibits an SO(6)-like character. The spherical states are
arranged in nd-multiplets and exhibit a U(5)-like structure.

5. Limitation of the standard GCM Hamiltonian and a possible resolution
Figs. 1(c)-2, demonstrate a limitation of the standard GCM Hamiltonian, namely, very different
energy scales for the rotational and vibrational excitations. A pronounced coexistence of many
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states (left) for the Bohr Hamiltonian with
(β0, v0, α)= (3, 3, 0). Energies are in units of
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E(L)−E(0+1 )
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Figure 3. As in Fig. 2, but for a Bohr
Hamiltonian with (β0, v0, α) = (3, 3, 1) in
Eqs. (7) and (9). Note the linear energy scale
as opposed to the logarithmic energy scale in
Fig. 2.

spherical and deformed states requires the two wells to be deep with a high-barrier in-between.
For the potential under study, this necessitates a large deformation β0. The states localized
within the deformed potential have an average deformation 〈β2〉 of order β2

0 , increasing with τ ,
hence experience a small rotational splitting of order τ(τ + 3)/β2

0 , with noticeable centrifugal
stretching. For the same β0, the stiffness of the deformed minimum is large, hence the β-
bandhead energy is high, of order εβ ≈ 4β2

0v0. The kinetic term shifts the position of the
spherical minimum to a small but non-zero value of β, hence the lowest spherical 0+s state
experiences a shift of order 2/〈β2〉 to higher energy. For the example considered in Figs. 1(c)

and 2, E(2+1 )−E(0+1 ) = 0.45, while
E(0+β )−E(0+1 )

E(2+1 )−E(0+1 )
= 131.06 and

E(0+s )−E(0+1 )

E(2+1 )−E(0+1 )
= 98.90, i.e., the

resulting rotational and vibrational scales differ by more than two-orders of magnitude. Such a
difference is at variance with the experimentally observed patterns of coexistence in nuclei.

The origin of the problem can be traced to the quadratic β-dependence of the irrotational
moments of inertia in the kinetic term, 1

β2 Λ̂
2. A possible resolution is to allow a departure from

such a β2 behavior. In the present study, we consider the following substitution

1

β2
Λ̂2 → (1 + αβ2)2

β2
Λ̂2 . (9)

This particular choice is motivated by previous studies within the GCM [8, 9] and the classical
limit of the IBM [10]. For α �= 0, this introduces an additional term, α(2 +αβ2)τ(τ +3), in the
radial equation, which affects only the levels with τ �= 0. Typical spectrum and E2 decay pattern,
obtained with α = 1, are shown in Figs. 3-4. Many states now occur below the barrier, with
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Figure 4. Spectrum of the Bohr Hamiltonian with (β0, v0, α) = (3, 3, 1) in Eqs. (7) and (9).
Converged results for spherical (left side) and deformed (right side) type of states, are obtained
by employing SU(1, 1)× SO(5) bases, Eq. (8), with (as, λs) = (4, 2.5) and (ad, λd) = (4.1, 140.5),

respectively. L = 0+1 , 0
+
3 are the bandhead states of the ground and β bands, with

√〈β2〉 =
2.97, 2.93, respectively. L=0+2 is the spherical ground state with

√〈β2〉 = 0.41.

comparable rotational and vibrational scales. The spherical states exhibit a U(5)-like structure,
with strong Δnd = ±1 E2 decays. The deformed states (comprising the ground and β-bands)
maintain an SO(6)-like structure, with strong (weak) intra-band (inter-band) transitions. The
E2 decays between the spherical and deformed type of states are extremely weak, reflecting the
impact of the high barrier. The ability of a single Hamiltonian to accommodate simultaneously
states with different symmetry character, reinforces the view that partial symmetries can play
a role in the phenomena of shape coexistence [7, 11, 12].
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