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Abstract
We present a symmetry-based approach for shape coexistence in nuclei, founded on the concept
of partial dynamical symmetry (PDS). The latter corresponds to the situation where only selected
states (or bands of states) of the coexisting configurations preserve the symmetry while other
states are mixed. We construct explicitly critical-point Hamiltonians with two or three PDSs of
the types U(5), SU(3), ( )SU 3 and SO(6), appropriate to double or triple coexistence of spherical,
prolate, oblate and γ-soft deformed shapes, respectively. In each case, we analyze the topology
of the energy surface with multiple minima and corresponding normal modes. Characteristic
features and symmetry attributes of the quantum spectra and wave functions are discussed.
Analytic expressions for quadrupole moments and E2 rates involving the remaining solvable
states are derived and isomeric states are identified by means of selection rules.

Keywords: dynamical symmetry, partial dynamical symmetry, shape coexistence in nuclei,
interacting boson model

(Some figures may appear in colour only in the online journal)

1. Introduction

The presence in the same nuclei, at similar low energies, of
two or more sets of states which have distinct properties that
can be interpreted in terms of different shapes, is a ubiquitous
phenomena across the nuclear chart [1, 2]. The increased
availability of rare isotope beams and advancement in high-
resolution spectroscopy, open new capabilities to investigate
such phenomena in nuclei far from stability [3]. Notable
empirical examples include the coexistence of prolate and
oblate shapes in the neutron-deficient Kr [4], Se [5] and Hg
[6] isotopes and in the neutron-rich Se isotopes [7], the
coexistence of spherical and deformed shapes in neutron-rich
Sr isotopes [8, 9], 96Zr [10] and near 78Ni [11, 12], and the
triple coexistence of spherical, prolate and oblate shapes in
186Pb [13]. Adetailed microscopic interpretation of nuclear
shape coexistence is a formidable task. In a shell model
description of nuclei near shell-closure, it is attributed to the
occurrence of multi-particle multi-hole intruder excitations
across shell gaps. For medium-heavy nuclei, this necessitates
drastic truncations of large model spaces, e.g., by Monte

Carlo sampling [14, 15] or by a bosonic approximation of
nucleon pairs[16–25]. In a mean-field approach, based on
energy density functionals, the coexisting shapes are asso-
ciated with different minima of an energy surface calculated
self-consistently. A detailed comparison with spectroscopic
observables requires beyond mean-field methods, including
restoration of broken symmetries and configuration mixing of
angular momentum and particle-number projected states
[26, 27]. Such extensions present a major computational
effort and often require simplifying assumptions such as axial
symmetry and/or a mapping to collective model Hamilto-
nians[23–28].

A recent global mean-field calculation of nuclear shape
isomers identified experimentally accessible regions of nuclei
with multiple minima in their potential-energy surface
[29, 30]. Such heavy-mass nuclei awaiting exploration, are
beyond the reach of realistic large-scale shell model calcula-
tions. With that in mind, we present a simple alternative to
describe shape coexistence in medium-heavy nuclei, away
from shell-closure, in the framework of the interacting boson
model (IBM) [31]. The proposed approach emphasizes the
role of remaining underlying symmetries which provide
physical insight and make the problem tractable. The
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feasibility of such a symmetry-based approach gains support
from the previously proposed [32, 33] and empirically con-
firmed [34, 35] analytic descriptions of critical-point nuclei.

2. Dynamical symmetries and nuclear shapes

The IBM has been widely used to describe low-lying quad-
rupole collective states in nuclei in terms of N monopole ( †s )
and quadrupole ( †d ) bosons, representing valence–nucleon
pairs. The model has U(6) as a spectrum generating algebra,
where the Hamiltonian is expanded in terms of its generators,

¢{ }† † † †s s s d d s d d, , ,m m m m , and consists of Hermitian, rotational-
scalar interactions which conserve the total number of s- and
d- bosons, = + = + åˆ ˆ ˆ † †N n n s s d ds d m m m. The solvable
limits of the model correspond to DSs associated with chains
of nested sub-algebras of U(6), terminating in the invariant
SO(3) algebra. A dynamical symmetry (DS) occurs when the
Hamiltonian is expressed in terms of the Casimir operators of
a given chain,

l lÉ É É ¼ É ¼ ñ( ) ( ) ∣
( )

N LU 6 G G SO 3 , , , , .
1

1 2 1 2

In such a case, all states are solvable and classified by
quantum numbers, l l ¼ ñ∣N L, , , ,1 2 , which are the labels of
irreducible representations (irreps) of the algebras in the
chain. Analytic expressions are available for energies and
other observables and definite selection rules for transition
processes. The DS chains with leading sub-algebras G1: U(5),
SU(3), ( )SU 3 and SO(6), correspond to known paradigms of
nuclear collective structure: spherical vibrator, prolate-,
oblate- and γ-soft deformed rotors, respectively.

A geometric visualization of the IBM is obtained by an
energy surface

b g b g b g= á ñ( ) ∣ ˆ ∣ ( )E N H N, , ; , ; , 2N

defined by the expectation value of the Hamiltonian in the
coherent (intrinsic) state [36, 37],

b g ñ = ñ-∣ ( !) ( ) ∣ ( )†N N b a, ; 0 , 3c
N1 2

b b g

b g

= +

+ + +

-

-

( ) [
( ) ] ( )

† †

† † †

b d

d d s b

1 cos

sin 2 . 3

c
2 1 2

0

2 2

Here b g( ), are quadrupole shape parameters whose values,
b g( ),eq eq , at the global minimum of b g( )E ,N define the
equilibrium shape for a given Hamiltonian. The shape can be
spherical b =( )0 or deformed b >( )0 with g = 0 (prolate),
g p= 3 (oblate), g p< <0 3 (axially asymmetric) or γ-
independent. The equilibrium deformations associated with
the DS limits conform with their geometric interpretation and
are given by b = 0eq for U(5), b g= =( )2 , 0eq eq for

SU(3), b g p= =( )2 , 3eq eq for ( )SU 3 , and b =( eq

g )1, arbitraryeq for SO(6). The DS Hamiltonians support a
single minimum in their energy surface, hence serve as
benchmarks for the dynamics of a single quadrupole shape
(spherical, axially deformed and γ-unstable deformed).

3. Partial dynamical symmetries and multiple
nuclear shapes

A DS is characterized by complete solvability and good
quantum numbers for all states. Partial dynamical symmetry
(PDS) [38–40] is a generalization of the latter concept, and
corresponds to a particular symmetry breaking for which only
some of the states retain solvability and/or have good
quantum numbers. Such generalized forms of symmetries are
manifested in nuclear structure, where extensive tests provide
empirical evidence for their relevance to a broad range of
nuclei[38, 40–57]. In addition to nuclear spectroscopy,
Hamiltonians with PDS have been used in the study of
quantum phase transitions [58–60] and of systems with mixed
regular and chaotic dynamics [61, 62]. In the present work,
we show that this novel symmetry notion can play a vital role
in formulating algebraic benchmarks for the dynamics of
multiple quadrupole shapes.

Coexistence of different shapes involve several states (or
bands of states) with distinct properties, reflecting the nature
of their dissimilar dynamics. The relevant Hamiltonians, by
necessity, contain competing terms with incompatible (non-
commuting) symmetries, hence exact dynamical symmetries
are broken. In the IBM, the required symmetry breaking is
achieved by including in the Hamiltonian terms associated
with different DS chains, e.g., by mixing the Casimir opera-
tors of the leading sub-algebra in each chain [37]. This mixing
and the resulting quantum phase transitions have been studied
extensively in the IBM framework [63–68]. In general, under
such circumstances, solvability is lost, there are no remaining
non-trivial conserved quantum numbers and all eigenstates
are expected to be mixed. Shape coexistence near shell-clo-
sure was considered within the IBM with configuration
mixing, by using different Hamiltonians for the normal and
intruder configurations and a number-non-conserving mixing
term [16–21]. In the present work, we adapt a different
strategy. We construct a single number-conserving Hamilto-
nian with PDS, which retains the virtues of the relevant
dynamical symmetries, but only for selected sets of states
associated with each shape. We focus on the dynamics in the
vicinity of the critical point where the corresponding multiple
minima in the energy surface are near degenerate and the
structure changes most rapidly. The construction relies on an
intrinsic-collective resolution of the Hamiltonian [69–71], a
procedure used formerly in the study of first-order quantum
phase transitions [66].

The above indicated resolution amounts to separating the
complete Hamiltonian ¢ = +ˆ ˆ ˆH H Hc into an intrinsic part
(Ĥ ), which determines the energy surface, and a collective
part (Ĥc), which is composed of kinetic rotational terms. For a
given shape, specified by the equilibrium deformations
b g( ),eq eq , the intrinsic Hamiltonian is required to annihilate
the equilibrium intrinsic state, equation (3),

b g ñ =ˆ ∣ ( )H N, ; 0. 4eq eq

Since the Hamiltonian is rotational-invariant, this condition is
equivalent to the requirement that Ĥ annihilates the states of

2
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good angular momentumL projected from b g ñ∣ N, ;eq eq

b g ñ =ˆ ∣ ( )H N x L, ; , , 0. 5eq eq

Here x denotes additional quantum numbers needed to char-
acterize the states and, for simplicity, we have omitted the
irrep label M of Ì( ) ( )SO 2 SO 3 . Symmetry considerations
enter when b g( ),eq eq coincide with the equilibrium defor-
mations of the DS chains, mentioned in section 2. In this case,
the equilibrium intrinsic state, b g ñ∣ N, ;eq eq , becomes a lowest
(or highest) weight state in a particular irrep, l = L1 0, of the
leading sub-algebra G1 in the chain of equation (1). The
projected states, b g l l= L ¼ ñ∣ N L, ; , , , ,eq eq 1 0 2 , are now
specified by the quantum numbers of the algebras in the chain
and the intrinsic Hamiltonian Ĥ satisfies

b g l l= L ¼ ñ =ˆ ∣ ( )H N L, ; , , , , 0. 6eq eq 1 0 2

The set of zero-energy eigenstates in equation (6) are basis
states of the particular G1-irrep, l = L1 0, and have good G1

symmetry. For a positive-definite Ĥ , they span the ground
band of the equilibrium shape. Ĥ itself, however, need not be
invariant under G1 and, therefore, has partial-G1 symmetry.
Identifying the collective part with the Casimir operators of
the remaining sub-algebras of G1 in the chain(1), the
degeneracy of the above set of states is lifted, and they remain
solvable eigenstates of the complete Hamiltonian. The latter,
by definition, has G1-PDS. According to the PDS algorithms
[39, 49], the construction of number-conserving Hamiltonians
obeying the condition of equation (6), is facilitated by writing

them in normal-order form, = åa b ab a bˆ ˆ ˆ†
H u T T, , in terms of n-

particle creation and annihilation operators satisfying

b g l l= L ¼ ñ =â∣ ( )T N L, ; , , , , 0. 7eq eq 1 0 2

A large number of purely bosonic [38–41, 46, 48–50],
purely fermionic [51, 52] and Bose–Fermi [57] Hamiltonians
with PDS have been constructed in this manner. With a few
exceptions [58–60], they all involved a single PDS. We now
wish to extend the above procedure to encompass a con-
struction of Hamiltonians with several distinct PDSs, relevant
to coexistence of multiple shapes. For that purpose, consider
two different shapes specified by equilibrium deformations
(b g,1 1) and (b g,2 2) whose dynamics is described, respec-
tively, by the following DS chains:

l lÉ É É ¼ É ¼ ñ( ) ( ) ∣
( )

N L

a

U 6 G G SO 3 , , , , ,
8

1 2 1 2

s sÉ ¢ É ¢ É ¼ É ¼ ñ( ) ( ) ∣
( )

N L

b

U 6 G G SO 3 , , , , ,
8

1 2 1 2

with different leading sub-algebras ( ¹ ¢G G1 1 ) and associated
bases. At the critical point, the corresponding minima repre-
senting the two shapes and the respective ground bands are
degenerate. Accordingly, we require the intrinsic critical-
point Hamiltonian to satisfy simultaneously the following two
conditions:

b g l l= L ¼ ñ =ˆ ∣ ( )H N L a, ; , , , , 0, 91 1 1 0 2

b g s s= S ¼ ñ =ˆ ∣ ( )H N L b, ; , , , , 0. 92 2 1 0 2

The states of equation (9a) reside in the l = L1 0 irrep of G1,
are classified according to the DS chain (8a), hence have good
G1 symmetry. Similarly, the states of equation (9b) reside in
the s = S1 0 irrep of ¢G1 , are classified according to the DS
chain (8b), hence have good ¢G1 symmetry. Although G1 and
¢G1 are incompatible, both sets are eigenstates of the same

Hamiltonian. When the latter is positive definite, the two sets
span the ground bands of the b g( ),1 1 and b g( ),2 2 shapes,
respectively. In general, Ĥ itself is not necessarily invariant
under G1 nor under ¢G1 and, therefore, its other eigenstates can
be mixed under both G1 and ¢G1 . Identifying the collective part
of the Hamiltonian with the Casimir operator of SO(3) (as
well as with the Casimir operators of additional algebras
which are common to both chains), the two sets of states
remain (non-degenerate) eigenstates of the complete Hamil-
tonian which then has both G1-PDS and ¢G1 -PDS. The case of
triple (or multiple) shape coexistence, associated with three
(or more) incompatible DS chains is treated in a similar
fashion. In the following sections, we apply this procedure to
a variety of coexisting shapes, examine the spectral properties
of the derived PDS Hamiltonians, and highlight their potential
to serve as benchmarks for describing multiple shapes in
nuclei.

4. Spherical and axially-deformed shape
coexistence: U(5)-SU(3) PDS

A particular type of shape coexistence present in nuclei,
involves spherical and axially deformed shapes. The relevant
DS chains for such configurations are [31],

tÉ É É ñD( ) ( ) ( ) ( ) ∣
( )

N n n L

a

U 6 U 5 SO 5 SO 3 , , , , ,
10

d

l mÉ É ñ( ) ( ) ( ) ∣ ( ) ( )N K L bU 6 SU 3 SO 3 , , , , . 10

The U(5)-DS limit of equation (10a) is appropriate to the
dynamics of a spherical shape. For a given U(6) irrepN, the
allowed U(5) and SO(5) irreps are = ¼n N0, 1, 2, ,d and
t = -n n, 2, ... 0d d or1, respectively. The values of L
contained in a given τ-irrep follow the É( ) ( )SO 5 SO 3
reduction rules [31] and Dn is a multiplicity label. The
basis states, t ñD∣N n n L, , , ,d , are eigenstates of the
Casimir operators =ˆ [ ( )]C U 51 n̂d, =ˆ [ ( )]C U 52 +ˆ ( ˆ )n n 4d d ,

=ˆ [ ( )]C SO 52 å = ·( ) ( )U U2 ℓ
ℓ ℓ

1,3 and =ˆ [ ( )]C SO 32 ·( ) ( )L L1 1 ,
with eigenvalues nd, +( )n n 4d d , t t +( )3 and +( )L L 1 ,
respectively. Here ˆ [ ]C Gk denotes the Casimir operator of G of
order k, =ˆ ( )n U5d

0 , =( ) ( )L U101 1 , with =( )U ℓ ( ˜)† ( )d d ℓ ,
= - -˜ ( )d d1m

m
m and standard notation of angular momentum

coupling is used. The U(5)-DS Hamiltonian involves a linear
combination of these Casimir operators. The spectrum resem-
bles that of an anharmonic spherical vibrator, describing
quadrupole excitations of a spherical shape. The splitting of
states in a given U(5) nd-multiplet is governed by the SO(5) and
SO(3) terms. The lowest U(5) multiplets involve the ground
state with quantum numbers t= =(n 0,d = )L0, 0 and
excited states with quantum numbers t= = =( )n L1, 1, 2d ,

3

Phys. Scr. 92 (2017) 114005 A Leviatan and N Gavrielov



t= =(n 2,d t= = = )L L0, 0; 2, 2, 4 and t= =(n 3,d

t= = = )L L3, 6, 4, 3, 0; 1, 2 .
The SU(3)-DS limit of equation (10b) is appropriate to

the dynamics of a prolate-deformed shape. For a given N, the
allowed SU(3) irreps are l m = - -( ) ( )N k m k, 2 4 6 , 2 with
k m, , non-negative integers. The values of L contained in a
given l m( ), -irrep follow the É( ) ( )SU 3 SO 3 reduction rules
[31] and the multiplicity label K corresponds geometrically to
the projection of the angular momentum on the symmetry
axis. The basis states are eigenstates of the Casimir operator

= +ˆ [ ( )] · ·( ) ( ) ( ) ( )C SU Q Q L L3 22
2 2 3

4
1 1 with eigenvalues

l l m m lm+ + + +( ) ( )3 3 . The generators of SU(3) are
the angular momentum operators ( )L 1 defined above, and the
quadrupole operators

= + -˜ ( ˜) ( )( ) † † † ( )Q d s s d d d
1

2
7 . 112 2

The SU(3)-DS Hamiltonian involves a linear combination of
ˆ [ ( )]C SU 32 and ˆ [ ( )]C SO 32 , and its spectrum resembles that of an
axially deformed rotovibrator composed of SU(3) l m( ), -multi-
plets forming rotational bands with +( )L L 1 -splitting. The
lowest irrep ( )N2 , 0 contains the ground band =( )g K 0 of a
prolate-deformed nucleus. The first excited irrep -( )N2 4, 2
contains both the b =( )K 0 and g =( )K 2 bands.

In discussing properties of the SU(3)-DS spectrum, it is
convenient to subtract from ˆ [ ( )]C SU 32 the ground-state
energy, and consider the following positive-definite term:

q º - + + = +ˆ ˆ [ ( )] ˆ ( ˆ ) · ˜ ( )† †C N N P P P PSU 3 2 2 3 , 122 2 0 0 2 2

where = - -˜ ( )P Pm
m

m2 2, . The SU(3) basis states,
l m ñ∣ ( )N K L, , , , , are eigenstates of q̂2 with eigenvalues

l l m l m- + + - + +( )( ) ( )N N2 2 3 3 and the ground
band with l m =( ) ( )N, 2 , 0 occurs at zero energy. The two-
boson pair operators

= -· ( ) ( )† † † †P d d s a2 , 130
2

= + ( ) ( )† † † † † ( )P d s d d b2 7 , 13m m m2
2

are ( )0, 2 tensors with respect to SU(3) and satisfy

l m
l m

= = ñ=
= = ñ=

∣ ( ) ( )
∣ ( ) ( ) ( )

P N N K L

P N N K L

, , 2 , 0 , 0, 0,

, , 2 , 0 , 0, 0. 14m

0

2

These operators correspond to âT of equation (7) and, as
shown below, they play a central role in the construction of
Hamiltonians with SU(3)-PDS.

Considering the case of coexisting spherical and prolate-
deformed shapes, following the procedure outlined in
equation (9), the intrinsic part of the critical-point Hamilto-
nian is required to satisfy

l m = = ñ =
= ¼

ˆ ∣ ( ) ( )
( )

H N N K L

L N a

, , 2 , 0 , 0, 0
0, 2, 4, , 2 15

t= = = ñ =ˆ ∣ ( )H N n L b, 0, 0, 0 0. 15d

Equivalently, Ĥ annihilates both the intrinsic state of
equation (3) with b g= =( )2 , 0 , which is the lowest
weight vector in the SU(3) irrep l m =( ) ( )N, 2 , 0 , and the
intrinsic state with b = 0, which is the single basis state in the
U(5) irrep nd = 0. The resulting intrinsic critical-point
Hamiltonian is found to be [58],

=ˆ · ˜ ( )†H h P P , 162 2 2

where †P m2 is given in equation (13b). The corresponding
energy surface, b g =( )E ,N b g-( ) ˜( )N N E1 , , is given by

b g b b b g b= - + + -˜( ) ( )( )
( )

E h, 2 2 2 cos 3 2 1 .
17

2
2 2 2 2

The surface is linear in gG = cos 3 , at most quartic in β, and
can be transcribed as b g =˜( )E , b b+ --( ) (a1 2 2 2 b G +b 3

b )c 4 , with =b ac42 and = = =a h b h c h4 , 4 2 , 22 2 2. It is
the most general form of a surface accommodating degenerate
spherical and axially-deformed extrema, for an Hamiltonian
with one- and two-body terms. For >h 02 , Ĥ is positive
definite and b g˜( )E , has two degenerate global minima,
b = 0 and b g= =( )2 , 0 , at =Ẽ 0. Additional extremal
points include (i)a saddle point: *b b= = -[ ( )3 1

g = ]2 , 0 , which supports a barrier of height =Ẽbar h1

2 2

- =( ) h3 1 0.2682
2, and (ii)alocal maximum: **b b= =[

g p+ =( ) ]3 1 2 , 3 [or equivalently **b b g= - =( ,
)]0 , at =Ẽmax +( )h 3 11

2 2
2. Figures 1(a) and (b) show the

energy surface contour, b g˜( )E , , and section, b g =˜( )E , 0 , of
Ĥ , respectively. The barrier separating the two minima satisfies

=˜ ˜E E0.13bar lim, where b g=  ¥ =˜ ˜( )E E h, 2lim 2. It is
significantly higher than typical barriers of order Ẽ0.001 lim,

Figure 1. Spherical-prolate (S-P) shape coexistence. (a)Contour plots of the energy surface(17), (b)g = 0 sections, and (c)bandhead
spectrum, for the Hamiltonian ¢Ĥ (22) with parameters r= =h 1, 02 and =N 20.

4
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obtained in standard Hamiltonians mixing the U(5) and SU(3)
Casimir operators [65]. The normal modes of the Hamilto-
nian(16) correspond to small oscillations about the respective
minima of its energy surface. For large N, the deformed
normal modes involve one-dimensional β vibration and two-
dimensional γ vibrations about the prolate-deformed global
minimum, with frequencies

 =b ( )h N a4 , 182

 =g ( )h N b12 . 182

The spherical normal modes involve five-dimensional quadru-
pole vibrations about the spherical global minimum, with fre-
quency

 = ( )h N4 . 192

The bandhead spectrum associated with these modes, is shown
in figure 1(c). Interestingly, the spherical and β modes have the
same energy and are considerably lower than the γ mode,
  = =b g 3. This is consistent with the observed enhanced
density of low-lying +0 states, signaling the transitional region
of such a first-order quantum phase transition [72, 73].

By construction, the members of the prolate-deformed
ground band =( )g K 0 , equation (15a), have good SU(3)
quantum numbers l m =( ) ( )N, 2 , 0 , and the spherical ground
state, equation (15b), has good U(5) quantum numbers

t= = =( )n L 0d . The Hamiltonian Ĥ of equation (16)
has additional solvable SU(3) basis states with l m =( ),

- =( )N k k K k2 4 , 2 2 , which span the deformed g =( )K k2k

bands, and an additional solvable U(5) basis state with
t= = =n L 3d . Altogether, although Ĥ is neither SU(3)-

invariant nor U(5)-invariant, it has a subset of solvable states
with good SU(3) symmetry

= ñ =
= ¼

∣ ( )
( )

N N K L E

L N a

, 2 , 0 0, 0
0, 2, 4, , 2 , 20

- = ñ = - +

= + ¼ -

∣ ( ) ( )

( )
( )

N N k k K k L E h k N k

L K K N k

b

, 2 4 , 2 2 , 6 2 2 1

, 1, , 2 2 ,

20

2

and, simultaneously, a subset of solvable states with good U(5)
symmetry

t= = = ñ =∣ ( )N n L E a, 0 0, 21d

t= = = ñ = -∣ ( ) ( )N n L E N b, 3 6 2 1 . 21d

The spherical L=0 state, equation (21a), is degenerate with the
prolate-deformed ground band, equation (20a), and the spherical
L=3 state, equation (21b), is degenerate with the γ band,
equation (20b) with k=1. Identifying the collective part with
ˆ [ ( )]C SO 32 , we arrive at the following complete Hamiltonian

r¢ = +ˆ · ˜ ˆ [ ( )] ( )†H h P P C SO 3 . 222 2 2 2

The added rotational term generates an exact +( )L L 1 splitting
without affecting the wave functions. In particular, the solvable
subsets of eigenstates, equations (20) and (21), remain intact.
Other eigenstates, as shown below, can mix strongly with respect
to both SU(3) and U(5).

The symmetry structure of the Hamiltonian eigenstates
can be inferred from the probability distributions, =( )Pn

N L,
d

åt tD D
∣ ∣( )Cn n n

N L
, , ,

, 2
d

and = ål m l m∣ ∣( )
( )

( )
( )P CN L

K K
N L

,
,

, ,
, 2, obtained from their

expansion coefficients in the U(5) and SU(3) bases(10),
respectively. In general, the low-lying spectrum of ¢Ĥ (22)
exhibits two distinct type of states, spherical and deformed.
Spherical type of states show a narrow nd-distribution, with a
characteristic dominance of a single nd component. Figure 2
shows the U(5) nd-decomposition of such states, selected on
the basis of having the largest components with

=n 0, 1, 2, 3d , within the given L spectra. States with dif-
ferent L values are arranged into panels labeled ‘nd’ to con-
form with the structure of the nd-multiplets of a spherical
vibrator. The lowest spherical = +L 02 state is seen to be a

Figure 2. U(5) nd-decomposition for spherical states, eigenstates of
the Hamiltonian ¢Ĥ (22) with parameters as in figure 1, resulting in
spherical-prolate shape coexistence.

Figure 3. SU(3) l m( ), -decomposition for members of the prolate-
deformed b bg, , 2 and γ bands, eigenstates of the Hamiltonian ¢Ĥ
(22) with parameters as in figure 1. Shown are probabilities larger
than 4%.
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pure nd = 0 state which is the solvable U(5) state of
equation (21a). The = +L 22 state has a pronounced nd = 1
component (∼ 80%), whose origin can be traced to the rela-
tion

t

t

t

= = = ñ

= - = = = ñ

+ = = = ñ
-

⎡
⎣⎢

⎤
⎦⎥

ˆ ∣

( ) ∣

∣ ( )
( )

H N n L

h N N n L

N n L

, 1, 2

4 1 , 1, 2

, 2 . 23

d

d

N d

2

7

2 1

As seen, the U(5)-basis state t= = = ñ∣N n L, 1, 2d

approaches the status of an eigenstate for large N, with cor-
rections of order N1 . The states ( = + + +L 0 , 2 , 44 6 3 ) in the
third panel of figure 2, have a less pronounced (∼ 50%) single
nd = 2 component. The higher-energy states in the panel
‘ =n 3d ’ are significantly fragmented, with a notable excep-
tion of = +L 32 , which is the solvable U(5) basis state of
equation (21b).

The deformed type of states have a different character.
They exhibit a broad nd-distribution, as seen clearly in the
following expansion of the SU(3) ground band wave func-
tions in the U(5) basis:

å

x t

= ñ= + -

´ ñ
t

t

t

-

D

D

D

∣ ( ) [ ( ) ]

∣ ( )( )

N N K L

N n n L a

, 2 , 0 0,
1

2
1 1

, , , , , 24

n n

n

n n
N L

d

, ,

, ,
,

d

d

d

x =

´

t t t

t

- + +
- - + +D

D

⎡⎣ ⎤⎦
( ) ( )

( ) !( ) !!( ) !!
( )!( )!( ) !!( ) !!

( )f b2 . 24

n n
N L N N L N L

N N n n n

n
n

L

, ,
, 2 2 1

3 2 3

1 2

,

d N
d d d

d

Explicit expressions of t D

( )f n
L
, for =L 0, 2, 4 are documented

in [38]. The U(5) nd-probability inferred from equation (24),
shows that the contribution of each individual nd-component
is exponentially small for large N. Figure 3 shows the SU(3)
l m( ), -distribution for such deformed type of states, members
of the b b= = =( ) ( ) ( )g K K K0 , 0 , 02 and g =( )K 2 bands.
The ground =( )g K 0 and g =( )K 2 bands are pure with
l m =( ) ( )N, 2 , 0 and -( )N2 4, 2 SU(3) character, respec-
tively. These are the solvable bands of equation (20) with
good SU(3) quantum numbers. The non-solvable K-bands,
e.g. the b =( )K 0 and b =( )K 02 in figure 3, show con-
siderable SU(3) mixing, and the mixing is coherent, i.e.,
similar for different L-states in the same band. The above
analysis demonstrates that some eigenstates of the critical-
point Hamiltonian(22) have good U(5) symmetry (either
exactly or to a good approximation for large N), some
eigenstates have good SU(3) symmetry, and all other states
are mixed with respect to both U(5) and SU(3). This defines
U(5)-PDS coexisting with SU(3)-PDS. These persisting
competing symmetries affect the dynamics at the critical
point, which has a mixed regular and chaotic character [59].

Since the wave functions for the solvable states,
equations (20) and (21), are known, one has at hand closed form
expressions for electromagnetic moments and rates. Taking the
E2 operator to be proportional to the SU(3) quadrupole operator
of equation (11) with an effective charge eB, =( ) ( )T E e Q2 B

2 ,
the ( )B E2 values for intraband ( g g) transitions between

states of the ground band(20a) and quadrupole moments are
given by the known SU(3)-DS expressions [31]

= - +p
+

( ) ( )Q e N a4 3 , 25L B
L

L

16

40 2 3

+ 

= - + ++ +
+ +

( )
( )( ) ( )( )( )

( )( )

B E g L g L

e N L N L
b

2; , 2 ,

2 2 3 .
25

B
L L

L L
2 3 1 2

4 2 3 2 5

Similarly, the quadrupole moment of the solvable spherical
=L 3 state of equation (21b), obeys the U(5)-DS expression

= - p
= ( )Q e 3 . 26L B3

16

40

The spherical states, equation (21), are not connected by E2
transitions to states of the ground band(20a), since the latter
exhaust the ( )N2 , 0 irrep of SU(3) and ( )Q 2 , as a generator,
cannot connect different l m( ), -irreps of SU(3). As will be
discussed in section6, weak sphericaldeformed E2 transi-
tions persist also for a more general E2 operator, obtained by
adding to ( )T E2 the term + ˜† †d s s d . The latter, however, can
connect by E2 transitions the ground with excited β and γ bands.
Since both the =( )g K 0 and g =( )K 2 bands are solvable with
good SU(3) symmetry, equation (20), analytic expressions for
g  g E2 rates are available [40, 74]. There are also no E0
transitions involving the spherical states(21), since the E0
operator µ( ) ˆT E n0 d, is diagonal in nd.

The above discussion has focused on the dynamics in the
vicinity of the critical point where the spherical and deformed
minima are near degenerate. The evolution of structure away
from the critical point can be studied by incorporating addi-
tional terms into ¢Ĥ (22). Adding an  n̂d term, will leave the
solvable spherical states(21) unchanged, but will shift the
deformed ground band to higher energy of order  N2 3.
Similarly, adding a small aq̂2 term, equation (12), will leave
the solvable SU(3) bands unchanged but will shift the sphe-
rical ground state ( = =n L 0d ) to higher energy of order
aN4 2. The selection rules discussed above, ensure that the
=L 0 state of the excited configuration will have sig-

nificantly retarded E2 and E0 decays to states of the lower
configuration, hence will have the attributes of an isomer
state.

5. Prolate-oblate shape coexistence: SU(3)-
SU ð3Þ PDS

Shape coexistence in nuclei can involve two deformed
shapes, i.e., prolate and oblate. The relevant DS limits for the
latter configurations are [31],

l mÉ É ñ( ) ( ) ( ) ∣ ( ) ( )N K L aU 6 SU 3 SO 3 , , , , , 27

l mÉ É ñ( ) ( ) ( ) ∣ ( ¯ ¯ ) ¯ ( )N K L bU 6 SU 3 SO 3 , , , , . 27

The SU(3)-DS chain(27a), appropriate to a prolate shape,
was discussed in section 4. The ( )SU 3 -DS chain(27b),
appropriate to an oblate shape, has similar properties but now
the allowed ( )SU 3 irreps are l m = - -( ¯ ¯ ) ( )k N k m, 2 , 2 4 6
with k m, , non-negative integers, and the multiplicity label is
denoted by K̄ . The basis states are eigenstates of the Casimir
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operator = +ˆ [ ( )] ¯ · ¯ ·( ) ( ) ( ) ( )C Q Q L LSU 3 22
2 2 3

4
1 1 , with eigen-

values l l m m lm+ + + +¯ ( ¯ ) ¯ ( ¯ ) ¯ ¯3 3 . Here ¯( )Q 2 are the
quadrupole operators given by

= + +¯ ˜ ( ˜) ( )( ) † † † ( )Q d s s d d d
1

2
7 , 282 2

and ( )L 1 are the angular momentum operators. The generators
of SU(3) and ( )SU 3 , ( )Q 2 (11) and ¯( )Q 2 (28), and corresp-
onding basis states, l m ñ∣ ( )N K L, , , , and l m ñ∣ ( ¯ ¯ ) ¯N K L, , , , ,
are related by a change of phase  - -( ) ( )† †s s s s, , , induced
by the operator p= ( ˆ )i nexps s , with =ˆ †n s ss . As previously
mentioned, in the SU(3)-DS, the prolate ground band

=( )g K 0 has ( )N2 , 0 character and the b =( )K 0 and
g =( )K 2 bands have -( )N2 4, 2 . In the ( )SU 3 -DS, the
oblate ground band =( ¯ )g K 0 has ( )N0, 2 character and the
excited b =( ¯ )K 0 and g =( ¯ )K 2 bands have -( )N2, 2 4 .
Henceforth, we denote such prolate and oblate bands by

b g( )g , ,1 1 1 and ( b gg , ,2 2 2), respectively. Since   =-( )Qs s
2 1

- ¯( )Q 2 , the SU(3) and ( )SU 3 DS spectra are identical and the
quadrupole moments of corresponding states differ in sign.

The phase transition between prolate and oblate shapes
has been previously studied by varying a control parameter in
the IBM Hamiltonian [75, 76]. The latter, however, consisted
of one- and two-body terms hence could not accommodate
simultaneously two deformed minima. For that reason, in the
present approach, we consider an Hamiltonian with cubic
terms which retains the virtues of SU(3) and ( )SU 3 DSs for
the prolate and oblate ground bands. Following the procedure
of equation (9), the intrinsic part of such critical-point
Hamiltonian is required tosatisfy

l m = = ñ =ˆ ∣ ( ) ( ) ( )H N N K L a, , 2 , 0 , 0, 0, 29

l m = = ñ =ˆ ∣ ( ¯ ¯ ) ( ) ¯ ( )H N N K L b, , 0, 2 , 0, 0. 29

Equivalently, Ĥ annihilates the intrinsic states of equation (3),
with b g= =( )2 , 0 and b g= - =( )2 , 0 , which are
the lowest- and highest-weight vectors in the irreps ( )N2 , 0
and ( )N0, 2 of SU(3) and ( )SU 3 , respectively. The resulting
Hamiltonian is found to be [60],

h= + +ˆ ˆ ˆ · ˜ ( )† † †H h P n P h P n P G G , 30s d0 0 0 2 0 0 3 3 3

where †P0 is given in equation (13a), =m
†G3,

m[( ) ]† † ( ) † ( )d d d7 2 3 , =mG̃3, - m
m-( ) G1 3, . The corresponding

energy surface, b g b g= - -( ) ( )( ) ˜( )E N N N E, 1 2 ,N , is
given by

b g b b
h b g b

= - +
+ + -

˜( ) {( ) [ ]
( )}( ) ( )

E h h, 2

sin 3 1 . 31

2 2
0 2

2

3
6 2 2 3

The surface is an even function of β and gG = cos 3 , and can be
transcribed as b g =˜( )E , b+ + -( )z 10

2 3 b b+ G +[A B6 6 2

b b+ ]D F4 2 , with h= - + + =A h h B4 ,0 2 3 h- =D,3
- + =( )h h F11 4 ,0 2 - =( )h h z h4 4 , 42 0 0 0. It is the most
general form of a surface accommodating degenerate prolate and
oblate extrema with equal β-deformations, for an Hamiltonian
with cubic terms [77, 78]. For hh h, , 00 2 3 , Ĥ is positive
definite and b g˜( )E , has two degenerate global minima,
b g= =( )2 , 0 and b g p= =( )2 , 3 [or equivalently
b g= - =( )2 , 0 ], at =Ẽ 0. b = 0 is always an extremum,
which is a local minimum (maximum) for >F 0 ( <F 0), at

=Ẽ h4 0. Additional extremal points include (i)a saddle point:

*
b g p= =-

-
[ ]( )

/, 0, 3h h

h h
2 2 4

7
0 2

0 2
, at = +

-
˜ ( )

( )
E h h

h h

4 2

81
0 2

3

0 2
2 . (ii)Alocal

maximum and a saddle point:
**

b g p=[ ], 62 , at =Ẽ

**
b+ -( )11

3
2 2

** **
b b + +[ ]D F z22 2

0, where **b2 is a solu-

tion of
** **

b b- + - - =( ) ( )D A F D F3 2 04 2 . The sad-
dle points, when they exist, support a barrier separating the
various minima, as seen in figure 4. For large N, the normal
modes involve β and γ vibrations about the respective deformed
minima, with frequencies

 = = +b b ( ) ( )h h N a
8

3
2 , 321 2 0 2

2

  h= =g g ( )N b4 . 321 2 3
2

Figures 4(a)–(c) show b g˜( )E , , b g =˜( )E , 0 and the bandhead
spectrum, respectively, with parameters ensuring P-O global
minima and a local maximum at b = 0.

The members of the prolate and oblate ground bands,
equation (29), are zero-energy eigenstates of Ĥ (30), with good
SU(3) and ( )SU 3 symmetry, respectively. The Hamiltonian is
invariant under a change of sign of the s-bosons, hence com-
mutes with thes operator mentioned above. Consequently, all
non-degenerate eigenstates of Ĥ have well-defined s-parity.
This implies vanishing quadrupole moments for an E2 operator
which is odd under such sign change. To overcome this diffi-
culty, we introduce a small s-parity breaking term aq̂2,
equation (12), which contributes to b g˜( )E , a component
a b+ -˜ ( )1 2 2 b b b b- + - G +[( ) ( )]2 2 2 2 22 2 2 2 , with
a a= -˜ ( )N 2 . The linear Γ-dependence distinguishes the
two deformed minima and slightly lifts their degeneracy, as
well as that of the normal modes(32). Replacing q̂2 by

Figure 4. Prolate-oblate (P-O) shape coexistence. (a)Contour plots of the energy surface(31), (b)g = 0 sections, and (c)bandhead
spectrum, for the Hamiltonian ¢Ĥ (33) with parameters h a r= = = = =h h0.2, 0.4, 0.567, 0.018, 00 2 3 and =N 20.
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q = - + +¯ ˆ [ ( )] ˆ ( ˆ )C N NSU 3 2 2 32 2 , leads to similar effects but
interchanges the role of prolate and oblate bands. Identifying the
collective part with ˆ [ ( )]C SO 32 , we arrive at the following
complete Hamiltonian:

h a q r

¢ = +

+ + +

ˆ ˆ ˆ
· ˜ ˆ ˆ [ ( )] ( )

† †

†

H h P n P h P n P

G G C SO 3 . 33

s d0 0 0 2 0 0

3 3 3 2 2

The prolate g1-band remains solvable with energy =( )E Lg1

r +( )L L 1 . The oblate g2-band experiences a slight shift of
order aN32

9
2 and displays a rigid-rotor like spectrum. The

SU(3) and ( )SU 3 decomposition in figure 5 demonstrates that
these bands are pure DS basis states, with ( )N2 , 0 and ( )N0, 2
character, respectively, while excited β and γ bands exhibit
considerable mixing. The critical-point Hamiltonian thus has a
subset of states with good SU(3) symmetry, a subset of states
with good ( )SU 3 symmetry and all other states are mixed with
respect to both SU(3) and ( )SU 3 . These are precisely the
defining ingredients of SU(3)-PDS coexisting with ( )SU 3 -PDS.

Since the wave functions for the members of the g1 and
g2 bands are known, one can derive analytic expressions for
their quadrupole moments and E2 transition rates. Consider-
ing the E2 operator = P( ) ( )T E e2 B

2 with

P = + ˜ ( )( ) † †d s s d , 342

the quadrupole moments are found to have equal magnitudes
and opposite signs,

=
+

p - + +
-

 ( )( )( )
( )

Q e
L

L2 3
, 35L B

N L N L

N

16

40

4 2 2 1

3 2 1

where the minus (plus) sign corresponds to the prolate g1
(oblate g2) band. The ( )B E2 values for intraband ( g g1 1,

g g2 2) transitions,

+ 

= + +
+ +

- - + +
-

( )

( )( )( )
( )( )

( ) ( )( )
( )

B E g L g L

e

2; , 2 ,

, 36

i i

B
L L

L L

N N L N L

N
2 3 1 2

2 2 3 2 5

4 1 2 2 3

18 2 1

2

2

are the same. These properties are ensured by the fact that
  = --( ) ( )T E T E2 2s s

1 . Interband «( )g g2 1 E2 transitions,
are extremely weak. This follows from the fact that the L-states
of the g1 and g2 bands exhaust, respectively, the ( )N2 , 0 and
( )N0, 2 irrep of SU(3) and ( )SU 3 . ( )T E2 contains a ( )2, 2

Figure 5. SU(3) l m( ), - and ( )SU 3 l m( ¯ ¯ ), -decompositions for members of the prolate ( b gg , ,1 1 1) and oblate ( b gg , ,2 2 2) bands, eigenstates of
¢Ĥ (33) with parameters as in figure 4, resulting in P-O shape coexistence. Shown are probabilities larger than 4%. States in the prolate (g1)

and oblate (g2) ground bands are pure with respect to SU(3) and ( )SU 3 , respectively. In contrast, excited prolate and oblate bands are mixed,
thus demonstrating the presence in the spectrum of SU(3)-PDS and ( )SU 3 -PDS.

Figure 6. Signatures of SU(3) and ( )SU 3 PDSs in P-O shape
coexistence. Strong intraband E2 transitions (solid lines) obey the
analytic expression of equation (36). Retarded E2 (dashed lines) and
E0 (dotted lines) decays identify isomeric states.
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tensor under both algebras, hence can connect the ( )N2 , 0 irrep
of g1 only with the -( )N2 4, 2 component in g2 which,
however, is vanishingly small. The selection rule ⟷g g1 2 is
valid also for a more general E2 operator, obtained by including
in it the operators ( )Q 2 (11) or ¯( )Q 2 (28), since the latter, as
generators, cannot mix different irreps of SU(3) or ( )SU 3 . By
similar arguments, E0 transitions in-between the g1 and g2
bands are extremely weak, since the relevant operator,

µ( ) ˆT E n0 d, is a combination of ( )0, 0 and ( )2, 2 tensors
under both algebras. Accordingly, the L=0 bandhead state of
the higher (g2) band, cannot decay by strong E2 or E0 transi-
tions to the lower g1 band, hence, as depicted schematically in
figure 6, displays characteristic features of an isomeric state. In
contrast to g1 and g2, excited β and γ bands are mixed, hence
are connected by E2 transitions to these ground bands. Their
quadrupole moments are found numerically to resemble, for
large N, the collective model expression =( )Q K L,

- +
+ +

( )
( ) )

qK L L

L L K
3 1

1 2 3

2

, with >q 0K ( <q 0K ) for prolate (oblate)
bands.

6. Triple spherical-prolate-oblate coexistence:
U(5)-SU(3)-SUð3Þ PDS

Nuclei can accommodate more than two shapes simulta-
neously, as encountered in the triple coexistence of spherical,
prolate and oblate shapes. The relevant DS limits for the latter
configurations are [31],

tÉ É É ñD( ) ( ) ( ) ( ) ∣
( )

N n n L

a

U 6 U 5 SO 5 SO 3 , , , , .
37

d

l mÉ É ñ( ) ( ) ( ) ∣ ( )
( )

N K L

b

U 6 SU 3 SO 3 , , , , ,
37

l mÉ É ñ( ) ( ) ( ) ∣ ( ¯ ¯ ) ¯
( )

N K L

c

U 6 SU 3 SO 3 , , , , .
37

Properties of the above U(5), SU(3) and ( )SU 3 DS chains were
discussed in sections 4–5. The intrinsic part of the critical-point
Hamiltonian is now required to satisfy three conditions:

t= = = ñ =ˆ ∣ ( )H N n L a, 0, 0, 0 0, 38d

l m = = ñ =ˆ ∣ ( ) ( ) ( )H N N K L b, , 2 , 0 , 0, 0, 38

l m = = ñ =ˆ ∣ ( ¯ ¯ ) ( ) ¯ ( )H N N K L c, , 0, 2 , 0, 0. 38

Equivalently, Ĥ annihilates the spherical intrinsic state of
equation (3) with b = 0, which is the single basis state in the

U(5) irrep nd = 0, and the deformed intrinsic states with
b g= =( )2 , 0 and b g= - =( )2 , 0 , which are the
lowest and highest-weight vectors in the irreps ( )N2 , 0 and
( )N0, 2 of SU(3) and ( )SU 3 , respectively. The resulting
Hamiltonian is found to be that of equation (30) with =h 00

[60],

h= +ˆ ˆ · ˜ ( )† †H h P n P G G . 39d2 0 0 3 3 3

The corresponding energy surface, b g =( )E N,N

b g- -( )( ) ˜( )N N E1 2 , , is given by

b g b b h b g b= - + + -˜( ) [ ( ) ( )]( )
( )

E h, 2 sin 3 1 .

40

2
2

2 2
3

4 2 2 3

For hh , 02 3 , Ĥ is positive definite and b g˜( )E , has three
degenerate global minima: b = 0, b g= =( )2 , 0 and b =(

g p= )2 , 3 [or equivalently b g= - =( )2 , 0 ], at =Ẽ
0. Additional extremal points include (i)a saddle point:

*
b g p= =[ ], 0, 32 2

7
, at =Ẽ h32

81 2. (ii)Alocal maximum and

a saddle point:
**

b g p=[ ], 62 , at
**

b= + -˜ ( )E h 14

3 2
2 2

** **
b b-( )22 2 , where

**
b2 is a solution of

**
h b+ -( )h7 32 3

4

**
b + =h h16 4 02

2
2 . The saddle points, when they exist,

support a barrier separating the various minima, as seen in
figure 7. The normal modes involve quadrupole vibrations about
the spherical minimum with frequency ò alongside β and γ

vibrations about the deformed prolate and oblate minima with
frequencies bi and gi,

 = ( )h N a4 , 412
2

 = =b b ( )h N b
16

3
, 411 2 2

2

  h= =g g ( )N c4 . 411 2 3
2

The spherical modes are seen to have a lower frequency than the
β modes,  = bi

3

4
. Figures 7(a), (b) and (c) show b g˜( )E , ,

b g =˜( )E , 0 and the normal-mode spectrum with parameters
ensuring spherical-prolate-oblate (S-P-O) minima.

For the same arguments as in the analysis of prolate-
oblate shape coexistence in section5, the complete Hamil-
tonian is taken to be

h a q r¢ = + + +ˆ ˆ · ˜ ˆ ˆ [ ( )]
( )

† †H h P n P G G C SO 3 .

42
d2 0 0 3 3 3 2 2

The deformed bands show similar rigid-rotor structure as in
the P-O case. In particular, the prolate g1-band and oblate
g2-band have good SU(3) and ( )SU 3 symmetry, respectively,

Figure 7. Spherical-prolate-oblate (S-P-O) shape coexistence. (a)Contour plots of the energy surface(40), (b)g = 0 sections, and
(c)bandhead spectrum, for the Hamiltonian ¢Ĥ (42) with parameters h a r= = = =h 0.5, 0.567, 0.018, 02 3 and =N 20.
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while excited β and γ bands exhibit considerable mixing, with
similar decompositions as in figure 5. A new aspect in the
present S-P-O case, is the simultaneous occurrence in the
spectrum (see figure 7(c)) of spherical type of states, whose
wave functions are dominated by a single nd component. As
shown in the left panels of figure 8, the lowest spherical
= +L 03 state is a pure nd = 0 state, which is the solvable U(5)

basis state of equation (38a). The = +L 24 state is almost pure,
with a probability of 96.1% for the nd = 1 component. The
origin of its high degree of purity can be traced to the relation

t

t

t

= = = ñ

= - - = = = ñ

- = = = ñ
- -

⎡
⎣⎢

⎤
⎦⎥

ˆ ∣

( )( ) ∣

∣ ( )
( )( )

H N n L

h N N N n L

N n L

, 1, 2

4 1 2 , 1, 2

, 2 , 43

d

d

N N d

2

7

2 1 2

which shows that the U(5) basis state t= = = ñ∣N n L, 1, 2d

approaches the status of an eigenstate for large N, with cor-
rections of order N1 . Higher spherical type of states

= + + +( )L 0 , 2 , 47 10 10 have a pronounced (∼ 80%) =n 2d

component. This structure should be contrasted with the U(5)
decomposition of deformed states (e.g., those belonging to the
g1 and g2 bands) which, as shown in the right panels of
figure 8, have a broad nd-distribution. The purity of selected
sets of states with respect to SU(3), ( )SU 3 and U(5) as
demonstrated in figures 5 and8, in the presence of other mixed
states, are the hallmarks of coexisting SU(3)-PDS, ( )SU 3 -PDS
and U(5)-PDS. It is remarkable that a simple Hamiltonian, as in
equation (42), can accommodate simultaneously several
incompatible symmetries in a segment of its spectrum.

Considering the same E2 operator = P( ) ( )T E e2 B
2 ,

equation (34), as in the P-O case of section 5, the quadrupole
moments of states in the solvable g1 and g2 bands and intra-
band ( g g1 1, g g2 2) E2 rates, obey the analytic expres-
sions of equations (35) and (36), respectively. The same
selection rules depicted in figure 6, resulting in retarded E2 and
E0 interband ( g g2 1) decays, are still valid. Furthermore, in
the current S-P-O case, since ( )T E2 obeys the selection rule

D = n 1d , the spherical states, = =( )n L 0d and =(nd

= )L1, 2 , have no quadrupole moment and the ( )B E2
value for their connecting transition, obeys the U(5)-DS
expression [31]

= =  = = =( ) ( )B E n L n L e N2; 1, 2 0, 0 . 44d d B
2

These spherical states have very weak E2 transitions to the
deformed ground bands, because they exhaust the =( )n 0, 1d

irreps of U(5), and the =n 2d component in the ( =L 0, 2, 4)
states of the g1 and g2 bands is extremely small, of order

-N 3 N3 , as can be inferred from equation (24). There are also no
E0 transitions involving these spherical states, since ( )T E0 is
diagonal in nd.

In the above analysis the spherical and deformed minima
were assumed to be near degenerate. If the spherical mini-
mum is only local, one can use the Hamiltonian of
equation (33) with the condition >h h42 0, for which the
spherical ground state = =( )n L 0d experiences a shift of
order h N4 0

3. Similarly, if the deformed minima are only

Figure 8. U(5) nd-decomposition for spherical states (left panels) and for members of the deformed prolate (g1) and oblate (g2) ground bands
(right panels), eigenstates of ¢Ĥ (42) with parameters as in figure 7, resulting in S-P-O shape coexistence. The column ‘other’ depicts a sum
of probabilities, each less than 5%. The spherical states are dominated by a single nd component, in marked contrast to the deformed states,
thus signaling the presence in the spectrum of U(5)-PDS.

Figure 9. Signatures of U(5), SU(3) and ( )SU 3 PDSs in S-P-O shape
coexistence. Strong intraband E2 transitions (solid lines) obey the
analytic expressions of equations (36) and(44). Retarded E2 (dashed
lines) and E0 (dotted lines) decays identify isomeric states.

10

Phys. Scr. 92 (2017) 114005 A Leviatan and N Gavrielov



local, adding an  n̂d term to ¢Ĥ (42), will leave the nd = 0
spherical ground state unchanged, but will shift the prolate
and oblate bands to higher energy of order  N2 3. In both
scenarios, the lowest L=0 state of the non-yrast configura-
tion will exhibit retarded E2 and E0 decays, hence will have
the attributes of an isomer state, as depicted schematically in
figure 9.

7. Spherical and γ-unstable deformed shape
coexistence: U(5)-SO(6) PDS

The γ degree of freedom and triaxiality can play an important
role in the occurrence of multiple shapes in nuclei [79]. In the
present section, we examine the coexistence of a spherical
shape and a particular type of non-axial deformed shape,
which is γ-soft. The relevant DS chains for such configura-
tions are [31],

tÉ É É ñD( ) ( ) ( ) ( ) ∣
( )

N n n L

a

U 6 U 5 SO 5 SO 3 , , , , ,
45

d

s tÉ É É ñD( ) ( ) ( ) ( ) ∣
( )

N n L

b

U 6 SO 6 SO 5 SO 3 , , , , .
45

The U(5)-DS limit(45a), appropriate to a spherical shape, was
discussed in section 4. The SO(6)-DS limit(45b) is appropriate
to the dynamics of a γ-unstable deformed shape. For a given
U(6) irrep N, the allowed SO(6) and SO(5) irreps are
s = -N N, 2, ... 0 or 1, and t s= ¼0, 1, , respectively. The

É( ) ( )SO 5 SO 3 reduction is the same as in the U(5)-DS chain.
The basis states are eigenstates of the Casimir operator

= P P +ˆ [ ( )] · ˆ [ ( )]( ) ( )C CSO 6 2 SO 52
2 2

2 with eigenvalues
s s +( )4 . The generators of SO(6) are the angular momentum,
octupole and quadrupole operators, ( ˜)( ) † ( )L d d,1 3 and P( )2 ,
equation (34). The SO(6)-DS spectrum resembles that of a γ-
unstable deformed rotovibrator, composed of SO(6) σ-multi-
plets forming rotational bands, with t t +( )3 and +( )L L 1
splitting generated by ˆ [ ( )]C SO 52 and ˆ [ ( )]C SO 32 , respectively.
The lowest irrep s = N contains the ground (g) band of a γ-
unstable deformed nucleus. The first excited irrep s = -N 2
contains the β-band. The lowest members in each band have
quantum numbers t = =( )L0, 0 , t = =( )L1, 2 , t =(

= )L2, 2, 4 and t =( = )L3, 0, 3, 4, 6 .
In discussing the properties of the SO(6)-DS spectrum, it

is convenient to subtract from ˆ [ ( ))]C O 62 the ground-state

energy, and consider the following positive-definite term:

= - + +ˆ [ ( )] ˆ ( ˆ ) ( )†R R C N NSO 6 4 . 460 0 2

The SO(6) basis states s t ñD∣N n L, , , , , equation (45b), are
then eigenstates of †R R0 0 with eigenvalues s- +( )(N N
s + )4 , and the ground band with s = N occurs at zero
energy. The two-boson pair operator

= -· ( ) ( )† † † †R d d s , 470
2

is a scalar with respect to SO(6) and satisfies

s t= ñ =D∣ ( )R N N n L, , , , 0. 480

This operator corresponds to âT of equation (7) and, as shown
below, it plays a central role in the construction of Hamilto-
nians with SO(6)-PDS.

The phase transition between spherical and γ-unstable
deformed shapes, has been previously studied by varying a
control parameter in an IBM Hamiltonian mixing the U(5)
and SO(6) Casimir operators [37, 67, 68, 80]. However, the
latter employed one- and two-body terms, hence the resulting
quantum phase transition is of second order, where one
minimum evolves continuously to the second minimum. To
allow for a first-order quantum phase transition, involving
coexisting shapes, we consider an Hamiltonian with cubic
terms which retains the virtues of U(5) and SO(6) DSs for the
spherical ground state and the γ-unstable deformed ground
band, respectively. Following the procedure outlined in
equation (9), the intrinsic part of the critical-point Hamilto-
nian is required to satisfy

s t
t

= ñ =
= ¼

ˆ ∣
( )

H N N L

N a

, , , 0
0, 1, 2, , 49

t= = = ñ =ˆ ∣ ( )H N n L b, 0, 0, 0 0. 49d

Equivalently, Ĥ annihilates both the deformed intrinsic state
of equation (3) with b g=( )1, arbitrary , which is the lowest
weight vector in the SO(6) irrep s = N , and the spherical
intrinsic state with b = 0, which is the single basis state in the
U(5) irrep nd = 0. The resulting Hamiltonian is found to be

=ˆ ˆ ( )†H r R n R , 50d2 0 0

where †R0 is given in equation (47). The energy surface,
b g b g= - -( ) ( )( ) ˜( )E N N N E, 1 2 ,N , is given by

b b b b= - + -˜( ) ( ) ( ) ( )E r 1 1 . 512
2 2 2 2 3

Figure 10. Spherical and γ-unstable deformed (S-G) shape coexistence. (a)Contour plots of the γ-independent energy surface(51),
(b)g = 0 sections, and (c)bandhead spectrum, for the Hamiltonian ¢Ĥ (53) with parameters r r= = =r 1, 02 5 3 , and =N 20.
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The surface is an even sextic function of β and is independent
of γ, in accord with the SO(5) symmetry of the Hamiltonian.
It has the form b b b b b= + + +-˜( ) ( ) [ ]E A D F1 2 3 6 4 2 , with
coefficients = = = -A F r D r, 22 2, satisfying =D AF42 .
Such a topology necessitates the presence of cubic terms in
the Hamiltonian, and the latter condition ensures that the
surface supports two degenerate extrema, spherical and
deformed. For >r 02 , Ĥ is positive definite and b˜( )E has two
degenerate global minima, b = 0 and b = 12 , at =Ẽ 0. A
local maximum at

*
b =2 1

5
creates a barrier of height =Ẽ

r2

27 2, separating the two minima, as seen in figure 10. For
large N, the normal modes shown schematically in
figure 10(c), involve β vibrations about the deformed minima,
with frequency b , and quadrupole vibrations about the
spherical minimum, with frequency ò, respectively,

 =b ( )r N a2 , 522
2

 = ( )r N b. 522
2

Interestingly, the β mode has twice the energy of the spherical
modes,  =b 2 , compared to equal energies encountered in
the case of spherical-prolate coexistence (see equations (18a)
and (19)).

Identifying the collective part of the Hamiltonian with the
Casimir operators of the common É( ) ( )SO 5 SO 3 segment
of the chains(45), we arrive at the following complete
Hamiltonian

r r¢ = + +ˆ ˆ ˆ [ ( )] ˆ [ ( )] ( )†H r R n R C CSO 5 SO 3 . 53d2 0 0 5 2 3 2

The added rotational terms generate an exact r t t + +( )35
r +( )L L 13 splitting without affecting the wave functions. In
particular, the solvable subset of eigenstates, equation (49),
remain intact. Since both SO(5) and SO(3) are preserved by
the Hamiltonian, its eigenstates have good t( )L, quantum
numbers and can be labeled as t

+Li, , where the ordinal number
i enumerates the occurrences of states with the same t( )L,
with increasing energy. The nature of the Hamiltonian

eigenstates can be inferred from the probability distributions,
=t t∣ ∣( ) ( )P Cn

N L
n

N L, , , , 2
d d

and =s
t

s
t∣ ∣( ) ( )P CN L N L, , , , 2, obtained from

their expansion coefficients in the U(5) and SO(6) bases(45).
In general, the low-lying spectrum of ¢Ĥ (53) exhibits two
distinct classes of states. The first class consists of (t L, )
states arranged in nd-multiplets of a spherical vibrator.
Figure 11 shows the U(5) nd-decomposition of such spherical
states, characterized by a narrow nd-distribution. The lowest
spherical state, = +L 02,0, is the solvable U(5) state of
equation (49b) with U(5) quantum number nd = 0. The
= +L 22,1 state has nd = 1 to a good approximation. Its high

purity can be traced to the relation

t

t

t

= = = ñ

= - - = = = ñ

- = = = ñ
- -

⎡
⎣⎢

⎤
⎦⎥

ˆ ∣

( )( ) ∣

∣ ( )
( )( )

H N n L

r N N N n L

N n L

, 1, 2

1 2 , 1, 2

, 2 , 54

d

d

N N d

2

14

1 2

which shows that the U(5)-basis state t= = = ñ∣N n L, 1, 2d

is almost an eigenstate for large N, with corrections of order
N1 . The upper panels of figure 11 display the next spherical

type of multiplets ( = + + +L 0 , 2 , 43,0 2,2 2,2) and ( = + +L 6 , 4 ,3,3 3,3
+ + +3 , 0 , 23,3 3,3 4,1), which have a somewhat less pronounced (60%)
single nd-component, with nd = 2 and nd = 3, respectively.

A second class consists of (t L, ) states arranged in bands
of a γ-unstable deformed rotor. The SO(6) σ-decomposition
of such states, in selected bands, are shown in figure 12. The
ground band is seen to be pure with s = N SO(6) character,
and coincides with the solvable band of equation (49a). In
contrast, the non-solvable β-band (and higher bn-bands) show
considerable SO(6)-mixing. The deformed nature of these
SO(5)-rotational states is manifested in their broad
nd-distribution, shown in figure 13. This is explicitly evident
in the following expansion of the SO(6) ground band wave
functions in the U(5) basis,

ås t

q t

= ñ= + -

´ ñ

t

t

D
-

D

∣ [ ( ) ]

∣ ( )( )

N N n L

N n n L a

, , , ,
1

2
1 1

, , , , , 55

n

n

n
N

d
,

d

d

d

q =t t t
t t

- + +
+ - - + ++

⎡⎣ ⎤⎦ ( )( ) ( )!( )!
( )!( )!( ) !!( ) !!

b, 55n
N N N

N N n n n
, 3

2 1 3

1 2

d N
d d d

1

Figure 11. U(5) nd-decomposition for spherical states, eigenstates of
the Hamiltonian ¢Ĥ (53) with parameters as in figure 10. The column
‘other’ depicts a sum of probabilities, each less than5%.

Figure 12. SO(6) σ-decomposition for members of the deformed
ground (g) and β bands, eigenstates of the Hamiltonian ¢Ĥ (53) with
parameters as in figure 10, resulting in S-G shape coexistence.
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which shows that for large N, the probability of each indivi-
dual nd component is exponentially small. The above analysis
demonstrates that although the critical-point Hamiltonian(53)
is not invariant under U(5) nor SO(6), some of its eigenstates
have good U(5) symmetry, some have good SO(6) symmetry
and all other states are mixed with respect to both U(5) and
SO(6). These are precisely the defining attributes of U(5)-
PDS coexisting with SO(6)-PDS.

Since the wave functions for the solvable states,
equations (49), are known, one has at hand closed form
expressions for related spectroscopic observables. Consider-
ing the E2 operator = P( ) ( )T E e2 B

2 with P( )2 given in
equation (34), it obeys the SO(5) selection rules tD = 1
and, consequently, all t( )L, states have vanishing quadrupole
moments. The ( )B E2 values for intraband ( g g) transitions
between states of the ground band, equation (49a), are given
by the known SO(6)-DS expressions [31]. For example,

t t t t

t t

+ ¢ = +  =

= - + +t
t
+
+

( )
( )( ) ( )

B E g L g L

e N N a

2; , 1, 2 2 , , 2

4 , 56B
2 1

2 5

t t t t

t t

+ ¢ =  =

= - + +t
t t

+
+ -

( )
( )( ) ( )

( )( )

B E g L g L

e N N b

2; , 1, 2 , , 2

4 . 56B
2 4 2

2 5 4 1

Similarly, the E2 rates for the transition connecting the pure
spherical states, t= = =( )n L1, 2d and t= = =(n L0,d

)0 , satisfy the U(5)-DS expression of equation (44). Member
states of the deformed ground band(49a) span the entire
s = N irrep of SO(6) and are not connected by E2 transitions
to the spherical states since P( )2 , as a generator of SO(6),
cannot connect different σ-irreps of SO(6). The weak sphe-
rical → deformed E2 transitions persist also for a more
general E2 operator obtained by adding ( ˜)† ( )d d 2 to ( )T E2 ,
since the latter term, as a generator of U(5), cannot connect
different nd-irreps of U(5). By similar arguments, there are no
E0 transitions involving these spherical states, since ( )T E0 is
diagonal in nd. These symmetry-based selection rules result in
strong electromagnetic transitions between states in the same
class, associated with a given shape, and weak transitions

between states in different classes, hence can be used to
identify isomeric states.

The evolution of structure away from the critical point,
where the spherical and deformed configurations are degen-
erate, can be studied by incorporating the U(5) or SO(6)
Casimir operators in ¢Ĥ (53), still retaining the desired SO(5)
symmetry. Adding an  n̂d term, will leave the pure spherical

=n 0, 1d states unchanged but will shift the deformed
γ-unstable ground band to higher energy of order  N 3.
Similarly, adding a small a †R R0 0 term(46), will leave the
solvable SO(6) s = N ground band unchanged, but will shift
the spherical ground state ( = =n L 0d ) to higher energy of
order aN 2. As discussed, the =L 0 state of the excited
configuration will exhibit retarded E2 and E0 decays to states
of the lower configuration, hence will have the attributes of an
isomer state, as depicted schematically in figure 14.

8. Concluding remarks

We have presented a comprehensive symmetry-based
approach for describing properties of multiple shapes in the
framework of the interacting boson model (IBM) of nuclei. It
involves the construction of a number-conserving rotational-
invariant Hamiltonian which captures the essential features of
the dynamics near the critical point, where two (or more)
shapes coexist. The Hamiltonian conserves the DS of selected
bands, associated with each shape. Since different structural
phases correspond to incompatible (non-commuting) dyna-
mical symmetries, the symmetries in question are shared by
only a subset of states, and are broken in the remaining
eigenstates of the Hamiltonian. The resulting structure is,
therefore, that of coexisting multiple PDSs.

We have applied the proposed approach and examined the
relevance of the PDS notion to a rich variety of multiple
quadrupole shapes, spherical and deformed (axial and non-
axial). The shape coexistence scenarios and related PDSs
considered include (i)U(5)-PDS and SU(3)-PDS in relation

Figure 13. U(5) nd-decomposition for members of the deformed
ground (g) and β bands, eigenstates of the Hamiltonian ¢Ĥ (53) with
parameters as in figure 10, resulting in spherical and γ-unstable
deformed (S-G) shape coexistence. The results of figures 11–13,
demonstrate the presence in the spectrum of U(5)-PDS and
SO(6)-PDS.

Figure 14. Signatures of U(5) and SU(6) PDSs in S-G shape
coexistence. Strong intraband E2 transitions (solid lines) obey the
analytic expressions of equations (44) and(56). Retarded E2 (dashed
lines) and E0 (dotted lines) decays identify isomeric states.
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to spherical-prolate coexistence. (ii)SU(3)-PDS and
( )SU 3 -PDS in relation to prolate-oblate coexistence. (iii)U(5)-

PDS, SU(3)-PDS and ( )SU 3 -PDS in relation to triple spherical-
prolate-oblate coexistence. (iv)U(5)-PDS and SO(6)-PDS in
relation to coexisting spherical and γ-unstable deformed
shapes. In each case, the underlying potential-energy surface
exhibits multiple minima which are near degenerate. As
shown, the constructed Hamiltonian has the capacity to have
distinct families of states whose properties reflect the different
nature of the coexisting shapes. Selected sets of states within
each family, retain the dynamical symmetry associated with the
given shape. This allows one to obtain closed expressions for
quadrupole moments and transition rates, which are the
observables most closely related to the nuclear shape. The
resulting analytic expressions, (equations (25), (26), (35), (36),
(44), (56)), are parameter-free predictions, except for a scale,
and can be used to compare with measured values of these
observables and to test the underlying partial symmetries. The
purity and good quantum numbers of selected states enable the
derivation of symmetry-based selection rules for electro-
magnetic transitions (notably, for E2 and E0 decays) and the
subsequent identification of isomeric states. The evolution of
structure away from the critical-point can be studied by adding
to the Hamiltonian the Casimir operator of a particular DS
chain, which will leave unchanged the ground band of one
configuration but will shift the other configuration(s) to higher
energy and may alter their symmetry properties.

The critical-point Hamiltonians obtained in the procedure
of equation (9), often involve three-body interactions. Similar
cubic terms were encountered in previous studies within the
IBM, in conjunction with triaxiality [81, 82], band anhar-
monicity [49, 83] and signature splitting [50, 84] in deformed
nuclei. Higher-order terms show up naturally in microscopic-
inspired IBM Hamiltonians derived by a mapping from self-
consistent mean-field calculations [24, 85]. Near shell-closure
such critical-point Hamiltonian can be regarded as an effec-
tive number-conserving Hamiltonian, which simulates the
excluded intruder configurations by means of higher-order
terms. Indeed, the energy surfaces of the IBM with config-
uration mixing [20, 21, 86] contain higher-powers of b2 and
b gcos 33 , as in equation (31). Recalling the microscopic
interpretation of the IBM bosons as images of identical
valence–nucleon pairs, the results of the present study suggest
that for nuclei far from shell-closure, shape coexistence can
occur within the same valence space.

As discussed, the yrast states of each coexisting con-
figuration, (e.g., the prolate and oblate ground bands) are
unmixed and retain their individual symmetry character
(e.g., the SU(3) and ( )SU 3 character). This situation is dif-
ferent from that encountered in the neutron-deficient Kr [4]
and Hg [6] isotopes, where the observed structures are
strongly mixed. It is in line with the recent evidence for
shape coexistence in neutron-rich Sr isotopes, where sphe-
rical and prolate-deformed configurations exhibit very weak
mixing [8]. Band mixing can be incorporated in the present
formalism by adding kinetic rotational terms which do not
affect the shape of the energy surface [69–71, 78]. For an
Hamiltonian with one-, two- and three-body terms, the

rotational terms are of three types. (A)Operators related to
the Casimir operators ˆ [ ]C G2 of the groups (G) in the chain

É É( ) ( ) ( )SO SOSO 6 5 3 , where the generators of ( )SO 6 are
= ( ˜)( ) † ( )U d dℓ ℓ , =ℓ 1, 3 and P = -( ˜)( ) † †i d s s d2 . These

orthogonal groups correspond to ‘generalized’ rotations
associated with the β-, γ-, and Euler angles degrees of
freedom [70]. (B)Operators of the form ˆ ˆ [ ]n C Gd 2 .
(C)Operators of the form P P P· ( )( ) ( ) ( ) ( )2 2 2 2 ,
P · ( )( ) ( ) ( ) ( )U U2 1 1 2 , · ( )( ) ( ) ( ) ( )U U U2 1 1 2 , P · ( )( ) ( ) ( ) ( )i U U2 2 3 2

and their Hermitian conjugates. Operators in classes (A) and
(B) are diagonal in the SO(5) quantum number τ, while
those in class(C) allow for τ mixing. Most of these rota-
tional terms do not commute with the intrinsic part of the
Hamiltonian hence can shift, split and mix the bands gen-
erated by the latter. So far, these effects were considered
only for the operators of class(A) in conjunction with the
coexistence of spherical and prolate-deformed shapes [66],
hence a detailed systematic study of other terms is called for.
It should be noted that if the induced band mixing is strong,
it may destroy the PDS property of the eigenstates of the
complete Hamiltonian.

Shape coexistence in an interacting system, such as nuclei,
occurs as a result of a competition between terms in the
Hamiltonian with different symmetry character, which leads to
considerable symmetry-breaking effects in most states. To
address the persisting regularities in such circumstances, amidst a
complicated environment of other states, one needs to enlarge
the traditional concepts of exact dynamical symmetries. The
present symmetry-based approach accomplishes that by
employing such an extended notion of PDS. In the same spirit
that exact dynamical symmetries are known to serve as bench-
marks for the dynamics of a single shape, it appears that partial
dynamical symmetries have the capacity and potential to act as
benchmarks for the study of multiple shapes in nuclei. PDSs can
provide a convenient starting point, guidance and test-ground for
more detailed treatments of this intriguing phenomena. Further
work is required to quantitatively asses to what extent partial
symmetries persist in real nuclei, where shape coexistence
necessitates additional symmetry-breaking effects due to depar-
tures from the critical-point and band mixing. It is gratifying to
note that shape coexistence in nuclei, exemplifying a quantal
mesoscopic system, constitutes a fertile ground for the devel-
opment and testing of generalized notions of symmetry.
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