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Persistent vibrational structure in 110–116Cd
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The empirical spectra and E2 decay rates in 110,112,114,116Cd are shown to be consistent with a vibrational
interpretation for low-lying normal states, coexisting with a single deformed γ -soft band of intruder states. The
observed deviations from this paradigm show up in particular nonyrast states, which are properly described by a
Hamiltonian with U(5) partial dynamical symmetry. The latter is characterized by a good (broken) symmetry in
most (in selected) normal states, weakly coupled to intruder states.
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The concepts of shapes and symmetries play a pivotal
role in the quest for understanding the structure and simple
patterns in complex many-body systems. A notable example
is found in atomic nuclei, where these notions are instrumental
for interpreting the collective motion exhibited by a multitude
of protons and neutrons subject to the strong interaction.
Based on earlier ideas of Bohr and Kalckar [1,2] and on
Rainwater’s suggestion [3] that nuclei may be intrinsically
deformed, a standard description of the nucleus was proposed
in terms of a quantum liquid drop, which can vibrate and,
if deformed, also rotate. This is commonly referred to as
the (Bohr-Mottelson) collective model of the nucleus [4–6].
Particular limits of the model provide insightful paradigms
for the dynamics of spherical, axially deformed, and non-
axial shapes. These geometric benchmarks correspond in
the algebraic interacting boson model (IBM) of Arima and
Iachello [7] to solvable limits, associated with dynamical
symmetries.

Recent advances in high resolution spectroscopy of
nonyrast states [8], impart valuable input for testing and chal-
lenging the accepted paradigms of collective motion in nuclei.
The present work examines the collective model hypothesis
of quadrupole oscillations about a spherical shape, in relation
to the cadmium isotopes (Z =48). The latter have long since
been considered as textbook examples of spherical-vibrator
nuclei and U(5) dynamical symmetry [6,7,9–11]. On the other
hand, detailed studies, using complementary spectroscopic
methods, have provided evidence for marked deviations from
such a structural paradigm [12–17]. Two approaches have
been proposed to address these unexpected findings. The first
questions the spherical-vibrational character of the 110,112Cd
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isotopes, replacing it with multiple coexistence of states with
different deformed shapes in the same nucleus, a view quali-
tatively supported by a beyond-mean-field (BMF) calculation
with the Gogny D1S energy density functional [18,19]. A
second approach is based on the recognition that the re-
ported deviations from a spherical-vibrator behavior show up
in selected states, while most states retain their vibrational
character. In the terminology of symmetry, this implies that
the symmetry in question is broken only in a subset of states,
hence is partial [20]. Such a U(5) partial dynamical symme-
try (PDS) approach was applied in Ref. [21] to describe the
properties of 110Cd.

In this Letter, it is shown that the U(5)-PDS approach of
Ref. [21] can be extended to give a coherent description of a
series of cadmium isotopes with mass number A = 110–116.
Their properties are analyzed based on a vibrational interpre-
tation coupled to the presence of intruder states. It is by now
widely accepted that the Cd isotopes exhibit shape coexistence
in their low-energy spectrum [22–25]. However, unlike the
multishape version of coexistence in Refs. [18,19], only two
coexisting configurations with different shapes are proposed
here: a spherical one, exhibiting an anharmonic vibrational
spectrum for normal states, and one that is prolate deformed
with γ -soft characteristics, that is, an axially symmetric shape
that can easily turn triaxial, for intruder states. The anhar-
monicity is due to the presence of terms in the Hamiltonian
that break the U(5) symmetry in selected normal states, and
is essential to reproduce the unexpected observed E2 decay
patterns. In this respect, it should be mentioned that previous
attempts to explain the experimental E2 matrix elements re-
lied on strong mixing between spherical and intruder states
and ultimately proved unsuccessful [12–16,26,27].

Vibrations of spherical nuclei can be described in the
U(5) dynamical symmetry (DS) limit of the IBM, associated
with the chain, U(6) ⊃ U(5) ⊃ SO(5) ⊃ SO(3). The DS basis
states |[N], nd , τ, n�, L〉 have quantum numbers which are
the labels of irreducible representations of the algebras in
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112Cd

FIG. 1. Experimental energy levels in keV of 112Cd [28]. Normal
states are marked in black or in red if their E2 decays deviate from
those of a spherical vibrator. Intruder states are marked in blue.

the chain. Here, N is the total number of monopole (s) and
quadrupole (d) bosons, nd and τ are the d-boson number
and seniority, respectively, L is the angular momentum, and
n� is a multiplicity label. The U(5)-DS Hamiltonian can be
transcribed in the form

ĤDS = ρ1n̂d + ρ2n̂d (n̂d − 1) + ρ3[−ĈSO(5) + n̂d (n̂d + 3)]

+ ρ4[ĈSO(3) − 6n̂d ], (1)

where ĈG denotes a Casimir operator of G, and n̂d =∑
m d†

mdm =ĈU(5). ĤDS is completely solvable with eigenstates
|[N], nd , τ, n�, L〉 and energies EDS = ρ1nd + ρ2nd (nd −
1) + ρ3(nd − τ )(nd + τ + 3) + ρ4[L(L + 1) − 6nd ]. The
U(5)-DS spectrum is that of a spherical vibrator with
states arranged in nd multiplets, the lowest ones being
(nd =0, L=0), (nd =1, L=2), (nd =2, L = 4, 2, 0),
(nd =3, L=6, 4, 3, 0, 2) at energies E (nd ) ≈ nd E (nd =1).
The E2 operator in the IBM is proportional to

Q̂χ = d†s + s†d̃ + χ (d†d̃ )(2) , (2)

where d̃m = (−1)md−m. It is customary in the U(5)-DS limit
to set χ = 0, which results in vanishing quadrupole moments

and strong (nd + 1→nd ) E2 transitions with particular ratios,
e.g., B(E2; nd +1,L′=2nd +2→nd ,L=2nd )

B(E2; nd =1,L=2→nd =0,L=0) = (nd + 1) (N−1)
N .

The empirical spectrum of 112Cd, shown in Fig. 1, con-
sists of both normal and intruder levels, the latter based on
2p-4h proton excitations across the Z =50 shell gap. At first
sight, the normal states seem to follow the expected pat-
tern of spherical-vibrator nd multiplets. The measured E2
rates support this view for the majority of normal states,
however, selected nonyrast states (shown in red in Fig. 1)
reveal marked deviations from this behavior. Specifically, the
0+

3 and 2+
4 states in 112Cd (denoted in Table I by 0+

α and
2+

α ) which in the U(5)-DS classification are members of the
nd = 2 and nd = 3 multiplets, respectively, have unusually
small E2 rates for the transitions 0+

α → 2+
1 and 2+

α → 2+
2 ,

and large rates for 0+
α → 2+

2 , at variance with the U(5)-DS
predictions. Absolute B(E2) values for transitions from the
0+

4 state are not known, but its branching ratio to the 2+
2

state is small. As shown in Table I, the same unexpected
decay patterns occur in all 110–116Cd isotopes and comprise
the so-called “Cd problem” [25]. We are thus confronted
with a situation in which some states in the spectrum obey
the predictions of U(5)-DS, while other states do not. These
empirical findings suggest the presence of a PDS, as demon-
strated for 110Cd in [21]. In what follows, we show that the
same U(5)-PDS approach is relevant also to the other Cd
isotopes.

To describe both normal and intruder states, we adopt the
interacting boson model with configuration mixing (IBM-
CM) [29,30], widely used to study shape coexistence in nuclei
[31–35]. The Hamiltonian is written as

Ĥ = Ĥ (N )
PDS + Ĥ (N+2)

intrud + V̂ (N,N+2)
mix , (3)

where the superscript (N ) denotes a projection onto a space
of N bosons. Here, Ĥ (N )

PDS represents the normal configuration
(N boson space), Ĥ (N+2)

intrud represents the intruder configuration

TABLE I. Experimental (EXP) B(E2) values in Weisskopf units (W.u.) and quadrupole moments Q(2+
1 ) in eb, for normal levels in 110–116Cd,

compared to calculated U(5)-DS and PDS values. The 0+
α (2+

α ) state corresponds to the experimental 0+
3 , 0+

3 , 0+
3 , 0+

2 (2+
5 , 2+

4 , 2+
5 , 2+

4 ) state for
ACd (A=110, 112, 114, 116), respectively. In the U(5)-DS classification, (0+

1 , 2+
1 , 2+

2 , 4+
1 , 6+

1 ) are class-A states with nd =0, 1, 2, 2, 3 and
(0+

α , 2+
α ) are states with nd = (2, 3). The U(5)-PDS calculations are obtained using T̂ (E2), Eq. (6), with parameters given in Fig. 2. Data are

taken from [12,15–17,28].

110Cd 112Cd 114Cd 116Cd

Li L f EXP U(5)-DS PDS EXP U(5)-DS PDS EXP U(5)-DS PDS EXP U(5)-DS PDS

2+
1 0+

1 27.0(8) 27.0 27.0 30.31(19) 30.31 30.31 31.1(19) 31.1 31.1 33.5(12) 33.5 33.5
4+

1 2+
1 42(9) 46 46 63(8) 53 52 62(4) 55 55 56(14) 59 60

2+
2 2+

1 30(5) 46 45 39(7) 53 51 22(6) 55 53 25(10) 59 59

2+
2 0+

1 0.68(14) 0 0.0 0.65(11) 0 0.0 0.48(6) 0 0.0 1.11(18) 0 0.0

6+
1 4+

1 40(30) 58 53 68 59 119(15) 72 70 110+40
−80 75 79

0+
α 2+

1 <7.9 46 0.08 0.0121(17) 53 0.01 0.0026(4) 55 0.0026 0.79(22) 59 0.79

0+
α 2+

2 <1680 0 43 99(16) 0 49 127(16) 0 61 0 60

2+
α 2+

2 0.7+0.5
−0.6 11 0.124 <1.6+6

−4 13 0.08 2.5+16
−14 14 0.005 2.0(6) 14 0.004

2+
α 0+

α 24.2(22) 27 21 25(7) 32 28 17(5) 34 33 35(10) 35 33

Q(2+
1 ) −0.40(3) 0 −0.13 −0.38(3) 0 −0.13 −0.35(5) 0 −0.13 −0.42(4) 0 −0.14
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FIG. 2. Parameters of the IBM-CM Hamiltonian, Eq. (3), in
MeV and of the E2 operator, Eq. (6), with e(N )

B , e(N+2)
B in

√
W.u.

and χn =−0.7, χ =−0.09 are dimensionless. The boson numbers in
the (normal, intruder) configurations are (N, N +2) with N = 7, 8, 9
and N̄ = 8 (hole bosons) for neutron numbers 62, 64, 66, and 68,
respectively.

(N+2 boson space), and V̂ (N,N+2)
mix a mixing term. Explicit

forms are given by

ĤPDS = ĤDS + r0 G†
0G0 + e0 (G†

0K0 + K†
0 G0), (4a)

Ĥintrud = κQ̂χ · Q̂χ + κ ′L̂ · L̂ + �, (4b)

V̂mix = α[(s†)2 + (d†d†)(0)] + H.c., (4c)

where ĤDS is the U(5)-DS Hamiltonian of Eq. (1),
G†

0 = [(d†d†)(2)d†](0), K†
0 =s†(d†d†)(0), Q̂χ is given in Eq. (2),

and H.c. means Hermitian conjugate. As shown in [21],
ĤPDS has U(5)-PDS in the sense that it breaks the U(5)
symmetry, yet maintains a subset of U(5)-DS basis states
|nd = τ, τ, n� = 0, L〉 with L=τ, τ + 1, . . . , 2τ − 2, 2τ , as
solvable eigenstates. Henceforth, we refer to this special sub-
set of states as class-A states. The eigenstates |	; L〉 of Ĥ ,
Eq. (3), involve normal (	n) and intruder (	i) components in
the [N] and [N + 2] boson spaces,

|	; L〉 = a |	n; [N], L〉 + b |	i; [N + 2], L〉 (5)

with a2 + b2 =1. The E2 operator in the IBM-CM reads

T̂ (E2) = e(N )
B Q̂(N )

χn
+ e(N+2)

B Q̂(N+2)
χ (6)

with boson effective charges e(N )
B and e(N+2)

B .
The parameters of Ĥ (3) and T̂ (E2) (6) are determined by

a combined fit to the spectra and E2 transitions for the nor-
mal states (2+

1 , 4+
1 , 2+

2 , 6+
1 ) and (0+

α , 2+
α ), and for the lowest

(0+, 2+) intruder states in each isotope. As shown in Fig. 2,
the extracted parameters are fairly constant and vary smoothly
as a function of neutron number. Notable exceptions are ρ1

whose decrease reflects the lowering of the 2+
1 state, and �,

which together with the κ term in Ĥintrud controls the lowering
of the intruder levels towards midshell (neutron number 66),
where boson particles are replaced by boson holes.

FIG. 3. Comparison between selected experimental (left panels)
and calculated (right panels) energy levels in MeV and E2 transition
rates in W.u.

An IBM-CM calculation has been performed for spec-
tral properties of states in 110–116Cd, with energies up to
4 MeV. A detailed account will be given in a forthcom-
ing longer publication [36]. Here, we focus on the main
features which are relevant to the subject matter of this
Letter, namely, the vibrational interpretation and symmetry
aspects of these isotopes. The assignment of states as nor-
mal or intruder is based on their measured E2 decays when
available, or on their calculated probabilities, a2 and b2,
in Eq. (5).
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TABLE II. Normal-intruder mixing and U(5) structure of the wave functions |	, L〉, Eq. (5), of selected eigenstates of Ĥ , Eq. (3). Shown
are the probability (a2) of the normal part 	n, the dominant nd component in 	n and its probability Pnd .

110Cd 112Cd 114Cd 116Cd

L+
k a2 (%) [(nd ) Pnd (%)] a2 (%) [(nd ) Pnd (%)] a2 (%) [(nd ) Pnd (%)] a2 (%) [(nd ) Pnd (%)]

0+
1 98.23 [(0) 98.22 ] 97.94 [(0) 97.92 ] 97.98 [(0) 97.95 ] 98.27 [(0) 98.25 ]

2+
1 96.38 [(1) 96.36 ] 95.10 [(1) 95.05 ] 95.28 [(1) 95.22 ] 96.84 [(1) 96.81 ]

4+
1 90.73 [(2) 90.69 ] 83.19 [(2) 83.03 ] 83.05 [(2) 82.87 ] 92.95 [(2) 92.91 ]

2+
2 89.81 [(2) 89.74 ] 81.62 [(2) 81.28 ] 78.77 [(2) 78.33 ] 91.31 [(2) 91.25 ]

6+
1 71.18 [(3) 71.09 ] 42.92 [(3) 42.53 ] 39.46 [(3) 38.98 ] 79.34 [(3) 79.27 ]

0+
α 70.75 [(3) 70.46 ] 71.13 [(3) 69.54 ] 71.55 [(3) 70.79 ] 74.34 [(3) 74.14 ]

2+
α 68.34 [(4) 66.07 ] 65.89 [(4) 62.83 ] 40.78 [(4) 40.13 ] 55.68 [(4) 54.73 ]

As shown in Fig. 3 and Table I, the U(5)-PDS calculation
of spectra and E2 rates provides a good description of the
empirical data in 110–116Cd. It yields the same B(E2) values
as those of U(5)-DS for class-A states and reproduces cor-
rectly the E2 transitions involving the (0+

α , 2+
α ) states which

deviate considerably from the U(5)-DS predictions. The ori-
gin of these features is revealed from Table II, which shows
for eigenfunctions of Ĥ Eq. (3), the percentage of the wave
function within the normal configuration [the probability a2

of 	n in Eq. (5)] and the dominant nd component in 	n and
its probability.

The class-A states are dominated by the normal compo-
nent 	n (large a2�90%), implying a weak mixing (small
b2) with the intruder states. The 6+

1 state experiences a larger
mixing consistent with its enhanced decay to the lowest 4+
intruder state. The (0+

α , 2+
α ) states are more susceptible to

such mixing but still retain the dominance of 	n (a2 ∼70%).
For both types of states the normal-intruder mixing increases
with L for a given isotope, and increases towards midshell
(114Cd), correlated with the decrease in energy of intruder
states.

The class-A states possess good U(5) quantum numbers
to a good approximation. Their 	n part involves a single nd

component with probability Pnd � 90%, as in U(5)-DS. In
contrast, the structure of the nonyrast (0+

α , 2+
α ) states changes

dramatically. Specifically, the 	n parts of the 0+
α and 2+

α states,
which in the U(5)-DS classification have nd = 2 and nd = 3,
have now dominant components with nd = 3 and nd = 4, re-
spectively. The change nd 	→ (nd + 1) ensures weak (�nd =
2) transitions from these states to class-A states, but secures
strong 2+

α → 0+
α (�nd = 1) transitions, in agreement with the

data. While the class-A and (0+
α , 2+

α ) states are predominantly
spherical, the intruder states are members of a single deformed
band with a characteristic γ -soft spectrum, shown in Fig. 3,
and wave functions exhibiting a broad nd distribution and a
pronounced SO(6) symmetry σ = N +2.

The PDS-CM describes the data very well, but there
are a few exceptions and remaining concerns. The observed
quadrupole moments Q(2+

1 ) and B(E2; 2+
2 → 0+

1 ), shown in
Table I, are larger than the predicted values which, in turn,
depend sensitively on the choice of χn in Eq. (6). Larger
values for these observables (which involve class-A states)
can be accommodated by adding U(5) symmetry-breaking

terms to the Hamiltonian. The (0+
α , 2+

α ) states are predomi-
nantly nd = (3, 4). A relevant question [19], is where their
partner states with nd = (2, 3) are with enhanced decays
to states with nd = (1, 2). The observed 0+

4 state, shown
in Fig. 3, has a dominant branching to the intruder 2+

3
state, hence does not match the properties expected for a
nd = 2 state. This may indicate a different structure for the
0+

4 state (e.g., a 4p-6h proton excitation as speculated in
[17]), although fragmentation of E2 strength cannot be ruled
out. In 110Cd, the state 2+

8 (2633) has a large B(E2; 2+
8 →

4+
1 ) = 25+4

−5 W.u. [28], as expected for a (nd = 3) → (nd =
2) transition. More data are needed to shed light on this
issue.

The vibrational interpretation proposed here is at variance
with the microscopic BMF calculation of Refs. [18,19] ad-
vocating multiple shape coexistence in 110,112Cd with states
arranged in deformed rotational bands. Specifically, the states
0+

1 , 2+
2 , 0+

3 , 0+
4 , of 112Cd, shown in Fig. 1, serve as band heads

for the ground, γ and two excited K =0 bands, and 0+
2 , 2+

5
are band heads for intruder and intruder-γ bands. Similar
assignments were suggested for 110Cd. The BMF-based ap-
proach is parameter free and provides a qualitative description
of 110,112Cd, but with noticeable shortcomings. In particular,
the predicted energies are generally overestimated, and in-
band B(E2) values and quadrupole moments are greater than
observed, reflecting too large deformations in the calculated
states. A detailed comparison between the BMF-based ap-
proach and the current PDS-based approach will be given
in [36] with a view that, ultimately, comparison with data
should be the basis to accept or refute a model. One possible
signature that can distinguish between the two approaches is
to measure the value of B(E2; 4+

2 → 3+
1 ), which is expected

to be small (large) in the PDS (BMF) approach, where the
indicated states are in the same nd multiplet (in the same γ

band).
To summarize, consistent with the empirical data, we have

shown that a vibrational interpretation and good U(5) symme-
try are maintained for the majority of low-lying normal states,
coexisting with a single deformed band of intruder states in
110,112,114,116Cd isotopes. The observed deviations from this
paradigm are properly treated by a Hamiltonian which breaks
the U(5) symmetry in selected nonyrast states, while keeping
the mixing with intruder states weak. The results demonstrate
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the relevance of a partial dynamical symmetry (PDS) to a
series of isotopes, and set the path for implementing a similar
PDS-based approach to other regions of the nuclear chart,
where a prescribed collective structure paradigm holds for a
segment of the spectrum.
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