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Intertwined quantum phase transitions in the Zr isotopes
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We explore the situation of intertwined quantum phase transitions (IQPTs), for which a QPT involving a
crossing of two configurations is accompanied by a shape evolution of each configuration with its own separate
QPT. We demonstrate the relevance of IQPTs to the Zr isotopes, with such coexisting Type I and Type II QPTs,
and ground state shapes changing from spherical to prolate axially deformed and finally to γ -unstable. Evidence
for this scenario is provided by a detailed comparison with experimental data, using a definite symmetry-based
conceptual framework.
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I. INTRODUCTION

Quantum Phase transitions (QPT) have in recent years
become of great interest in a variety of fields [1]. In particular,
they have been the subject of many investigations in nuclear
physics [2–5], where they were originally introduced [6,7].
In this field, most of the attention has been devoted to shape
phase transitions in a single configuration, described by a
single Hamiltonian,

Ĥ = (1 − ξ )Ĥ1 + ξ Ĥ2, (1)

where ξ is the control parameter. As ξ changes from 0 to 1, the
symmetry and equilibrium shape of the system change from
those of Ĥ1 to those of Ĥ2. For sake of clarity, we denote these
phase transitions Type I.

A different type of phase transitions occurs when two (or
more) configurations coexist [8]. In this case, the quantum
Hamiltonian has a matrix form [9]

Ĥ =
[

ĤA(ξA) Ŵ (ω)

Ŵ (ω) ĤB(ξB)

]
, (2)

where the indices A, B denote the two configurations and
Ŵ denotes their coupling. We call for sake of clarity these
phase transitions Type II [9], to distinguish them from those
of a single configuration [10]. The two types of QPTs are
usually discussed separately and both have been established
in nuclei, e.g., Type I QPT in the neutron number 90 region
for Nd-Sm-Gd isotopes, and Type II QPT in nuclei near
shell closure, e.g., in the light Pb-Hg isotopes, with strong
mixing between the two configurations. In the present work,
we explore a situation where the two crossing configurations,
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although coupled, still maintain individually a pronounced
shape evolution with nucleon number. We refer to such a
scenario as intertwined quantum phase transitions (IQPTs) in
the sense that Type I and Type II coexist, and show empirical
evidence for it in transitional nuclei, analyzed in a physically
transparent symmetry-based framework.

II. ALGEBRAIC APPROACH TO QPTS

A variety of methods have been used to study shape phase
transitions in nuclei. We prefer here to use algebraic models,
in which both Hamiltonians, ĤA and ĤB, and their coupling,
Ŵ , are written in terms of the interacting boson model (IBM)
[11], with bosons representing valence nucleon pairs counted
from the nearest closed shells. This provides a simple tractable
shell-model-inspired framework, where global trends of struc-
ture and symmetries can be clearly identified and diversity of
observables calculated. Other microscopic but computation-
ally demanding approaches include mean-field methods, both
nonrelativistic [12] and relativistic [13], and very recently the
Monte Carlo shell model (MCSM) [14]. In this paper, we
focus on the 40Zr isotopes and find that a complex variety
of phase transitions both of Type I and Type II coexist, thus
exemplifying IQPTs. These isotopes have been very recently
the subject of several experimental investigations [15–21].

To be specific, we use the configuration mixing model
(IBM-CM) of [22], and write the Hamiltonian not in matrix
form, but rather in the equivalent form

Ĥ = Ĥ (N )
A + Ĥ (N+2)

B + Ŵ (N,N+2), (3)

where Ô(N ) = P̂†
NÔP̂N and Ô(N,N ′ ) = P̂†

NÔP̂N ′ , for an operator
Ô, with P̂N a projection operator onto the [N] boson space.
Here Ĥ (N )

A represents the so-called normal (N boson space)
configuration and Ĥ (N+2)

B represents the so-called intruder
(N + 2 boson space) configuration, which we have assumed,
as in [23] where a similar calculation was done for the 42Mo
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isotopes, to be a proton excitation across the subshell closure
at proton number 40 (see Fig. 1 of [23]). The explicit form of
these Hamiltonians is

ĤA = ε
(A)
d n̂d + κ (A)Q̂χ · Q̂χ , (4a)

ĤB = ε
(B)
d n̂d + κ (B)Q̂χ · Q̂χ + κ ′(B)L̂ · L̂ + �(B)

p , (4b)

where the quadrupole operator is defined as Q̂χ = d†s +
s†d̃ + χ (d† × d̃ )(2). In Eq. (4b), �(B)

p is the off-set between
the normal and intruder configurations, where the index p
denotes the fact that this is a proton excitation. The mixing
term has the form [11,22]

Ŵ = [ ωd (d† × d†)(0) + ωs (s†)2 ] + H.c., (5)

where, for simplicity, a single parameter ω = ωs = ωd is used.
Hamiltonians of the above form have been used extensively
for studying coexistence phenomena in nuclei [22–31]. The
resulting eigenstates |	; L〉 with angular momentum L are
linear combinations of the wave functions, 	A and 	B, in the
two spaces [N] and [N + 2]:

|	; L〉 = a|	A; [N], L〉 + b|	B; [N + 2], L〉, (6)

with a2 + b2 = 1. We note here that one of the advantages of
the algebraic method is that one can also study phase tran-
sitions semiclassically by introducing intrinsic states [32,33]
and constructing the corresponding energy functional (or po-
tential function). For a single configuration, the latter is a
scalar function of the quadrupole variables, β and γ [11].
When two configurations coexist, the energy functional be-
comes a matrix. Diagonalization of this two-by-two matrix
produces the so-called eigen-potentials, E±(β, γ ) [9,34,35].

III. QPTS IN THE ZIRCONIUM CHAIN

The IBM-CM framework described above was previ-
ously employed to the Zr chain in [30], where the Hamil-
tonian parameters were determined by a mapping between
microscopic-derived and IBM energy surfaces. Due to the
mean-field nature of this procedure, the obtained Hamiltonian
exhibited noticeable deviations from the data in the vicinity
of the critical point. In the current study, we adapt a different
approach as in [23–28], with parameters determined from a
combined fit to the data on spectra and E2 transitions for
the states of 92–110Zr shown in Fig. 1, allowing a gradual

change between adjacent isotopes, but taking into account the
proposed shell-model interpretation for the structure evolution
in this region [36–38]. The Hamiltonian parameters used are
given in Table I and are consistent with those of previous
calculations in this mass region [23–25], where a similar
fit procedure was employed. It should be noted that beyond
the middle of the shell, at neutron number 66, bosons are
replaced by boson holes [11] and are denoted by a bar over
their number, and a symmetry about mid-shell was imposed
on all parameters (except χ ), in accord with microscopic
aspects of the IBM [39]. Apart from some fluctuations due
to the subshell closure at neutron number 56 (the filling
of the 2d5/2 orbital [36]), the values of the parameters are
a smooth function of neutron number and, in some cases,
a constant. A notable exception is the sharp decrease by
1 MeV of the energy off-set parameter �(B)

p beyond neutron
number 56. Such a behavior was observed for the Mo and
Ge chains [23–25] and, as noted in [23], it reflects the effects
of the isoscalar residual interaction, Vpn, between protons and
neutrons occupying the partner orbitals 1g9/2 and 1g7/2, which
is the established mechanism for descending cross shell-gap
excitations and onset of deformation in this region [37,38].
This trend in �(B)

p agrees with shell model estimates for the
monopole correction of Vpn [40]. The parameter ω (5) is
determined from E2 transitions between configurations, and
is constant except for 92,94Zr where the normal configura-
tion space is small (N = 1, 2). Fine-tuning the parameters
for individual isotopes can improve the fit, but the main
conclusions of the analysis, to be reported below, are not
changed.

In Fig. 1 we show a comparison between experimental and
calculated levels. One can see here a rather complex structure.
In the region between neutron number 50 and 56, there appear
to be two configurations: one spherical (seniority-like), (A),
and one weakly deformed, (B), as evidenced by the ratio
R4/2, which is at 52–56, R(A)

4/2
∼= 1.6 and R(B)

4/2
∼= 2.3. From

neutron number 58 there is a pronounced drop in energy for
the states of configuration B, and at 60 the two configurations
exchange their roles, indicating a Type II QPT. At this stage,
the intruder configuration (B) appears to be at the critical point
of a U(5)-SU(3) Type I QPT, as evidenced by the low value
of the excitation energy of the first excited 0+ state of this
configuration (the 0+

3 state in 100Zr shown in Fig. 3). The same
situation is seen in the 62Sm and 64Gd isotopes at neutron

TABLE I. Parameters of the IBM-CM Hamiltonian, Eq. (4), are in MeV and χ is dimensionless. The first row of the table lists the number
of neutrons and particle bosons (N, N + 2) or hole bosons (N̄, N̄ + 2) in the (A, B) configurations.

52(1,3) 54(2,4) 56(3,5) 58(4,6) 60(5,7) 62(6,8) 64(7,9) 66(8,10) 68(7̄, 9̄) 70(6̄, 8̄)

ε
(A)
d 0.7 0.8 1.82 1.75 1.2 1.2 1.2 1.2 1.2 1.2

κ (A) −0.005 −0.005 −0.005 −0.007 −0.006 −0.006 −0.006 −0.006 −0.006 −0.006
ε

(B)
d 0.35 0.37 0.6 0.45 0.3 0.15 0 0 0 0.15

κ (B) −0.02 −0.02 −0.015 −0.02 −0.02 −0.025 −0.0275 −0.03 −0.0275 −0.025
κ ′(B) 0.01 0.01 0.01 0.01 0.0075 0.01 0.0125 0.0125 0.0125 0.01
χ −0.6 −0.6 −0.6 −0.6 −1.0 −1.0 −0.75 −0.25 −0.25 0
�(B)

p 1.6 1.6 1.84 1.43 0.8 0.8 0.8 0.8 0.8 0.8
ω 0.1 0.1 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
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(a) Exp (b) Calc

FIG. 1. Comparison between (a) experimental [19,42] and
(b) calculated energy levels 0+

1 , 2+
1 , 4+

1 , 0+
2 , 2+

2 , 4+
2 . Empty (filled)

symbols indicate a state dominated by the normal A configuration
(intruder B configuration), with assignments based on the decom-
position of Eq. (6). Note that the calculated values start at neutron
number 52, while the experimental values include the closed shell
at 50.

number 90 [11,41]. Beyond neutron number 60, the intruder
configuration (B) is strongly deformed, as evidenced by the
small value of the excitation energy of the state 2+

1 , E2+
1

=
139.3 keV, and by the ratio R(B)

4/2 = 3.24 in 104Zr. At still larger
neutron number 66, the ground state band becomes γ -unstable
(or triaxial) as evidenced by the close energies of the states
2+

2 and 4+
1 , E2+

2
= 607.0 keV and E4+

1
= 476.5 keV, in 106Zr,

and especially by the recent results E4+
1

= 565 keV and E2+
2

=
485 keV in 110Zr [19], a signature of the SO(6) symmetry.
In this region, the ground state configuration undergoes a
crossover from SU(3) to SO(6).

The above spectral analysis suggests a situation of coexist-
ing Type I and Type II QPTs, which is the defining property of
IQPTs. In order to understand the nature of these phase transi-
tions, one needs to study the behavior of the order parameters.
In the present study, the latter involve the expectation value of
n̂d in the ground state wave function |	; L = 0+

1 〉 and in its 	A

and 	B components (6), denoted by 〈n̂d〉0+
1
, 〈n̂d〉A, 〈n̂d〉B, re-

spectively. 〈n̂d〉A and 〈n̂d〉B portray the shape evolution in con-
figurations (A) and (B), respectively, and 〈n̂d〉0+

1
= a2 〈n̂d〉A +

b2 〈n̂d〉B contains information on the normal-intruder mixing.
Figure 2(a) shows the evolution along the Zr chain of these
order parameters (〈n̂d〉A , 〈n̂d〉B in dotted and 〈n̂d〉0+

1
in solid

lines), normalized by the respective boson numbers, 〈N̂〉A =
N , 〈N̂〉B = N + 2, 〈N̂〉0+

1
= a2N + b2(N + 2). Configuration

(A) is seen to be spherical for all neutron numbers consid-
ered. In contrast, configuration (B) is weakly deformed for
neutron numbers 52–58. One can see here clearly a jump
between neutron numbers 58 and 60 from configuration (A)
to configuration (B), indicating a first-order Type II phase
transition [9], a further increase at neutron numbers 60–64
indicating a U(5)-SU(3) Type I phase transition, and, finally, a
decrease at neutron number 66, due in part to the crossover
from SU(3) to SO(6) and in part to the shift from boson

FIG. 2. Evolution of order parameters and of observables along
the Zr chain. Symbols (solid lines) denote experimental data (calcu-
lated results). Relevant parameters are given in the text. (a) Order
parameters (see text for details). (b) B(E2) values in Weisskopf units
(W.u.). Data were taken from [15–18,20,21,42]. Dotted lines denote
calculated E2 transitions within a configuration. (c) Isotope shift
� 〈r̂2〉0+

1
in fm2. Data were taken from [43]. The horizontal dashed

line at 0.235 fm2 represents the smooth behavior in � 〈r̂2〉0+
1

due to

the A1/3 increase of the nuclear radius. (d) Two-neutron separation
energies, S2n, in MeV. Data were taken from AME2016 [44].

particles to boson holes after the middle of the major shell
50–82. 〈n̂d〉0+

1
is close to 〈n̂d〉A for neutron numbers 52–58 and

coincides with 〈n̂d〉B at 60 and above, consistent with a high
degree of purity with respect to configuration mixing. These
conclusions are stressed by an analysis of other observables,
in particular the B(E2) values. Adapted to two configurations,
the E2 operator reads T̂ (E2) = e(A)Q̂(N )

χ + e(B)Q̂(N+2)
χ , with
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(a) (b) (c) (d)

FIG. 3. Experimental and calculated energy levels in MeV and E2 rates in W.u. for 100Zr [panels (a) and (b)] and 110Zr [panels (c) and (d)].

Q̂(N )
χ = P̂†

N Q̂χ P̂N and Q̂(N+2)
χ = P†

N+2Q̂χ P̂N+2. The boson ef-
fective charges e(A) = 0.9 and e(B) = 2.24 (W.u.)1/2 are de-
termined from the 2+ → 0+ transition within each configura-
tion, and χ is the same parameter as in the Hamiltonian (4).
As shown in Fig. 2(b), the calculated B(E2)’s agree with the
empirical values and follow the same trends as the respective
order parameters.

Further evidence can be obtained from an analysis of the
isotope shift � 〈r̂2〉0+

1
= 〈r̂2〉0+

1 ;A+2 − 〈r̂2〉0+
1 ;A, where 〈r̂2〉0+

1
is

the expectation value of r̂2 in the ground state 0+
1 . In the

IBM-CM the latter is given by 〈r̂2〉 = r2
c + αNv + η[〈n̂(N )

d 〉 +
〈n̂(N+2)

d 〉], where r2
c is the square radius of the closed shell,

Nv is half the number of valence particles, and η is a co-
efficient that takes into account the effect of deformation
[11,45]. � 〈r̂2〉0+

1
depends on two parameters, α = 0.235, η =

0.264 fm2, whose values are fixed by the procedure of
Ref. [45]. � 〈r̂2〉0+

1
should increase at the transition point then

decrease, and, as seen in Fig. 2(c), it does so, although the
error bars are large and no data are available beyond neutron
number 60. (In the large N limit, this quantity, proportional
to the derivative of the order parameter 〈n̂d〉0+

1
, diverges at

the critical point). Similarly, the two-neutron separation ener-
gies S2n can be written as [11] S2n = −Ã − B̃Nv ± Sdef

2n − �n,
where Sdef

2n is the contribution of the deformation, obtained by
the expectation value of the Hamiltonian in the ground state

0+
1 . The + sign applies to particles and the − sign to holes,

and �n takes into account the neutron subshell closure at 56:
�n = 0 for 50–56 and �n = 2 MeV for 58–70. The value
of �n is taken from Table XII of [46] and Ã = −16.5, B̃ =
0.758 MeV are determined by a fit to binding energies of
92,94,96Zr. The calculated S2n, shown in Fig. 2(d), displays a
complex behavior. Between neutron numbers 52 and 56 it is a
straight line, as the ground state has spherical (seniority-like)
configuration (A). After 56, it first goes down due to the
subshell closure at 56, then it flattens as expected from a
first-order Type I QPT (see, for example the same situation
in the 62Sm isotopes [41]). After 62, it goes down again due
to the increasing deformation and finally it flattens as expected
from a crossover from SU(3) to SO(6).

We note that our calculations describe the experimental
data in the entire range 92–110Zr very well. A full account is
given in [47]. Here we show only two examples, 100Zr and
110Zr. 100Zr is near the critical point of both Type I and Type
II QPTs and yet our description of energy levels and B(E2)
values is excellent; see Figs. 3(a) and 3(b). The ground state
band, configuration (B), appears to have features of the so-
called X(5) symmetry [48], while the spherical configuration
(A) has now become the excited band 0+

2 . 110Zr, in Figs. 3(c)
and 3(d), appears instead to be an excellent example of SO(6)
symmetry [49], although few experimental data are available.
In general, the results of the current phenomenological study

(a)
92Zr

γ(deg) (b)
94Zr

γ(deg) (c)
96Zr

γ(deg) (d)
98Zr

γ(deg) (e)
100Zr

γ(deg)

(f)
102Zr

γ(deg) (g)
104Zr

γ(deg) (h)
106Zr

γ(deg) (i)
108Zr

γ(deg) (j)
110Zr

γ(deg)

FIG. 4. Contour plots in the (β, γ ) plane of the lowest eigenpotential surface, E−(β, γ ), for the 92–110Zr isotopes.

064324-4



INTERTWINED QUANTUM PHASE TRANSITIONS IN THE … PHYSICAL REVIEW C 99, 064324 (2019)

resemble those obtained in the microscopic approach of the
MCSM [14] (which focuses on spectra and E2 rates); how-
ever, there are some noticeable differences: specifically, the
replacement γ -unstable → triaxial and the inclusion of more
than two configurations in the MCSM. The spherical state in
100Zr is identified in the MCSM as 0+

4 , in contrast to 0+
2 in

the current calculation and the data. Both calculations show
a large jump in B(E2; 2+

1 → 0+
1 ), between 98Zr and 100Zr,

typical of a first-order QPT. This is in contrast with mean-field
based calculations [30,50,51], which due to their character
smooth out the phase transitional behavior, and show no such
jump at the critical point of the QPT (see Fig. 2 of [21]). The
observed peak in B(E2; 2+

1 → 0+
1 ) for 104Zr is reproduced by

the current calculation but not by the MCSM.
As mentioned above, one of the main advantages of the

algebraic method is that one can do both a quantum and a
classical analysis. In Fig. 4, we show the calculated lowest
eigenpotential E−(β, γ ). These classical potentials confirm
the quantum results, as they show a transition from spherical
(92–98Zr), Figs. 4(a)–4(d), to a flat-bottomed potential at 100Zr,
Fig. 4(e), to axially deformed (102–104Zr), Figs. 4(f) and 4(g),
and finally to γ -unstable (106–110Zr), Figs. 4(h)–4(j).

IV. CONCLUSIONS

In this article, we have calculated the spectra and several
other observables for the entire chain of 40Zr isotopes, from

neutron number 52 to 70, in the framework of the IBM-CM.
The results of the comprehensive analysis suggest that IQPTs
appear to be manifested empirically in these isotopes. The
latter exhibit a complex phase structure with two configura-
tions: one spherical (A) and the other (B) undergoing first a
QPT U(5)-SU(3) and then a crossover SU(3)-SO(6). These
shape-changing Type I QPTs occur simultaneously with a
configuration-changing Type II QPT, in which the normal
and intruder configurations cross, a characteristic pattern of
IQPTs. Further details of our results, including the calculation
of spectra and transition rates in all the 92–110Zr isotopes
and of other quantities not reported here, will be given in
a forthcoming publication based on [47]. Our method of
calculation could also be applied to the 38Sr isotopes, which
show similar features, and we are planning to do so in a future
publication. The present work provides the first evidence for
intertwined quantum phase transitions in nuclear physics and
may stimulate research for this type of phase transitions in
other fields of physics.
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