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The effect of a fermion with angular momentum j on quantum phase transitions of a (s,d) bosonic
system is investigated. It is shown that the presence of a fermion strongly modifies the critical value
at which the transition occurs, and its nature, even for small and moderate values of the coupling
constant. The analogy with a bosonic system in an external field is mentioned. Experimental evidence
for precursors of quantum phase transitions in bosonic systems plus a fermion (odd-even nuclei) is
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Quantum phase transitions (QPT) are qualitative changes in the
ground state properties of a physical system induced by a change
in one or more parameters in the quantum Hamiltonian describ-
ing the system. Originally introduced in the 1970s [1,2], they have
been the subject in recent years of many investigations and have
found a variety of applications in many areas of physics and chem-
istry [3,4]. One of these applications is to atomic nuclei, where
QPTs have been extensively investigated (for a review, see [5-7])
within the framework of the Interacting Boson Model (IBM), a
model of even-even nuclei in terms of correlated pairs of va-
lence nucleons with angular momentum J =0, 2 treated as bosons
(s,d) [8]. For this case also finite size effects [9-11] and scaling
behavior [12-14] have been investigated, both analytically and nu-
merically, showing that precursors of QPT can be seen even for
relatively small values of N. QPTs have also been extended to ex-
cited states quantum phase transitions, that is qualitative changes
in the properties of the system as a function of the excitation en-
ergy [15]. In this Letter we present results of an investigation of
the effect of a fermion on QPTs in bosonic systems. We do this
in atomic nuclei by making use of the Interacting Boson-Fermion
Model (IBFM), a model of odd-even nuclei in terms of correlated
pairs with angular momentum J =0, 2 (s,d bosons) and unpaired
particles with angular momentum J = j (j fermions) [16]. As an
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illustration we take j = 11/2. We note, however, that our method
of analysis can also be used for systems with other values of the
fermion, j, and boson, J, angular momenta, for example the spin-
boson systems discussed in [17], the simplest case of which is a
fermion with j=1/2 (i.e., a single spin) in a bath of harmonic os-
cillator one-dimensional bosons of interest in dissipation and light
phenomena. QPTs in IBFM for selected orbits have been investi-
gated by Alonso et al. [18,19]. Here we focus on the effect of a
fermionic impurity on QPTs in bosonic systems. Our main results
are that, (1) the presence of a single fermion greatly influences
the location and nature of the phase transition, the fermion act-
ing either as a catalyst or a retarder of the QPT, and (2) there is
experimental evidence for quantum phase transitions in odd-even
nuclei (bosonic systems plus a single fermion).

Within the context of the geometric collective model of nuclei,
the effect of an odd particle on collective properties was investi-
gated years ago in core-particle models. However, both our results
are novel, since (i) in the deformed phase the effect of the fermion
is of order 1/N and thus vanishes in the geometric limit N — oo.
However, we explicitly show that the effect is large in transitional
nuclei even for small and moderate values of the coupling strength
of the fermion to the bosons; (ii) the experimental evidence for
QPTs in odd-nuclei has not been presented earlier and we show
one of the key signatures of QPTs in nuclei, the two-neutron sep-
aration energies. This quantity is discontinuous for a first order
phase transition at the transition point (or it has a sudden jump
for a finite system). As shown below, this jump is observed exper-
imentally.
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To prove our point, we consider the Hamiltonian of a system of
N (s,d) bosons coupled (with a quadrupole interaction) to a single
fermion with angular momentum j [16]

H=Hpg+ HFr + VgF, (1)
with

Hp :80|:(1 — E)Ag — f—NQX : QX],
Hfp =¢j,
Ver=T0%-q. (2)

Here fig =d' - d is the number operator for d-bosons, § X = (df x
s+stxd)@ + xd xd)@ and §= (a;{ x @;)®, are quadrupole
operators of bosons and fermion respectively, &g is the scale of
the boson energy, ¢; is the energy of the single fermion and
I' the strength of the quadrupole Bose-Fermi interaction. The
dot and cross indicate scalar and tensor products and the ad-
joint operators for bosons and fermions are d, = (—)*d_, and
ajm= (—)j‘maj,_m. QPTs of the purely bosonic part of the Hamil-
tonian Hp have been extensively investigated [20,21]. There are
two control parameters & and x. For fixed x, as one varies &,
0 < & <1, the bosonic system undergoes a QPT. The phase tran-
sition is first order for x # 0 and becomes second order at x = 0.

No phase transition occurs as a function of x. In this Letter, we

take x = —“/77, in which case the two “phases” of the system have

U(5) symmetry (¢§ = 0) and SU(3) symmetry (§ = 1) [8]. The critical
point, separating the spherical [U(5)] and axially-deformed [SU(3)]
phases, occurs at & =1/2.

A complete study of the properties of quantum phase transi-
tions necessitates both a classical and a quantal analysis, and a
consideration of other couplings of fermions to bosons in addition
to quadrupole coupling [22]. In order to emphasize the main fea-
tures of the results, we report here only the classical analysis. This
amounts to constructing the combined Bose-Fermi potential en-
ergy surface (Landau potential) and minimizing it with respect to
the classical variables. To this end, we introduce a boson conden-
sate [8]

1
VNI

bl =1+ %)~ 12[B cos ydg +8 siny(d]; + dT_Z)/ﬁ + 5], in terms
of the classical variables B,y. The expectation value of Hp of
Eq. (2) in the condensate is [10]

IN; B, 7) = —[bl(8, 1] " 10), (3)

Eg(N; B,y)

= (N; B, Y|HgIN; B, y)
2

_ B e (2 B R -
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We then evaluate the expectation value of Hr and Vgf in the con-
densate thus obtaining a fermion Hamiltonian

HN; B,y) =Eg(N; B,¥)+ ) [€0my.my + &my.my (N: B, ¥)]
my,mp
i ¥
x <aj,m1aj,m2 +aj,m2aj7m1 >
] + (Sm],mz '

(5)

The matrix gm, ,m,(N; B, y) is a real, symmetric matrix

B _\Jjtm2
a)e

2 2,0
X 2cosy — x ;,BCOSZJ/ Cj,m1;j,—m2

) 1 .
+ [ﬁsmy + X\/;,B szy]cjz',ﬁn;jﬁmz}’

(6)
where Cjz."rr:l;jﬁmz denotes a Clebsch Gordan coefficient. The eigen-
values e; and eigenvectors ; of the matrix g are the single-
particle energies and wave functions of the fermion in the de-
formed (B, y) field generated by the bosons. For y = 0° (field with
axial symmetry), x =0 and g8 small (i.e., neglecting A2) they were
obtained years ago by Nilsson [23]. For y #0°; x =0 and § small,
they were investigated by Meyer-ter-Vehn [24]. We have solved the
problem in its generality and details are given in [22]. Here, we
consider, for simplicity, the case y =0° for which the eigenvalues
are given in explicit analytic form [25]

2
Ak (N3 B5 x5 1) =—Nr<$>«/§<2—ﬂx\/;)
x Pj[3K* - j(j+ D], 7)

gml,mz(NQ ﬂa )/) :NF<

where Pj =[(2j — 1)j(2j + 1)(j + 1)(2j + 3)]7"/2. The quantum
number K = j,j—1,j—2,..., 1 has the physical meaning of the
projection of the angular momentum on the intrinsic z axis of the
condensate.

Once the eigenvalues have been obtained, one can calculate the
total energy functional (Landau potential for the combined Bose-
Fermi system)

Ei(N;B,v:& x; ') =Ep(N; B,V; &, x)
+ej+ei(N; B y; x: ). (8)

This expression is the algebraic analog of the total potential en-
ergy surface, obtained in the macroscopic-microscopic Strutinsky
procedure [26]. Minimization of E; with respect to 8 and y gives
the equilibrium values S, y. (the classical order parameters) for

each state. In the simple case of y =0°, x = —4, £;j =0 the total
energy functional becomes

7
Ex(N;B;&; T'y) = EB(N;/&O;"E, _§>
+M<<N;ﬂ;—?;1">. (9)

Minimization (?—ﬁ’( =0) gives the equilibrium g, values shown in

Fig. 1 as a function of the control parameter & of the bosonic phase
transition.

By comparing the top part of this figure (purely bosonic system)
with the bottom part, one can see that the effect of the fermionic
impurity is to wash out the phase transition for states with K =
1/2,3/2, 5/2 and to enhance it for states with K =7/2, 9/2, 11/2.
In other words, the fermion acts as a catalyst for some states and
as a retarder for others. Also, when the coupling strength becomes
very large, the minima for some large K, in the figure K = 11/2,
shift to negative values (oblate deformation). In addition to this
result, also known qualitatively from particle-core models, the ef-
fect of the fermion is to move the location of the critical point
even for small and moderate values of I". Physical values of I" in
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Fig. 1. (Color online.) Equilibrium values of the total boson plus fermion energy
(classical order parameter) as a function of the control parameter & of the bosonic
phase transition for various values of the coupling constant I” in units of &y and
N =10. The curves for I" # 0 correspond, from left to right, to states with K =
1/2,3/2,5/2,7/2,9/2,11/2. The value I" =0 gives the purely bosonic case.

the 1Pm, g3Eu, g5Tb nuclei, where the phase transition occurs, are

= —0.125 [27].

It is interesting to note that the effect of the fermionic impurity
is similar to the effect of an external field with linear coupling
on a thermodynamic phase transition investigated by Landau and
Lifshitz years ago [28, p. 456]. They considered the potential

(1) = Do + An? + Bn* +an, (10)
where « is the strength of the coupling to the external field and
1 a classical variable (order parameter). (The bosonic part of this
potential An? + Bn* has only a second order transition.) After a

2
projective transformation 3 f 7= n? which does not change the
nature of the phase transition and some rearrangement, the IBFM

potential can be written for small 7, in the form

2
EK(n)=A0+An2+Cn3+Bn4+aK<2n+%), (11)

(EK)min
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Fig. 2. (Color online.) The total energy at the equilibrium value, (Eg)min Eq. (9), as
a function of the control parameter £ for an intermediate value of the strength of

the Bose-Fermi interaction, I" = —0.25, with €g =1 and N = 10. The dashed curve,
labeled by Egp, is the corresponding energy of the purely bosonic system.

where ok is the strength of the coupling for each K value. By
comparing the couplings in Egs. (10) and (11), one can see that
the IBFM Eg(n) is more general than &(n) since it has a linear
and quadratic coupling, but for small n (note that |n| < 1), the
quadratic term is negligible and the two expressions become iden-
tical. Also, in the IBM the bosonic part has a cubic term leading to
the possibility of a first order transition. The analogy with bosonic
systems in an external field also suggests that our results apply to
the study of phase transition in superconductors in the presence
of magnetic fields.

Finally, having computed the equilibrium values, one can com-
pute the total energies E;(N; fe, Ye; &, x) which for the special
case discussed here are given by Eg(N; Be; &; I') and shown in
Fig. 2. One can see again by comparing Ex with the energy of the
purely bosonic system, Eg, that there is an effect especially close
to the critical value, &. The effect is not so much in the total en-
ergy Ex (where it is of order 1/N) but in the derivative of the total
energy with respect to the control parameter, %

An important property of atomic nuclei is that they provide ex-
perimental evidence for shape QPTs, in particular, of the spherical
to axially-deformed transition (U(5)-SU(3) symmetry) [5-7]. Three
signatures have been used to experimentally verify the occurrence
of shape phase transitions in nuclei: (a) the behavior of the order
parameter (fB) as a function of the control parameter, measured
through the B(E2) values proportional to ﬂez; (b) the behavior of
the ground state energies, measured through the two-neutron sep-
aration energies, Son; and (c) the behavior of the gap between the
ground state and the first excited 0% state. Here for conciseness we
concentrate only on Sy; = —[Eg(N 4+ 1) — Eo(N)], which can be re-
lated to the derivative of the ground state energy, Eg, with respect
to the control parameter, "’a% Son can be written as a smooth con-
tribution linear in the boson number N, plus the contribution of
the deformation [8,29]

Son = —An — BonN + S(21) geft- (12)

In order to emphasize the occurrence of the phase transition it
is convenient to plot the deformation contribution only, obtained
from the data by subtracting the linear dependence, as a function
of N. In previous studies of the purely bosonic part it has been
shown that N is approximately proportional to the control param-
eter £ [5]. The experimental values of S(2n)qer are shown in the
top part of Fig. 3 for even-even nuclei (purely bosonic) and in
the bottom part for odd-even nuclei (bosonic plus one fermion).
They are obtained from the data [30] with Ay, = —14.61, —15.82,
—16.997 MeV for Nd-Sm-Gd, respectively, and By, = 0.657 MeV,
and with Ay, = —15.185, —16.37, —17.672 MeV for Pm-Eu-Tb,
and By, = 0.670 MeV. Precursors of the phase transition are visi-
ble in all six nuclei between neutron numbers 88 and 90 in both,
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Fig. 3. (Color online.) The contribution of deformation to the two-neutron separa-
tion energies, S(2n)qef for even-even goNd-g2Sm-4Gd nuclei (top) and odd-even
61Pm-g3Eu-¢5Tb nuclei (bottom), plotted as a function of neutron number. The con-
tribution is enhanced in odd-even nuclei by approximately 300 keV (at neutron
number 92). Also the rise between neutron numbers 88 and 90 is sharper in odd-
even nuclei than in even-even nuclei. In the limit N — oo (no finite size scaling)
the quantity S(2n)ger should be zero before the critical value and finite and large
after that. The expected behavior of — % for the U(5)-SU(3) transition and N =10
is shown in the inset.

and, most importantly, appears to be enhanced in odd-even nuclei
relative to the even-even case.

In conclusion, we have presented here a classical analysis of
quantum phase transitions in a system of N bosons and one
fermion (spin-boson system) and shown that (i) the addition of
a fermion greatly modifies the critical value at which the phase
transition occurs, and in some cases its nature; (ii) the effect is
similar to that of adding an external field; (iii) there is experi-
mental evidence for these phase transitions in odd-even nuclei at
neutron number 88-90. The effect of the odd fermion is about 20%
in S(2n)g4ef. A quantal analysis, in which the Hamiltonian H is diag-
onalized numerically for finite N, produces results similar to those
of the classical analysis [22]. Our results are of interest not only for
applications to nuclei, but also for applications to other systems in
which a fermion is immersed in a bath of bosons, for example,

the simple case of a spin 1/2 particle in a bath of harmonic os-
cillator bosons [17]. Our analysis opens the way for a systematic
study of QPTs in Bose-Fermi systems, in particular, of shape phase
transitions in odd-even nuclei. This includes experimental stud-
ies and microscopic investigations using Density Functional Theory
and/or other methods, in a way similar to what it has been done
recently for the study of QPTs in purely boson systems (even-even
nuclei) [6,31].
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