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Introduction: from galaxies to stars

Galaxy formation in the ΛCDM model
From a very homogeneous early Universe to the current distribution of galaxies, clusters and voids...

� The standard ΛCDM cosmological model:
− 26% cold dark matter (CDM)
− 5% baryons (ordinary matter)
− 69% dark energy (accelerated expansion, Λ)

� The Universe is initially very homogeneous (cf.
cosmic microwave background, 380 000 years
after the Big Bang).

� Gravitational attraction vs. the expansion of
the Universe.

� Hierarchical dark matter dynamics, baryons
cool and contract within dark matter haloes.

Images: ESA/Planck collaboration/C. Mihos/ESO/A. Block/NOAO/AURA/NSF/
A. Evans/NASA/S. Beckwith/Hubble Heritage Team/STScI/AURA/Skatebiker Volker Springel et al. (2008)
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Introduction: from galaxies to stars

Star formation

Stars form from cold giant molecular gas clouds in the interstellar medium:

� Mostly composed of hydrogen, masses of 105 − 107 M�, sizes over a few tens of parsec

� Gravitational collapse, fragmentation into high-density cores

� Inside the pre-stellar cores, temperature and pressure rise

� Nuclear fusion reactions and stellar nucleosynthesis (1 parsec = 3.09 1016m)

The Orion nebula, a stellar nursery (NASA)
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Introduction: from galaxies to stars

Substructures of the interstellar medium
� Giant molecular clouds host complex networks of filamentary structures.
− lengths of a few parsecs, ∼ 0.1 parsec wide (Arzoumanian et al. 2011)
− large-scale interstellar turbulence, magnetic fields & gravitational instabilities
− they seem to precede star formation

� A majority of pre-stellar cores lie within supercritical filaments:
75% in the Aquila complex (Konyves et al. 2015)

� The formation of turbulence-driven filaments may represent the first step towards core
and star formation (André et al. 2010, 2014):

P. André & D. Arzoumanian, Konyves et al. 2015
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Introduction: from galaxies to stars

Stellar equilibrium

� Inside a star, the inward gravitational force is balanced by pressure:
− thermal pressure
− radiation pressure from the inner core
− electron degeneracy pressure (at high density)

� Self regulation: When the fusion rate increases, temperature and pressure increase, the core
expands, hence temperature and pressure decrease, and the fusion rate decreases

� Stellar evolution: When hydrogen fusion reactions stop at the center, the pressure support
decrease and the core starts contracting. The energy dissipated through radiation expels the
outer layers and helium fusion reactions ignite: the star becomes a red giant.

Hydrostatic equilibrium:

Gravitation Fg = −
GM(r)∆M

r2 with ∆M = ρ(r)drdS

Pressure Fp = −
dP
dr

∣∣∣∣
r
drdS

~Fp + ~Fg = ~0⇒
dP
dr

∣∣∣∣
r

= −
GM(r)

r2 ρ(r)

For a uniform density ρ:

M(r) =
4πGρ

3
r3

P(r) = P0 −
2πGρ2

3
r2

P = 0 at the star radius R ⇒ M =

(
6P3

0
πG3ρ4

)1/2

High density stars usually have smaller masses
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The Jeans instability: spherical collapse of a giant molecular cloud

Gravitational collapse without pressure support
(This calculation could apply to a cloud of dust without pressure, for example)

We consider a cloud initially at rest with uniform density ρ0, total mass M0 and radius R0.

The cloud collapses following
dv
dt

=
d2r
dt2

= −
GM
r2

where M is the mass within radius r, which is a constant through the collapse.

v2 =
2GM

r
−

2GM
R0

dt =
dr√

2GM
(

1
r −

1
R0

)
So the free-fall time (or dynamical time) is:

tff =

∫ R0

0

dr√
2GM

(
1
r −

1
R0

) =

√
3π

32Gρ0

The free-fall time is independent of R0.

Jonathan Freundlich Jerusalem, 25 April 2017 9 / 27



The Jeans instability: spherical collapse of a giant molecular cloud

The Jeans instability: pressure vs. gravity

� Orders of magnitude:

Fg ∝
GM2

0
R2

0
∝ Gρ2

0R
4
0

Fp ∝ pR2
0 ∝ c2

0ρ0R2
0

where c0 is the sound speed (p = c2
0ρ for an ideal gas of

adiabatic index γ = 1).

Gravitational collapse when Fg > Fp ⇔
R0

c0
>

1
√

Gρ0
:

big, dense, cold gas clouds are unstable.

� Interpretation in terms of timescales:

1/
√

Gρ0 is the free-fall time

R0/c0 is the sound crossing time

The sound crossing time is the time needed for sound waves to cross the region and attempt to
push back and re-establish the pressure equilibrium.
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The Jeans instability: spherical collapse of a giant molecular cloud

The Jeans instability: local perturbation
(Binney & Tremaine 2008, section 5.2, p. 401)

� Local compression

We consider a fluid of density ρ0 and pressure p0, initially at
rest. If a sphere of radius r is compressed to a radius (1−α)r
where α � 1, the resulting sphere has increased density and
pressure

ρ0 + ρ1 ≈ (1 + α)ρ0

p0 + p1 ≈ p0 +
∂p
∂ρ
ρ1 ≈ p0 + c2

0αρ0

Additional pressure force per unit mass: Fp1 ≈
p1

rρ0
≈ αc2

0/r , as ~Fp = 1
ρ
~∇p

Additional gravitational force per unit mass: Fg1 ≈ αGM
r2 ≈ αGρ0r , with M = 4π

3 ρ0r3.

� Fate of the perturbation:

If Fg1 < Fp1, the net additional force is outward, the fluid re-expands and the perturbation is
stable.
If Fg1 > Fp1, the net additional force is inward, the fluid continues to contract and the pertur-

bation is unstable. This corresponds to Gρ0r > c2
0/r ⇔

r
c0

>
1

√
Gρ0

.

� Jeans length: perturbations with scale larger than λJeans ≈ c/
√

Gρ0 are unstable.
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The Jeans instability: spherical collapse of a giant molecular cloud

The Jeans instability: linear perturbations

� Hydrodynamic equations:

For a barotropic fluid (i.e., in which pressure is only
a function of density, h being the specific enthalpy):

∂~v
∂t

+(~v .~∇)~v = −
1
ρ
~∇p− ~∇Φ (Euler’s equation)

∂ρ

∂t
+ ~∇.(ρ~v) = 0 (mass conservation)

∇2Φ = 4πGρ (Poisson equation)
1
ρ
~∇p = ~∇h (equation of state)

� Small perturbations:

First order perturbations to the an
unperturbed barotropic fluid:

ρ(~r , t) = ρ0(~r) + ρ1(~r , t), ρ1 � ρ0
h(~r , t) = h0(~r) + h1(~r , t), h1 � h0
Φ(~r , t) = Φ0(~r) + Φ1(~r , t), Φ1 � Φ0
~v(~r , t) = ~v0(~r) + ~v1(~r , t)

� Linear equations governing the response to the perturbations:

∂ ~v1

∂t
+ (~v0.~∇)~v1 + (~v1.~∇)~v0 = −~∇(h1 + Φ1)

∂ρ1

∂t
+ ~∇.(ρ0 ~v1) + ~∇.(ρ1 ~v0) = 0

∇2Φ1 = 4πGρ1

h1 = c2
0
ρ1

ρ0
,

where the speed of sound in the uniform medium is defined as c2
0 =

(
dp
dρ

)
ρ0

.
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The Jeans instability: spherical collapse of a giant molecular cloud

The Jeans instability: linear perturbations

� Jean’s swindle:
For an infinite, homogeneous, unperturbed system, the hydrodynamic equations can not be
verified simultaneously: Poisson’s equation requires ∇2Φ0 = 4πρ0 but ~∇Φ0 = 0 for a uniform
gravitational potential and ρ0 6= 0. We assume that Poisson’s equation properly describes the
relation between the perturbed density and potential, while some unspecified source cancels
the unperturbed term in ∇2Φ0.

� Linear equations in the case of an infinite, immobile, unperturbed medium:

∂ ~v1

∂t
= −~∇(h1 + Φ1)

∂ρ1

∂t
+ ρ0 ~∇.~v1 = 0

∇2Φ1 = 4πGρ1

h1 = c2
0
ρ1

ρ0
.

Considering normal modes ∝ e−iωt+~k.~r :
−iω ~v1 = −i~k(c2

0
ρ1

ρ0
+ Φ1)

− iωρ1 + iρ0~k.~v1 = 0

− k2Φ1 = 4πGρ1.

� Dispersion relation: ω2 = c2
0k2 − 4πGρ0.

• For wavenumbers k above kJeans =
√

4πGρ0/c2
0 , ω2 > 0 and the solutions are oscillatory

• For wavenumbers below kJeans, the solutions can be exponentially growing: the system is
gravitationally unstable.

Perturbations of size larger than the Jeans length λJeans =
√
πc2

0/Gρ0 are amplified while
smaller perturbations fade away.
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The Jeans instability: spherical collapse of a giant molecular cloud

The Jeans instability: an idealized situation
� Limits of the Jeans instability:

− spherical
− no rotation
− no magnetic fields
− no turbulence

Also, in the previous calculations, we did not take stars into account: this would require distri-
bution functions and the Boltzmann statistical equation.

� Simulation example: formation of stars in a turbulent gas core (Banerjee et al.):
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The Toomre instability: perturbations within a disk

Can galactic or proto-planetary disks be gravitationally unstable?

� Disks form naturally when there is rotation

− Centrifugal force

− Coriolis force

− Flat geometry

Credits: NASA, ESA, S. Beckwith (STScI), and the Hubble Heritage Team STScI/AURA; NASA/FUSE/Lynette Cook
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The Toomre instability: perturbations within a disk

The Toomre instability: linear perturbations
(Binney & Tremaine 2008, section 6.2.2.c, p. 488)

� Assumptions:

− Cylindrical coordinates (R, φ, z)
− Flat disk: ρ→ Σ, z = 0
− Uniform unperturbed surface density Σ0
− ~v0 = RΩ0 ~uφ (solid rotation)

� Hydrodynamic equations:
∂~v
∂t

+ (~v .~∇)~v = −~∇ (Φ + h) (Euler’s equation)

∂Σ

∂t
+ ~∇.(Σ~v) = 0 (mass conservation)

∇2Φ = 4πGΣδ(z) (Poisson equation)

� Small axisymmetric perturbations:

Σ(~r , t) = Σ0 + Σ1(R, t), ρ1 � ρ0
h(~r , t) = h0(~r) + h1(R, t), h1 � h0
Φ(~r , t) = Φ0(~r)+Φ1(R, z, t), Φ1 � Φ0
vR(~r , t) = vR1(R, t)
vφ(~r , t) = RΩ0 + vφ1(R, t)

� Linear equations governing the response to the perturbations:

∂ ~v1

∂t
+ (~v0.~∇)~v1 + (~v1.~∇)~v0 = −~∇(h1 + Φ1)

∂Σ1

∂t
+ ~∇.(Σ0 ~v1) + ~∇.(Σ1 ~v0) = 0

∇2Φ1 = 4πGΣ1δ(z)

h1 = c2
0

Σ1

Σ0
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The Toomre instability: perturbations within a disk

Linearized equation of motion

∂ ~v1

∂t
+ (~v0.~∇)~v1 + (~v1.~∇)~v0 = −~∇(h1 + Φ1)

• (~v0.∇)~v1 = RΩ0
1
R
∂

∂φ

(
vφ1 ~uφ + vR1 ~uR

)
= −Ω0vφ1 ~uR + Ω0vR1 ~uφ

• (~v1.∇)~v0 =

(
vφ1

1
R
∂

∂φ
+ vR1

∂

∂R

)(
RΩ0 ~uφ

)
= −vφ1Ω0 ~uR + vR1Ω0 ~uφ

So:

∂vR1

∂t
− 2Ω0vφ1 = −

∂

∂R
(h1 + Φ1)

∂vφ1

∂t
+ 2Ω0vR1 = 0
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The Toomre instability: perturbations within a disk

Linearized mass conservation

∂Σ1

∂t
+ ~∇.(Σ0 ~v1) + ~∇.(Σ1 ~v0) = 0

• ~∇.(Σ0 ~v1) = Σ0
1
R

∂

∂R
(RvR1) = Σ0

(
∂vR1

∂R
+

vR1

R

)
• ~∇.(Σ1 ~v0) = 0

So:

∂Σ1

∂t
+ Σ0

(
∂vR1

∂R
+

vR1

R

)
= 0
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The Toomre instability: perturbations within a disk

Small perturbations and Poisson equation

� Normal modes:

Σ1(R, t) = Σae i(ωt−kR)

~v1(R, t) = ~vae i(ωt−kR)

Φ1(R, z = 0, t) = Φae i(ωt−kR) in the plane of the disk

� Local WKB assumption: We assume that the perturbation scales are small compared to
those of the system: kR � 1 (for Wentzel - Kramers - Brillouin, as in quantum physics).

� Full expression of Φ1:

• ∇2Φ1 = 0 at z 6= 0
• Φ1 = Φae i(ωt−kR) at z = 0

Away from the disk,

∇2Φ1 = (−i
k
r
− k2)Φ1 +

∂2Φ1

∂z2 = 0

WKB approximation k/r � k2 so
∂2Φ1

∂z2 − k2Φ1 = 0

And
Φ1(R, z, t) = Φae i(ωt−kR)−|kz|

� Poisson equation:

∇2Φ1 = 4πGΣ1δ(z)

We integrate Poisson equation from z = −ε
to +ε and take the limit ε → 0, taking
advantage of the continuity of Φ1 along R:

lim
ε→0

∫ +ε
−ε ∇

2Φ1dz = lim
ε→0

∫ +ε
−ε

∂2Φ1
∂z2 dz

= lim
ε→0

[
∂Φ1
∂z

]+ε

−ε
= −2|k|Φae i(ωt−kR)

4πG lim
ε→0

∫ +ε
−ε Σ1δ(z)dz = 4πGΣae i(ωt−kR)

−2|k|Φa = 4πGΣa
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The Toomre instability: perturbations within a disk

Dispersion relation



∂vR1

∂t
− 2Ω0vφ1 = −

∂

∂R
(h1 + Φ1)

∂vφ1

∂t
+ 2Ω0vR1 = 0

∂Σ1

∂t
+ Σ0

(
∂vR1

∂R
+

vR1

R

)
= 0

−2|k|Φ1 = 4πGΣ1

h1 = c2
0

Σ1

Σ0



iωvRa − 2Ω0vφa = ik(ha + Φa)
iωvφa + 2Ω0vRa = 0

iω∂Σa + Σ0

(
−ik +

1
R

)
vRa = 0

−2|k|Φa = 4πGΣa

ha = c2
0

Σa

Σ0

From which we can derive the dispersion relation ω2 − 4Ω2
0 + 2πG |k|Σ0 − k2c2

0 = 0

This dispersion relation can be rewritten as ω2 =

(
c0k −

πGΣ0

c0

)2
−
(
πGΣ0

c0

)2
+ 4Ω2

0

And introducing Q =
2c0Ω0

πGΣ0
, ω2 =

(
c0k −

πGΣ0

c0

)2
−

1
Q2 (1− Q2)

• If Q ≥ 1, ω2 always positive: the system is stable for all k.

• If Q < 1, ω2 is negative for some values of k: the system is unstable.

Q is the Toomre parameter.
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The Toomre instability: perturbations within a disk

Dispersion relation

ω2 − 4Ω2
0 + 2πG |k|Σ0 − k2c2

0 = 0

ω2 =

(
c0k −

πGΣ0

c0

)2
−

1
Q2 (1− Q2)

Q ≥ 1:

Jonathan Freundlich Jerusalem, 25 April 2017 22 / 27



The Toomre instability: perturbations within a disk

Dispersion relation

ω2 − 4Ω2
0 + 2πG |k|Σ0 − k2c2

0 = 0

ω2 =

(
c0k −

πGΣ0

c0

)2
−

1
Q2 (1− Q2)

Q < 1:
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The Toomre instability: perturbations within a disk

Limits of this calculation

− We assumed solid rotation: in the more general case, 2Ω0 should be replaced by the epicyclic

frequency κ =

√
r
dΩ2

0
dr

+ 4Ω2
0

− We assumed a fluid and thus did not take stars into account

− We neglected magnetic fields

− Turbulence could be included inside the pressure term (taking a turbulent velocity instead
of the sound speed), but its effects might be more complex: shock waves induce local
compression that can trigger gravitational collapse. Compressive and solenoidal modes.

− Accretion and mergers affect disk stability
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The Toomre instability: perturbations within a disk

Effects on the disk

A numerical N-body simulation of a disk with different Toomre Q parameters (Shigeki Inoue):

Q = 2:
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The Toomre instability: perturbations within a disk

Effects on the disk

A numerical N-body simulation of a disk with different Toomre Q parameters (Shigeki Inoue):

Q = 1:
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The Toomre instability: perturbations within a disk

Effects on the disk

A numerical N-body simulation of a disk with different Toomre Q parameters (Shigeki Inoue):

Q = 0.7:
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The Toomre instability: perturbations within a disk

Effects on the disk

A numerical N-body simulation of a disk (Anaelle Halle):

− spiral arms

− development of a bar

− star-forming clumps
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Summary

Summary

� The Jeans instability:

− Spherical systems (giant molecular clouds)

− Gravity vs. pressure

− Criterion: perturbations of size larger than the Jeans length λJeans =
√
πc2

0/Gρ0 are un-
stable.

� The Toomre instability:

− Disks (galactic or proto-stellar)

− Gravity vs. pressure and rotation

− Criterion: when the Toomre parameter Q = c0κ/πGΣ0 is below unity, the disk is unstable.
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