The Standard Model of Cosmology

Avishai Dekel, HUJI, PANICO8

Lick Survey 1M galaxies isotropy-->homogeneity

North Galactic Hemisphere

Microwave Anisotropy Probe

February 2003, 2004

Science breakthrough of the year

δΤ/Τ~10⁻⁵

isotropy-homogeneity

Friedman Equation

Homogeneity + Gravity
$$(G_{\mu\nu} - \Lambda g_{\mu\nu} = 8\pi G T_{\mu\nu}) \rightarrow$$

$$H^{2}(t) \equiv \frac{\dot{a}^{2}}{a^{2}} = \frac{8\pi G\rho(a)}{3} - \frac{kc^{2}}{a^{2}} + \frac{\Lambda c^{2}}{3} = \frac{8\pi G}{3} \sum \rho_{i}(t)$$

kinetic potential curvature vacuum

$$\rho = \rho_m + \rho_r$$
 $\rho_m = \rho_{m0}a^{-3}$ $\rho_r = \rho_{r0}a^{-4}$

$$1 = \Omega_m(t) + \Omega_k(t) + \Omega_\Lambda(t)$$

$$\Omega_i \equiv \frac{\rho_i}{3H^2/8\pi G}$$
$$\rho_{crit} \sim 10^{-29} \,\mathrm{g \, cm^{-3}}$$

IU

Two basic free parameters

$$\Omega_{tot} \equiv \Omega_m + \Omega_\Lambda = 1 - \Omega_k \quad \text{closed/}$$

$$q \equiv -\frac{\ddot{a}a}{\dot{a}^2} = \frac{1}{2}\Omega_m - \Omega_\Lambda$$

open

Luminous Matter

Luminous mass

all sources, all wavelengths

With $\Lambda=0$, Universe unbound and infinite?

Dark Matter

Measuring Dark Matter

Disk galaxies: rotation curves Clusters and Elliptical galaxies: virial theorem All scales: gravitational Lensing Clusters: X-ray Clusters: scattering of CMB by gas Large-Scale: cosmic flows Large-Scale: power-spectrum of density fluctuations Cluster abundance at early times

Flat Rotation Curves: Extended Massive Dark-Matter Halos in Disk Galaxies

Sofue & Rubin 2001

Virial Equilibrium in Clusters of Galaxies

<u>V~1500 km/s</u> R~1.5 Mpc \rightarrow M~7x10¹⁴ M_{\odot}

Gravitational Lensing: Dark Matter in Galaxy Clusters

HST

HUBBLE SPACE TELESCOPE

eesa

ESA, NASA, Richard Ellis (Caltoch, USA) and Jean-Paul Kneib (Observatoire Midi-Pyrenees, France)

Observed Radial Peculiar Velocities

Mark III

POTENT: Cosmic Flows

Observe radial peculiar velocities:

$$cz = H_0 r + v_r$$

Potential flow:

$$\vec{v}(\vec{r}) = -\vec{\nabla}\phi(\vec{r}) \quad (\vec{\nabla} \times \vec{v} = 0)$$

Smooth the radial velocity field.

Integrate from the origin along radial trajectories to obtain the potential at any point in space.

Differentiate to obtain the 3-dimensional velocity field.

Compute density-fluctuation field by another differentiation:

$$\phi(\vec{r}) = -\int_{0}^{\vec{r}} v_r dr$$

$$\frac{\delta\rho}{\rho} \approx -\frac{1}{H_0 f(\Omega_m)} \vec{\nabla} \cdot \vec{V}$$
$$\delta = \left\| I - \frac{1}{Hf} \frac{\partial \vec{v}}{\partial \vec{x}} \right\| - 1$$

Large-Scale Cosmic Flows - POTENT

Matter Density from Void Outflows

rees/void21.gif

exerting gravitational attraction

$$\Omega_{\rm m} = 0.28 \pm 0.02$$

With $\Lambda=0$, Universe still unbound and infinite?

What is the dark matter made of?

Baryonic Mass

Baryonic dark matter: planets, black holes, ...

Big-Bang Nucleosynthesis: $\Omega_{\text{baryons}} = 0.044 \pm 0.004$

Big Bang Nucleosynthesis

 $m_n > m_p \implies n + \nu \rightarrow p + e^-$

only 12.5% n left after decaying to p \rightarrow 75% H + 25% He (in mass)

At T~10⁹K deuterium becomes stable and nucleosynthesis starts:

 $p+n \leftrightarrow d(pn) + \gamma$ $d \xrightarrow{p} {}^{3}He(ppn) \xrightarrow{n} {}^{4}He$

A minute later p becomes too cold to penetrate the Coulomb barrier by p in d and the process stops.

Rate $\propto n_{\rm p}{}^2 \to$ abundances of d and ^3He decrease with $\Omega_{\rm b}$

$\Omega_{\rm b}{=}0.04\pm0.01$

Non-Baryonic Dark-Matter Particles

Neutralinos, photinos, axions, ... all those damn super-symmetric particles you can't see... that's what drove me to drink... but **now** I **can** see them!

measure the expected deceleration under gravitational attraction
The Telescope as a Time Machine

Bright Standard Candle: Supernovae Type Ia

Luminosity-distance to a standard candle

$$L \sim L/d^2$$
 magnitude = -2.5 log (luminosity) +const.

$$m(z) = M + 5\log D_L(z;\Omega_m,\Omega_\Lambda) - 5\log H_0 + 25$$

Luminosity distance $(D_L = d_L H_0)$

$$D_{L}(z;\Omega_{m},\Omega_{\Lambda}) = c(1+z) |\Omega_{k}|^{-1/2} S_{k} \left(|\Omega_{k}|^{1/2} \int_{0}^{z} [(1+z')^{2}(1+\Omega_{m}z') - z'(2+z')\Omega_{\Lambda}]^{-1/2} dz' \right)$$

Observe a sample of z-m Determine M and H₀ at low z Find Ω_m and Ω_{Λ} by best fit at high z

Past expansion rate V=H(t) R

Acceleration by a cosmological constant Λc^2 $H^{2} \equiv \frac{\dot{a}^{2}}{a^{2}} = \frac{8\pi G\rho_{m0}}{3a^{3}} - \frac{kc^{2}}{a^{2}}$ $a \propto e^{Ht}$ 3 a(†) $q \equiv -\frac{\ddot{a}a}{\dot{a}^2} = \frac{1}{2}\Omega_m - \Omega_\Lambda$ $\Omega_{\rm m} < 1$ $\Omega_{\rm m} = 1$ $\Omega_{\Lambda} >$ $\Omega_{\rm m} > 1$ **Big Bang** here & now time

Acceleration

$$\Omega_{\Lambda} - \frac{1}{2}\Omega_m > 0$$

Curvature

COBE 1992

Origin of Cosmic Microwave Background

Horizon at last scattering ~ 100 comoving Mpc ~

Acoustic Peaks

In the early hot ionized universe, photons and baryons are coupled via Thomson scattering off free electrons.

Initial fluctuations in density and curvature (quantum, Inflation) drive acoustic waves, showing as temperature fluctuations, with a characteristic scale - the sound horizon $c_s t$. $\delta T \approx \delta \rho^{1/4} \approx A(k) \cos(kc_s t)$

At z~1,090, T~4,000K, H recombination, decoupling of photons from baryons. The CMB is a snapshot of the fluctuations at the last scattering surface.

Primary acoustic peak at $r_{ls} \sim ct_{ls} \sim 100$ co-Mpc or $\theta \sim 1^{\circ}$ ($\ell \sim 200$) – the "standard ruler".

Secondary oscillations at fractional wavelengths.

Angular Power Spectrum

The Universe is nearly flat:

$1 - \Omega_k = \Omega_m + \Omega_\Lambda = 1.005 \pm 0.006$

Open? Closed? Surely much larger than our horizon!

Other Parameters: Baryons, Fluctuations

CMB Acoustic Oscillations explore all parameters

The ACDM model is very successful Accurate parameter determination

Polarization by scattering off electrons; re-ionization by stars & quasars at z~10

Baryonic Acoustic Oscillations observed in the galaxy-galaxy correlation function (SDSS, z=0.35)

The Sloan Digital Sky Survey

Redshifts to 1M galaxies

Success of the Standard Model: Fluctuation Power Spectrum

Constraints on Curvature

Correlated Constraints on Parameters

Standard ACDM Model Parameters

2008: WMAP5+BAO+SN

Hubble constant Baryon density Cold dark matter density Dark energy density Fluctuation spectral index Fluctuation amplitude

Age of universe Total density $\begin{array}{l} H_0 = 70.1 \ \pm 1.3 \ \text{km s}^{-1} \ \text{Mpc}^{-1} \\ \Omega_b = 0.0462 \ \pm \ 0.0015 \\ \Omega_c = 0.233 \ \pm \ 0.013 \\ \Omega_{\Lambda} = 0.721 \ \pm \ 0.015 \end{array}$

 $n_{s}\text{=}0.960\pm0.014\\ \sigma_{8}\text{=}0.817\pm0.026$

t_0=13.73 \pm 0.12 Gyr Ω_{tot} = 1- Ω_k = 1.005 \pm 0.006

Standard ACDM Model Parameters

2015: Planck (+BAO+SN)

Hubble constant Total density Dark energy density Mass density Baryon density Fluctuation spectral index Fluctuation amplitude Optical depth Age of universe

 $H_0=67.8 \pm 0.9 \text{ km s}^{-1} \text{ Mpc}^{-1}$ Ω_{m+k} = 1.000 ± 0.005 Ω_{Λ} =0.692 ± 0.012 $\Omega_{\rm m}$ =0.308 \pm 0.012 $\Omega_{\rm b}$ =0.0478 ± 0.0004 $n_{s}=0.968\pm0.006$ $\sigma_8\text{=}0.830\pm0.015$ τ =0.066 ± 0.016 t_0 =13.80 ± 0.02 Gyr

Parameters for Standard Model

		WMAP5	WMAP+BAO+SN
Age of universe	t_0	$13.69\pm0.13~\mathrm{Gyr}$	$13.73\pm0.12~\mathrm{Gyr}$
Hubble constant	H_0	$71.9^{+2.6}_{-2.7} \text{ km/s/Mpc}$	$70.1 \pm 1.3 \mathrm{~km/s/Mpc}$
Baryon density	Ω_b	0.0441 ± 0.0030	0.0462 ± 0.0015
Physical baryon density	$\Omega_b h^2$	0.02273 ± 0.00062	0.02265 ± 0.00059
Dark matter density	Ω_c	0.214 ± 0.027	0.233 ± 0.013
Physical dark matter density	$\Omega_c h^2$	0.1099 ± 0.0062	0.1143 ± 0.0034
Dark energy density	Ω_{Λ}	0.742 ± 0.030	0.721 ± 0.015
Curvature fluctuation amplitude, $k_0 = 0.002 \text{ Mpc}^{-1 \text{ b}}$	$\Delta^2_{\mathcal{R}}$	$(2.41 \pm 0.11) \times 10^{-9}$	$(2.457^{+0.092}_{-0.093}) \times 10^{-9}$
Fluctuation amplitude at $8h^{-1}$ Mpc	σ_8	0.796 ± 0.036	0.817 ± 0.026
$l(l+1)C_{220}^{TT}/2\pi$	C_{220}	$5756 \pm 42~\mu\mathrm{K}^2$	$5748 \pm 41~\mu\mathrm{K}^2$
Scalar spectral index	n_s	$0.963^{+0.014}_{-0.015}$	$0.960^{+0.014}_{-0.013}$
Redshift of matter-radiation equality	$z_{ m eq}$	3176^{+151}_{-150}	3280_{-89}^{+88}
Angular diameter distance to matter-radiation eq. $^{\rm c}$	$d_A(z_{\rm eq})$	$14279^{+186}_{-189} \mathrm{Mpc}$	$14172^{+141}_{-139} \text{ Mpc}$
Redshift of decoupling	z_*	1090.51 ± 0.95	$1091.00\substack{+0.72 \\ -0.73}$
Age at decoupling	t_*	$380081^{+5843}_{-5841} \text{ yr}$	375938^{+3148}_{-3115} yr
Angular diameter distance to decoupling $^{\mathrm{c},d}$	$d_A(z_*)$	$14115^{+188}_{-191} \mathrm{Mpc}$	$14006^{+142}_{-141} \text{ Mpc}$
Sound horizon at decoupling d	$r_s(z_*)$	$146.8\pm1.8~{\rm Mpc}$	$145.6\pm1.2~{\rm Mpc}$
Acoustic scale at decoupling d	$l_A(z_*)$	$302.08\substack{+0.83\\-0.84}$	$302.11_{-0.82}^{+0.84}$
Reionization optical depth	au	0.087 ± 0.017	0.084 ± 0.016
Redshift of reionization	$z_{ m reion}$	11.0 ± 1.4	10.8 ± 1.4
Age at reionization	$t_{\rm reion}$	427^{+88}_{-65} Myr	432^{+90}_{-67} Myr

Beyond the Standard Model

What is the Dark Energy?

" 'Most embarrassing observation in physics' – that's the only quick thing I can say about dark energy that's also true."

Edward Witten

$$G_{\mu\nu} + \Lambda g_{\mu\nu} = 8\pi G T_{\mu\nu} \quad \text{or} \quad G_{\mu\nu} = 8\pi G (T_{\mu\nu})$$

$$_{\mu\nu} + \rho_{\rm vacuum} g_{\mu\nu})$$

- Cosmological constant in GR?

- Failure of GR? Quintessence? Novel property of matter?
- Why so small? in cosmology 10⁻⁴⁸ Gev⁴ vs QFT: 10⁸ Gev⁴ (ElectroWeak) or 10⁷² Gev⁴ (Planck)

- Why becoming dominant now? (Anthropic principle?)

Generalized Dark Energy

Cosmological constant

Energy conservation during expansion

Equation of state

Generalized eq. of state e.g. Quintessence

$$\rho_{tot} = \rho_{\Lambda} = const.$$

$$d(\rho c^2 a^3) = -p d(a^3)$$

 $p = -\rho c^2$

$$p \equiv w \rho c^2 \qquad w(x,t)?$$

$$\ddot{a} > 0 \iff w < -1/3$$

$$\Lambda \leftrightarrow w = -1$$

Friedman eq. and the fluctuation growth-rate eq. probe different parts of the theory and can constrain w(t)

Equation of State and its Time Variation

Very close to standard GR with a cosmological constant

Beyond the Standard ACDM Model

2008: WMAP5+BAO+SN

Total density $\Omega_{tot} = 1 - \Omega_k = 1.005 \pm 0.006$ Equation of state $w = -0.97 \pm 0.06$ Tensor/scaler fluctuationsr < 0.20 (95% CL)Running of spectral index $dn/dlnk = -0.03 \pm 0.02$ Neutrino mass $\Sigma m_v < 0.61 eV (95\% CL)$ # of light neutrino families $N_{eff} = 4.4 \pm 1.5$

Beyond the Standard ACDM Model

2015: Planck (+BAO+SN)

Total density $\Omega_{tot} = 1 - \Omega_k = 1.001 \pm 0.004$ Equation of state $w = -1.006 \pm 0.045$ Tensor/scaler fluctuationsr < 0.11 (95% CL)Running of spectral index $dn/dlnk = -0.03 \pm 0.02$ Neutrino mass $\Sigma m_v < 0.23 eV (95\% CL)$ # of light neutrino families $N_{eff} = 3.15 \pm 0.23$

Neutrino Mass and # of Families

Open Questions

- The Big Bang? Inflation?
- What is the dark energy?
- What is the dark matter particle?
- How do galaxies form from the cosmic web?
- How do stars form in galaxies

Conclusions

- Cosmology has a Standard Model: ACDM
- The basic parameters are accurately measured using multiple techniques
- Mysteries: dark matter, dark energy, big-bang, inflation
- Next step: probe physics beyond the standard model
- Current effort: galaxy formation

Parameters for Extended Models

		WMAP5	WMAP+BAO+SN
Total density ^f	$\Omega_{ m tot}$	$1.099\substack{+0.100\\-0.085}$	1.0052 ± 0.0064
Equation of state ^g	w	$-1.06\substack{+0.41\\-0.42}$	$-0.972^{+0.061}_{-0.060}$
Tensor to scalar ratio, $k_0 = 0.002 \text{ Mpc}^{-1 \text{ b},h}$	r	$< 0.43~(95\%~{\rm CL})$	$< 0.20~(95\%~{\rm CL})$
Running of spectral index, $k_0 = 0.002 \text{ Mpc}^{-1 \text{ b},i}$	$dn_s/d\ln k$	-0.037 ± 0.028	$-0.032\substack{+0.021\\-0.020}$
Neutrino density ^j	$\Omega_{ u} h^2$	$< 0.014~(95\%~{\rm CL})$	$< 0.0065~(95\%~{\rm CL})$
Neutrino mass ^j	$\sum m_{ u}$	$< 1.3~{\rm eV}~(95\%~{\rm CL})$	$<0.61~{\rm eV}~(95\%~{\rm CL})$
Number of light neutrino families ^k	$N_{\rm eff}$	> 2.3 (95% CL)	4.4 ± 1.5

Age of the oldest globular star clusters

NGC 1850 HST • WFPC2

Age of an old star cluster

The Age of the Universe

