Lecture Structure of Dark-Matter Halos Universal Halo profile The cusp/core problem Dynamical friction Tidal effects Origin of the cusp in hierarchical clustering

N-body simulation of Halo Formation

N-body simulation of Halo Formation

Dark Halo (Moore)

CDM halos (simulations)

- Density profiles are universal shape independent of mass and cosmology.
- Density profiles are cuspy density increases inward down to the innermost resolved radius. Asymptotic power-law near the center?
- Halos are clumpy

~10% of the mass is in self-bound clumps --the surviving cores of accreted satellites.

The dark-halo cusp/core problem

Universal Profile

Dark Halos

V

dark halo

3,000 light years

30,0000 ly

flat rotation curve

R

GM(R)

R

 $\rightarrow M(R) \propto R$

Isothermal Sphere

Hydrostatic equilibrium:

$$\frac{GM(r)\rho(r)}{r^2} = -\frac{dP}{dr} = \frac{\alpha\sigma^2\rho(r)}{r}$$

$$\rho(r) = \rho_0 r^{-\alpha} \rightarrow M(r) = \frac{4\pi}{(3-\alpha)}\rho_0 r^{(3-\alpha)}$$

$$P = nkT = \rho \frac{kT}{m} = \rho(r)\sigma^2 \rightarrow \frac{dP}{dr} = -\frac{\alpha\rho(r)\sigma^2}{r}$$
isothermal
$$\Rightarrow M(r) = \frac{2\sigma^2}{G}r \rightarrow \rho(r) = \frac{\sigma^2}{2\pi G}r^{-1}$$

$$V^2(r) = \frac{GM(r)}{r} = 2\sigma^2$$

Universal Mass Profile of CDM Halos

Radius

Mass profile general shapes are independent of halo mass & cosmological parameters

Density profiles differ from power law

The profile is shallower than isothermal near the center

But no obvious flat-density core near the center

A cusp; some controversy about inner slope

New results for *°***CDM halos**

Simulations span ~6 decades in M_{vir} , from dwarf galaxies ($V_c \sim 50 \text{ km/s}$) to galaxy clusters ($V_c \sim 1000 \text{ km/s}$)

~million particles within Rvir

Controled numerical effects via convergence studies

Radius

Navarro, Frenk, White, Hayashi, Jenkins, Power, Springel, Quinn, Stadel

Recent results for *[®]***CDM halos**

Properly scaled, all halos look alike: CDM halo structure appears to be "universal"

Scaled Radius

Navarro, Frenk, White, Hayashi, Jenkins, Power, Springel, Quinn, Stadel

Scaled Density

Universal Profile: NFW

Navarro, Frenk & White 95, 96, 97 Cole & Lacey 96 Moore et al. 98 Ghinga et al. 00 Klypin et al. 01 Power et al. 02 Navarro, Hayashi et al. 03,04 Stoehr et al. 04, 05

Halo Concentration vs Mass and History

 a_0

Self-similar Toy model (Bullock et al. 2001):

Define a_c as the time when typically a constant fraction f of M is collapsing:

Define a characteristic halo density:

Assume additional contraction of inner halo by a constant factor k:

as the time when typically a
fraction f of M is collapsing:

$$M_*(a_c) \equiv fM$$
(1)
characteristic halo density:

$$\widetilde{\rho}_s \equiv \frac{M}{(4\pi/3)r_s^3} = 3\rho_s \left(\ln(1+C) - \frac{C}{1+C}\right) \quad \text{for} \\ \text{NFW}$$
additional contraction of
by a constant factor k:

$$\widetilde{\rho}_s = k^3 \Delta(a) \ \rho_u(a_c) = k^3 \Delta(a) \ \rho_u(a) \frac{a^3}{a_c^3}$$

$$C \equiv \frac{R_{vir}}{r_s} \longrightarrow C(\mu, a) = k \frac{a}{a_c} \quad (2)$$

$$\sigma \propto M^{-\alpha} \rightarrow M_* \propto a^{1/\alpha} \rightarrow^1 \frac{a_c}{a_0} = (\mu f)^{\alpha} \qquad \longrightarrow C(\mu, a) = k(f\mu)^{-\alpha}$$

$$\mu \equiv M(a)/M_*(a)$$
The parameters from simulations:

$$f \sim 0.01 \quad k \approx 4 \quad \alpha \approx 0.13$$

Determine parameters from simulations:

Excellent fit!

FdS

 $P_k \propto k^n$

$$C(\mu, a) \approx 4 (0.01\mu)^{-0.13} \approx 4 \frac{a}{a_c}$$

Concentration vs Mass

$$C(\mu, a) \approx 4 (0.01\mu)^{-0.13} \approx 4 \frac{a}{a_c}$$

Bullock et al. 2001

Concentration vs time, given mass

$$C(\mu, a) \approx 4 (0.01\mu)^{-0.13} \approx 4 \frac{a}{a_a}$$

Bullock et al. 2001

Distribution of C: log-normal

NFW Rotation Curve

$$M = 4\pi \rho_s r_s^3 A(C) \quad A(C) = \ln(1+C) - \frac{C}{1+C}$$
$$V^2(x) = V_{vir}^2 \frac{C}{A(C)} \frac{A(x)}{x}$$
$$r_{max} \approx 2.16r_s \quad \frac{V_{max}^2}{V_{vir}^2} \approx 0.216 \frac{C}{A(C)}$$

Mass Assembly History

Wechsler et al. 2002

$$\frac{M(a) \propto e^{-2a_c z}}{\frac{d \log M}{d \log a}} = 2 \quad \text{defines } a_c$$

 $-2a^{7}$

$$M = M_0 e^{-\alpha z}$$

$$\frac{\dot{M}}{M} = 0.04 \,\alpha \left(1+z\right)^{2.5} \,\mathrm{Gyr}^{-1}$$

Mass Assembly History Wechsler et al. 2002

$$M(a) \propto e^{-2a_c z}$$

$$\frac{d \log M}{d \log a} = 2 \quad \text{defines } a_c$$

Mass dependence of History and Concentration Wechsler et al. 2002

Concentration vs History

Wechsler et al. 2002

History vs Mass Wechsler et al. 2002

$$C(\mu, a) \approx 4 (0.01\mu)^{-0.13} \approx 4 \frac{a}{a_c}$$

Concentration of LSB galaxies and *PCDM* halos

The average intermediate-scale concentration and scatter of *PCDM* halos is roughly consistent with observations of LSB and dwarf galaxies

Maximum Rotation Speed

Alam et al 2001 Hayashi et al 2003

Simulated Cusp

Recent results for %CDM halos

No obvious convergence to a power law: profiles get shallower all the way in.

Innermost slopes are shallower than -1.5

Improved profile:

$$\alpha_{\beta}(r) \equiv -\frac{d\ln\rho}{d\ln r} = 2\left(\frac{r}{r_{s}}\right)^{\beta}$$

$$\ln\left(\frac{\rho_{\beta}}{\rho_{s}}\right) = -\frac{2}{\beta} \left[\left(\frac{r}{r_{s}}\right)^{\beta} - 1 \right]$$

 $\beta \sim 0.1 - 0.2$

Radius

Navarro, Frenk, White, Hayashi, Jenkins, Power, Springel, Quinn, Stadel

Improved Cusp Profiles

Improved Cusp Profiles: extrapolated to the inner cusp

Maximum Asymptotic Inner Slope

$$\rho = r^{-\alpha} \quad r < r_p \quad \Rightarrow \overline{\rho}(r) = \frac{1}{(4\pi/3)r^3} \int_0^r 4\pi r'^2 \, dr' \rho(r') = \frac{3}{3-\alpha} r^{-\alpha}$$

 $\rightarrow \alpha = 3[1 - \rho(r)/\overline{\rho}(r)]$ upper limit for slope in $r < r_p$

M(r) is robustly measured in the simulations.

With the local density, it provides an upper limit to the inner asymptotic log slope

→ There is not enough mass in cusp to sustain a powerlaw as steep as \times r^{-1.5}

Navarro, Hayashi, Frenk, Jenkins, White, Power, Springel, Quinn, Stadel

Radius

How good or bad are simple fits?

Density

residuals

Over the well resolved regions, both NFW and Moore functions exhibit comparable systematic deviations when fitted to simulated CDM halos.

Navarro, Frenk, White, Hayashi, Jenkins, Power, Springel, Quinn, Stadel

Radius

How good or bad are simple fits?

Over the well resolved regions, both NFW and Moore functions exhibit comparable systematic deviations when fitted to simulated CDM halos.

Navarro, Frenk, White, Hayashi, Jenkins, Power, Springel, Quinn, Stadel

Radius

Origin of the Halo inner Cusp? Dynamical Friction and Tidal Effects

Dekel, Arad, Devor, et al. 2003

Halo Bulidup by Mergers

Dekel, Devor & Hetzroni 2003
Dynamical Friction and Tidal stripping

Moore et al.

m<<M

Impulse approximation

$$v \approx f \Delta t \approx \frac{GM}{r^2} \frac{r}{V} \longrightarrow r \approx \frac{GM}{Vv}$$
$$\frac{r}{R} \approx \frac{v}{V}$$
$$f_{\rm DF} \approx \frac{GM_{\rm wake}}{R^2} \approx \frac{G\rho r^2 R}{R^2} \approx \frac{G^2 \rho M}{V^2}$$

Chandrasekhar formula:

$$\frac{d\vec{v}}{dt} = -4\pi G^2 \ln \Lambda \rho(\langle v \rangle M_{sat} \frac{\vec{v}}{v^3} \left[erf(X) - \frac{2X}{\pi^{1/2}} e^{-X^2} \right] \qquad m \langle M_{sat}$$
$$X = \frac{v}{\sqrt{2\sigma}} \qquad erf(X) = \frac{2}{\sqrt{\pi}} \int_0^X e^{-t^2} dt$$
Coulomb logarithm:
$$\Lambda = \frac{b_{max} v_0^2}{GM_{sat}} \approx \frac{M_{halo}}{M_{sat}}$$

drag proportional to ρ but independent of m acceleration propto M (because wake density propto M)

Halo Bulidup by Mergers

Dekel, Devor & Hetzroni 2003

Tidal Effects

12-hour period

Tidal interaction & Merger

The Mice • Interacting Galaxies NGC 4676 Hubble Space Telescope • Advanced Camera for Surveys

NASA, H. Ford (JHU), G. Illingworth (UCSC/LO), M. Clampin (STScl), G. Hartig (STScl) and the ACS Science Team • STScl-PRC02-11d

PRC97-34a • ST Scl OPO • October 21, 1997 • B, Whitmore (ST Scl) and NASA

Tidal stripping of a satellite?

The tidal disruption of an NFW Satellite halo

Harrasment of a satellite

Moore et al.

z= 1.164

z= 1.164

Sagitarius Dwarf

Tidal Force by a Point Mass

Tidal Radius of a Satellite

self-gravity
force
$$\frac{Gm(l_t)}{l_t^2} = \frac{2GM(r)l_t}{r^3}$$

$$\overline{\rho}_{sat}(l_t) \sim \frac{m(l_t)}{l_t^3} \sim \frac{M(r)}{r^3} \sim \overline{\rho}_{halo}(r)$$

$$t \propto \frac{R}{V} \propto \frac{R}{\left(GM/R\right)^{1/2}} \propto \left(\frac{R^3}{M}\right)^{1/2} \propto \rho^{-1/2}$$

$$\rightarrow t_{sat}(l_t) \sim t_{halo}(r)$$

resonance

Density Profiles of stripped NFW halos

Profiles of sub-halos Stoehr et al 2004:

$$\log\left(\frac{V}{V_{\max}}\right) = -a\left[\log\left(\frac{r}{r_{\max}}\right)\right]^2$$

$$a\approx 0.45 \Longleftrightarrow \beta\approx 0.7$$

Origin of a cusp: tidal effects in mergers

Dekel, Devor, Arad et al.

a. If satellites settle in halo core steepening to a cusp va

b. Mass-transfer recipe so convergence to a universal slope >>1

c. Flat-density core? Only if satellites are puffed up, e.g. by gas blowout

Tidal force on a satellite

🗞 no mass transfer where 🛩1

Impulsive stripping and deposit

pericenter stripping

Dekel, Devor & Hetzroni 2003

deposit

Impulsive stripping and deposit

pericenter stripping

Dekel, Devor & Hetzroni 2003

deposit

Adiabatic evolution of satellite profile

tidal compression in halo core

Merger of a compact satellite

satellite decays intact to halo center

N-body simulation

Dekel, Devor & Hetzroni 03

Tandem mergers with compact satellites

→ The cusp is stable!

No mass transfer in core so rapid steepening to a cusp of va

Tidal mass-transfer recipe at $\rightarrow 1$

final initial satellite profile

$$m_{\rm f}(r) = m(\ell) \rightarrow \ell(r)$$

Deposit radius

Dekel & Devor 2003

Tidal mass-transfer recipe at >>1

Tidal mass-transfer recipe at >>1

stripping efficiency grows with 🗸

Steepening / flattening

homologous halo and satellite scaling: $\rho_s \propto m^{-(3+n)/2}$ $r_s \propto m^{(5+n)/6}$

 $\rho(r)$ $=\psi[\alpha(r)]$ $\overline{\sigma}[\ell(r)]$ V 2α

Adding satellite to halo profile

$$\overline{\rho}_{\text{new}}(r) = \overline{\rho}_{\text{old}}(r) + \overline{\sigma}(\ell) \frac{\ell^3}{r^3}$$

$$\Delta \alpha(r) \propto -\frac{d}{dr} \left[\frac{\overline{\sigma}(\ell)}{\overline{\rho}(r)} \frac{\ell^3}{r^3} \right]$$

linear perturbation analysis 🕬 🗸 🖏 🖍

Convergence to an asymptotic slope

Dekel, Arad, Devor, Birnboim 03

Summary: Cusp

Dark-matter halos in CDM naturally form cusps due to merging compact satellites

Observed Core

האסטרונום התורכי (הנסיך הקטן)

Low Surface Brightness Galaxies

Compare simulated $V_c(r)$ with rotation curves of dark-matter dominated LSB galaxies

Observations: de Blok et al (2001) (B01), de Blok & Bosma (2002) (B02), and Swaters et al (2003) (503)

Peak velocities range from 25 km/s to 270 km/s

These measurements are hard!

DDO154 (a dwarf LSB)

Observed cores vs. simulated cusps

Marchesini, D'Onghia, et al.

LSB rotation curves and CDM halos

Two problems:

The shape of LSB galaxy rotation curves is inconsistent with the circular velocity curves of CDM halos.

The concentration of dark matter halos is inconsistent with rotation curve data: there is too much dark matter in the inner regions of LSB galaxies.

McGaugh & de Block 1998 see also Moore 1994 Flores & Primack 1994

LSB rotation curves (McGaugh et al sample)

The shape of V(r) varies from galaxy to galaxy

A fitting function: $V_{r}=V_{0}(1+(r/r_{+})^{-1/2})^{-1/2}$

The parameter is a good indicator of the shape of the rotation curve, the rate of change from rising to flat.

Hayashi et al 2003

Radius

Scaled LSB rotation curves: a representative sample

75% of LSB have 0.5<2 (~CDM halos)

25% have **>2** (in conflict with CDM halos)

Radius

Hayashi et al 2003

Scaled LSB rotation curves

Rotation Speed

75% of LSB have 0.5<2 (~CDM halos)

25% have >2 (in conflict with CDM halos)

Radius

Hayashi et al 2003

Rotation Curves Inconsistent with CDM Halos

Three categories of rotation curves:

- A) Well fit by V_g with LCDM compatible parameters (70%)
- B) Poorly fit by V_g with LCDMcompatible parameters (10%)
- C) Poorly fit by V_a with any parameters (20%)
- Only 10% of LSB rotation curves are robustly inconsistent with LCDM halo structure

The dark-halo cusp/core problem

How to make and maintain a core?

must suppress satellite mergers with the halo core!

Compact vs. puffy satellite

compact

puffy 1/3 density

Dekel, Devor & Hetzroni 2003

Adiabatic Contraction

Periodic motion under a slowly varying potential

Adiabatic invarinat:

$$I \approx \int_{0}^{T} v^{2} dt \approx v^{2} T$$

$$t_{dyn} \sim \frac{R}{V} \sim \frac{R}{(GM/R)^{1/2}} \sim (GM/R^3)^{-1/2} \sim (G\rho)^{-1/2}$$

$$I \approx \frac{GM}{R} \left(\frac{M}{R^3}\right)^{-1/2} \propto (MR)^{1/2}$$

$$R \propto M^{-1}$$

Adiabatic Contraction

Periodic motion under a slowly varying potential

Adiabatic invarinat:

$$I \approx \int_{0}^{T} v^{2} dt$$

e.g. circular motions:

$$I = V^2 T \approx V R = j$$
 angular m

omentum

$$V^2 = \frac{GM}{R} \rightarrow I \approx (MR)^{1/2}$$

$$R \propto M^{-1}$$

Feedback

Instant Blowout

$$E_{before} = -\frac{GM^2}{R} + \frac{1}{2}MV^2$$

Lose M/2 while V^2 is unchanged:

$$E_{after} = -\frac{G(M/2)^2}{R} + \frac{1}{2}(M/2)V^2 = 0$$

unbound!

DM-halo reaction to blowout

Adiabatic contraction:

Instant blowout: by supernova feedback

only 1/6 in density (Gnedin & Zhao 02) not enough in big galaxies? Enough in satellites?

Dekel, Dutton, Ishai +

A shell of DM at r encompassing mass M in virial equilibrium

A mass m falls into (or ejected out of) the center instantly

Step 1: U changes while T=const. E=U+T changes. Out of virial eq.

Step 2: U and T relax to a virial equilibrium while E=U+T is conserved The radius of the shell encompassing mass M contracts (or expands)

Alternatively, adiabatic contraction and instant expansion, with same qualitative results

Shell Approximation

$$E = U + T \quad U = -\frac{GM}{r} \quad T = -\frac{1}{2}\frac{GM}{r}$$

Instant inflow or outflow

$$\frac{r_f}{r} = \frac{(1+f)}{(1+2f)}$$
 f

Instant outflow after instant inflow

$$f_{out} = \beta f_{in}$$
 $f_{out} < 0.5$ $\frac{f}{r} =$

$$\frac{r_f}{r} = \frac{(1 - \beta f_{ir})}{(1 - 2\beta f_{in})(1 - \beta f_{in})}$$

$$\frac{M_f}{M} = \frac{1 - \beta f_{in}}{1 - f_{in}}$$

$$f << 1: \quad \frac{r_f}{r} \approx 1 - (1 - \beta)f + (2\beta^2 - \beta + 1)f^2 \qquad f << 1$$

$$f \ll 1 \text{ and } \beta = 1: \quad \frac{r_f}{r} \approx 1 + 2f^2$$

 $+ f_{in}$

т

M

Net expansion if $3(1+2f)^{-1}$, large 3 and f Net contraction if $3(1+2f)^{-1}$, small 3 or f

Instant outflow after adiabatic inflow Net expansion if $\operatorname{I}(1+f)^{-1}$

$$\frac{r_{f}}{r} = \frac{(1 - \beta f_{in})(1 - f_{in})}{(1 - 2\beta f_{in})} \approx 1 + f^{2}$$

Model: Halo Response dependence on 🚲

Toy-Model: One Episode

Inner Halo Response: Contraction/Expansion

Different Behavior at Low and High Mass

Response at 0.01R_{vir}: Contraction/Expansion

Color (red to black) = R_{star}/R_{halo}

Multiple Episodes

$$\left(\frac{r_f}{r}\right)_N = \left(\frac{r_f}{r}\right)^N \approx 1 + 2Nf^2 \quad (f << 1)$$

1. Cosmological accretion: per episode $f=f_{tot}/N$ (aftot/N < 1/2 to remain bound)

 \rightarrow maximum effect at N=1

2. Recycling: per episode $f=f_0$

 \rightarrow Stronger effect with many episodes

Model: Multiple Episodes

A Whole Virialized Halo

$$E(r) = U(r) + T(r) \quad U(r) \checkmark - \frac{GM(r)}{r} \quad T = -\frac{1}{2} \frac{GM(r)}{r}$$

The virial relation is the same, but the potential should include the response of outer shells

$$U(r) = U_{int}(r) + U_{ext}(r) = -\frac{GM(r)}{r} - \int_{r}^{R_{v}} \frac{4\pi r'^{2} \rho(r')}{r'} dr'$$

Instant inflow or outflow, then virialization while conserving mass

$$U_{i}(r_{i}) + \frac{1}{2} \frac{[M_{i}(r_{i}) - 2m]}{r_{i}} = U_{f}(r_{f}) + \frac{1}{2} \frac{[M_{f}(r_{f}) - m]}{r_{f}}$$

$$M_f(r_f) = M_i(r_i)$$

Use a parametric functional form for M(r) and U(r) Apply at many radii and determine the best-fit parameters

Analytic Profile for Dark-Matter Halos

Dekel, Ishai 16

eNFW

New Profile

$$\rho(r) = \frac{\rho_s}{x^{\alpha}(1+x)^{3-\alpha}} \quad x = \frac{r}{r_s} \quad r_s = \frac{R_v}{c}$$
parameters $\overline{\rho}_v, c, \alpha$
No analytic M(r) or U
$$\overline{\rho}(r) = \frac{\overline{\rho}_s}{x^{\alpha}(1+x)^{3-\alpha}} \quad x = \frac{r}{r_s} \quad r_s = \frac{R_v}{c}$$

$$\overline{\rho}_s = \overline{\rho}_v c^{\alpha} (1+c)^{3-\alpha}$$

$$\overline{\rho}_{s} = \overline{\rho}_{v} c^{\alpha} (1+c)^{3-\alpha}$$

Derivative

 $M(r) = \mu M_{\nu} \frac{x^{3-\alpha}}{(1+x)^{3-\alpha}} \qquad V^{2}(r) = c\mu V_{\nu}^{2} \frac{x^{2-\alpha}}{(1+x)^{3-\alpha}}$

 $\rho(r) = \frac{1}{4\pi r^2} \frac{dM}{dr} = \rho_s \frac{1}{x^{\alpha} (1+x)^{4-\alpha}}$

$$F(r) = c^{2} \mu F_{\nu} \frac{x^{1-\alpha}}{(1+x)^{3-\alpha}}$$

The coefficients are functions of the parameters

steep outer slope is compensated by c

Potential

$$U(r) = -\int_{r}^{\infty} \frac{M(r')}{r'^{2}} dr' = \omega V_{v}^{2} \left[\left(\frac{x}{1+x} \right)^{2-\alpha} - \left(\frac{c}{1+c} \right)^{2-\alpha} \right] - V_{v}^{2}$$

Analytic X(r), M(r) and U(r), good fit to simulations

A Better Match to NFW with 3

Fit 3 Profile to Simulated Halos (z=0)

Satellite disruption by stimulated feedback

Compression in core

Summary: Core

Feedback may lead to a core by puffing small satellites

Caveats

Cusps (though flatter) form also in simulations where satellites are suppressed

Cores detected in big galaxies and clusters (?)

Puffing-up of satellite halos is necessary for cores, but perhaps not sufficient

Other scenarios for core formation

- Warm dark matter, Interacting dark matter
 Suppress satellites
- Disruption of satellites by a massive black hole (Merritt & Cruz 01)
- Angular-momentum transfer from a big bar to the halo core (Weinberg & Katz 02)
- Delicate resonant tidal reaction of halo-core orbits
 - if the system is noise-less (Katz & Weinberg 02)
- Heating of the cusp by merging clouds (El-Zant, Shlosman & Hoffman 02)

Origin of Core: Disk in Triaxial Halo

Disk Rotation curve is NOT V²=GM(r)/r Hayashi, Navarro et al.
Disks in realistic dark matter halos

Massless isothermal gaseous disk in the non-spherical DM halo potential tracks the closed orbits within this potential

Disks in realistic dark matter halos

Massless isothermal gaseous disk in the DM halo potential

Dynamics of a Gaseous Disk

Closed orbits in triaxial potentials are not circular, and not limited to a plane.

Disks in triaxial dark matter halos

Inferred rotation speeds may differ significantly from actual circular velocity.

Inclination:

50 degrees

67 degrees

Scaled Rotation Curves: disk in CDM halo vs LSBs

All LSB rotation curve shapes may be accounted for by various projections of a disk in a single CDM halo

Scaled radius

Scaled LSB rotation curves: a representative sample

LSB rotation curve shapes may be accounted for by various projections of a disk in a single CDM halo

Triaxiality in the halo potential may be enough to explain the "cuspcore" discrepancy.

Radius

Halo Shape

Halo Shapes

Allgood et al 06

Halos are flatter at higher masses and higher redshifts Halos are rounder at outer radii

A Prolate Low-Mass Galaxy at z=2.2

Debattista+ 06-15

Evolution of Shape

Ceverino+ 15 Tomassetti+ 16

Pre-compaction: DM-dominated core, $M_* < 10^9 M_{\odot}$ V<100 km/s -> outflows --> prolate (triaxial) DM & stellar system, anisotropic dispersion

Post-compaction: baryonic core, $M_*>10^9 M_{\odot}$ V>100 km/s - no outflow --> box orbits deflected --> oblate, rotation-dominated Gas: triaxial --> disk

Evolution of Shape

Stars and DM:

Pre-compaction: DM-dominated <-> triaxial (prolate) --> more spherical Post-compaction: stars self-gravitating <-> oblate

Gas: triaxial --> oblate (disk)

Transition DM to Self-Gravity at a Critical M,V

A clue:

critical depth of potential well for SN-driven outflows (Dekel & Silk 86)?

Compaction and Quenching by Elongated Halo

Halo core forms elongated (anisotropic velocities) due to streaming within a dominant filament (including mergers)

Inflowing gas streams with AM form a disk (V/?~3) Local torques by the elongated halo cause AM loss and dissipation -> gas inflow - compaction -> high SFR, V/?~1

DM-dominated core: pre-compaction, V<100 km s⁻¹ -> outflows -> elongated stellar system following the elongated halo (tidal torques)

Self-gravitating stellar core: post-compaction, V>100 km s⁻¹, no outflow -> halo and galaxy get rounder (by deflection) -> stellar system becomes oblate, following the gas, reflecting rotation

-> no torques -> no gas inflow -> gas depletion and central quenching

Distribution of Projected Axial Ratio

Distribution of Projected Axial Ratio

