Lecture Sub-structure of Dark-Matter Halos

N-body simulation of Halo Formation

z=49.000

Stoehr

Origin of Halo Density Profile?

Distribution function of f:

$$V(f = f_0) \equiv \int d\vec{x} d\vec{v} \,\delta_{Dirac}[f(\vec{x}, \vec{v}, t) - f_0]$$

V(f)df = volume of phase space occupied by f in the range (f,f+df)

Measuring f(x,v) using an adaptive "grid" Delaunay Tesselation

$$f_i = (d+1)\frac{m}{V_i}$$

Arad, Dekel & Klypin

PDF of Phase-Space Density

f

Arad, Dekel & Klypin

f

 $L1_C$

PDF of Phase-Space Density

Arad, Dekel & Klypin

Not 2-body relaxation

Arad, Dekel, Stoehr

V(f) related to _(r)?

e.g., spherical & isotropic

$$\rho(r) \propto r^{-\alpha}, \quad V(f) \propto f^{-\beta}, \quad \beta = \frac{18 - 4\alpha}{6 - \alpha}$$

$$\alpha = 3 \Leftrightarrow \beta = 2$$

$$\alpha = 2 \iff \beta = 2.5$$

$$\alpha = 1 \iff \beta = 2.8$$

$$\alpha = 0 \iff \beta = 3$$

Halo Phase-Space Density

Real Density

Phase-Space Density

Halo Phase-Space Density

Real Density

Phase-Space Density

Profiles in Real Space and Phase Space f(r) 10^{16} 10^{14} s3 $^3\,{\rm Km^{-3}}$ 10^{12} 10^{19} 10^{18} F [Ms Mpc] 10^{17} 10^{10} $\rho \; [M_s \, {\rm Mpc}^{-3}]$ 10^{16} 10^{15} 10 10^{14}

 10^{6}

0.1

0.2

0.5

radius

10

5

2

 $r \; [\mathrm{kpc}]$

20

 10^{13}

0.1

0.2

0.5

 $r \; [\mathrm{kpc}]$

10

20

Is $v(f) \propto f^{-2.5}$ determined by substructure? $\wedge CDM$ No short waves

Real-Space Density

Moore et al.

Phase-Space density

$\land CD$

No short waves

Phase-Space Density Profile

 $\land CD$

No short waves

Same power law v(f)?

Additive Contribution of Subhalos

The Two Most Massive Subhalos

Background Halo - Subhalos Removed

Background Halo

7

6

5

4

real space

phase space

Toy model: adding up small halos

Halo mass function:

$$\phi(m) \propto m^{-\gamma} \quad \gamma \approx 2$$

Scaling of halos:

$$\rho \propto m/r^3 = const. \quad r \propto m^{1/3} \quad \sigma \propto m^{1/3}$$

$$\longrightarrow$$
 $V(f) \propto f^{-(4-\gamma)} \approx f^{-2}$ vs. $V(f) \propto f^{-2.5}$

Adding up Sub-halos

Tentative Conclusions

In hierarchical clustering, robust PDF: v(f)∝f^{-2.5} doesn't depend on power-spectrum slope, or on method of simulation The power-law v(f) is driven by substructure. How exactly? Yet to be understood !

Phase-space density is a unique tool for studying substructure and its evolution

Adding up small CDM halos leads to $v(f) \propto f^{-2.5}$? How robust? How dependent on subhalo density profile and mass function?

Satellite merging into a halo

Dekel, Devor & Hetzroni 2003

