Galaxy Buildup by Narrow Streams at High z

Avishai Dekel, HU

June 2008

Simulations: Teyssier, Pichon, et al.; Kravtsov et al.

Analysis: Freundlich, Goerdt, Neistein, Birnboim, Engel, Mumcuoglu, Zinger, Libeskind

Outline

- Virial shock heating
- At high z: cold streams in hot media
- Gas flux into disk vs virial radius
- Mergers vs smooth flows
- High SFR galaxies at z=2-3

Consider a spherical cow...

х

A virial shock in a 3D cosmological simulation: at M_{crit} - rapid expansion from the inner halo to R_{vir}

Libeskind, Birnboim, Dekel 08

d(Entropy)/dt

Fraction of Cold Gas in Halos: Cosmological simulations (Kravtsov)

Birnboim, Dekel, Neistein 2007

Zinger, Birnboim, Dekel, Kravtsov

Fraction of cold inward flux at 0.2R_{vir}: Cosmological Simulations

Ocvirk, Pichon, Teyssier 08

Cold Streams in a Hot Medium at High z

Dekel & Birnboim 2006 Birnboim, Dekel & Neistein 2007 Dekel et al. 2008, in prep.

Shocked Accretion: cold flows and quenching

Birnboim, Dekel, Neistein 07

Shocked-Accretion Massive Burst And Shutdown

Mass Distribution of Halo Gas

Analysis of Eulerian hydro simulations by Birnboim, Zinger, Dekel, Kravtsov

Massive High-z Disks by cold flows

Cold flows riding dark-matter filaments

Cold Streams in Big Galaxies at High z

Origin of dense filaments in hot halos (M≥M_{shock}) at high z

 $M_{s} \sim M_{\star}$

At low z, M_{shock} halos are typical: they reside in thicker filaments of comparable density

At high z, M_{shock} halos are high- σ peaks: they are fed by a few thinner filaments of higher density

Large-scale filaments grow self-similarly with $M_*(t)$ and always have typical width $\sim R_* \propto M_*^{1/3}$

Cold Streams in Big Galaxies at High z

Temperature in Massive Halos 2x10¹²M_o

low z

high z

Flux Weighted Temperature Distribution

Halo Mass →

Cold Fraction of Inward Flux

Critical Mass in Cosmological Simulations

Ocvirk, Pichon, Teyssier 08

Observed Maximum Bursts

Genzel et al. 2006, ...

- Optical/UV-selected galaxies at z~2-2.5
- $M_{star} \sim 10^{11} M_{\odot} \qquad SFR \sim 200 \ M_{\odot} \ yr^{-1}$
- Most of the mass is bursting -> gaseous input
- Very rapid SFR: burst ~0.5 Gyr $t_{SFR} < R_{vir}/V_{vir} ~ t_{cool} << t_{Hubble}$

- Disk morphology & kinematics: no major mergers

Maximum Burst: BzK-15507 (Genzel et al 2006)

 $M_{star} \sim 0.8 \times 10^{11} M_{\odot}$ $M_{gas} \sim 0.4 \times 10^{11} M_{\odot}$ SFR~150 $M_{\odot} \text{ yr}^{-1}$ $\Delta t \sim 0.5 G \text{ yr}$ z=2.4

Rotation curves to R>10 kpc

LIRGS at z~0.7 High SFR in Massive Rotating Disks

Hammer et al 2004

A disk fed by streams at high z

Governato et al.

Cold Streams at z=3 (SPH, Katz et al.)

Massive High-z Disks by cold flows

Ocvirk, Pichon, Teyssier 08 - AMR res 2kpc

Engel, Mumcuoglu, Goerdt

Penetrating Stream-lines Engel, Mumcuoglu, Goerdt

Average Assembly Rate into R_{vir} by EPS

Neistein, van den Bosch, Dekel 06; Birnboim, Dekel, Neistein 07, Neistein & Dekel 07, 08

Growth rate of main progenitor:

$$\frac{d\ln M}{d\omega} \approx -\left(2/\pi\right)^{1/2} \left(\sigma^2 (M/q) - \sigma^2 (M)\right)^{-1/2}$$

$$\omega \equiv \frac{\delta_c}{D(t)} \quad q \approx 2.2$$

Approximate for LCDM

$$\left\langle \dot{M}_{b} \right\rangle_{vir} \approx 6.6 \, M_{\odot} yr^{-1} M_{12}^{1.15} (1+z)^{2.25} f_{0.165}$$

 $M=2\times10^{12}M_{\odot}$ z=2.2 \rightarrow dM/dt ~ 200 $M_{\odot}yr^{-1}$

May explain high-SFR galaxies if a similar flux penetrates to the disk, if it is gas rich, and if SFR follows rapidly

Inflow Rate into the Disk

At z=2-3, $M=10^{12}M_{\odot}$, the input rate into the disk is comparable to the infall rate into the virial radius, most of it along narrow streams

Cold, dense filaments and clumps (50%) riding on dark-matter filaments and sub-halos

Birnboim, Zinger, Dekel, Kravtsov

Streams in 3D: partly clumpy

Gas Inflow Rate: clumpiness

virial

virial

50% of Mdot is in mergers >1:10, but the duty cycle is <10%

Distribution of Gas Inflow Rate

Comoving Number Density of Galaxies

Contribution of Different Masses

At Different Redshifts

Formation of a Massive Halo at Late z

AMR cosmological simulations of clusters (3 kpc res.): Kravtsov, Nagai

entropy

Conclusions

- At z~2-3, disks of $M_{star}{\sim}10^{11}M_{\odot}$ grow rapidly via narrow cold gas-dominated streams penetrating through a shock-heated medium
- The input rate to the disk is comparable to the infall rate into the virial radius (EPS)
- Half the inflow is mergers >1:10, and half is smother flows
- The duty cycle for mergers is ~0.1 \rightarrow most of the star-forming galaxies are observed while being fed by smooth flows
- Smooth flows keep the rotating disk intact, though thick and perturbed. Unstable \rightarrow SFR follows the high gas input rate
- At z~2.2, SFR>150 at n~3x10⁻⁴ and SFR>500 at n~6x10⁻⁵
- Most of the BzK are disks fed by smooth flows in halos $2 \times 10^{12} M_{\odot}$
- Half the SMG are mergers >1:10 in halos (1.5-4) \times 10¹²M_{\odot} \rightarrow compact high-SFR regions
- Half the $10^{11}M_{\odot}$ galaxies at z~2.2 had a major merger during the preceding 1.5 Gyr \rightarrow compact spheroids of low SFR.

Thank you

Irvine, April 2008 •