Metal Absorption in the IGM or Where the Universe Really is...

AdCOS / local IGM

The Cosmic Baryon Fraction: CMB

Estimating $\Omega_{\rm B}$: CMB (WMAP7)

WMAP Cosmological Parameters

Model: lcdm+sz+lens+iso1

Data: wmap7+bao+h0

$10^2\Omega_b h^2$	$2.269\substack{+0.053\\-0.054}$	$1 - n_s$	0.028 ± 0.013
$1 - n_s$	$0.0017 < 1-n_s < 0.0526~(95\%~{\rm CL})$	$A_{ m BAO}(z=0.35)$	0.463 ± 0.011
α_{-1}	$< 0.0047 \ (95\% \ {\rm CL})$	C_{220}	5762^{+36}_{-37}
$d_A(z_{\rm eq})$	$14219^{+129}_{-128} { m Mpc}$	$d_A(z_*)$	$14054^{+130}_{-129} { m Mpc}$
Δ_R^2	$(2.358^{+0.100}_{-0.098}) \times 10^{-9}$	h	0.713 ± 0.014
H_0	$71.3\pm1.4~\rm km/s/Mpc$	k_{eq}	0.00983 ± 0.00026
ℓ_{eq}	$138.1^{+2.5}_{-2.6}$	ℓ_*	$301.90\substack{+0.84\\-0.82}$
n_s	0.972 ± 0.013	Ω_b	0.0447 ± 0.0016
$\Omega_b h^2$	$0.02269\substack{+0.00053\\-0.00054}$	Ω_c	0.221 ± 0.014
$\Omega_c h^2$	$0.1119\substack{+0.0034\\-0.0035}$	Ω_{Λ}	0.734 ± 0.015
Ω_m	0.266 ± 0.015	$\Omega_m h^2$	$0.1346\substack{+0.0035\\-0.0036}$
$r_{ m hor}(z_{ m dec})$	$284.8\pm1.9~{\rm Mpc}$	$r_s(z_d)$	$152.7\pm1.3~\mathrm{Mpc}$
$r_s(z_d)/D_v(z=0.2)$	$0.1923^{+0.0038}_{-0.0039}$	$r_s(z_d)/D_v(z=0.35)$	$0.1153^{+0.0020}_{-0.0021}$
$r_s(z_*)$	$146.2\pm1.1~{\rm Mpc}$	R	1.719 ± 0.010
σ_8	0.811 ± 0.024	$A_{\rm SZ}$	$0.95\substack{+0.68\\-0.95}$
$t_{ m O}$	$13.69^{+0.12}_{-0.11}~{ m Gyr}$	τ	$0.085\substack{+0.014\\-0.013}$
θ_*	$0.010406\substack{+0.000028\\-0.000029}$	θ_*	$0.5962^{+0.0016}_{-0.0017}$ $^{\circ}$
t_*	$378115^{+3204}_{-3124} { m yr}$	$z_{ m dec}$	1088.1 ± 1.1
z_d	1020.6 ± 1.3	z_{eq}	3224^{+85}_{-87}
$z_{\rm rejon}$	$10.2^{+1.2}_{-1.1}$	Z.*	$1090.73^{+0.68}_{-0.69}$

The Cosmic Baryon Fraction: BBN

 $\Omega_{\rm B} = 0.043 \pm 0.003$

O`Meara+06

Estimating $\Omega_{\rm B}$: D/H ratio

- Compare light elements abundances
 (H, D, ³He, ⁴He, Li) against BBN.
- Sensitive to photon-to-baryon ratio @ BBN
- O only created during BBN, later astrated
- ◎ N(D I) / N(H I) ~ D/H

Estimating $\Omega_{\rm B}$: D/H ratio

The local shining baryons

• $\rho_{\rm B} = \Omega_{\rm B} \rho_{\rm crit} = 4 \times 10^{-31} \text{ g cm}^{-3}$

• $M_* \sim 10^{11} M_{\odot}$ • $n(L_*) \sim 0.01 Mpc^{-3}$ • $\rho_* \sim 4 \times 10^{-32} g cm^{-3}$

Most of the baryonic mass in diffuse gas!

Baryons in the Universe

- 90% of baryons in diffuse ionized gas
- Crucial component in galaxy and star formation
- Onfortunately difficult to observe
- …and theoretical interpretations challenging

Principle Absorption Features

Line	Phase	Т (К)	λ(Α)
21cm	Atomic gas	100-1,000	21cm
Lyα	Atomic+Ionized	100-40,000	1216
Ηα	Ionized gas	10,000-40,000	6560
Lyman limit	Ionized gas	10,000-40,000	912
He II	Ionized gas	10,000-40,000	304
CIV	Ionized gas	20,000-40,000	1550
O VI	Warm/hot gas	20,000-10 ⁶	1030
0VII <i>,</i> 0VIII	Hot gas	10 ⁶ -10 ⁸	21.6, 18.9
Ne VIII	Hot gas	107	775

Absorption lines galore

Theoretical and Numerical studies of Plasma

- Understanding Astrophysical Plasma is challenging
 Its whereabouts are uncertain
 - Operator of the second seco

As a Result of these interactions

- UV Absorption Signatures!
- Operator Provide Contraction Contraction
 - Shock Waves (e.g. virial shocks)
 - Cooling / Flash Heating
 - Condensation / Evaporation
 - Shearing & Mixing

Hydrogen Ionization in Collisional Plasma

Results: Metal Ionization

Equilibrium

Non-Equilibrium

Gnat & Sternberg 2007 ApJS, 168, 213

AdCOS / local IGM

CIE Cooling

Collisional Non-Equilibrium Cooling

Departures from Equilibrium...

- Modify Ion Fractions

Not including Departures from Equilibrium when interpreting observations results in false interpretation of the physical parameters!

Results: Diagnostics

Results: High-Velocity Metal-Absorbers

Gnat & Sternberg 2007 ApJS, 168, 213

O Summary

Cooling with Radiation

AdCOS / local IGM

Cooling w/ Radiation

AdCOS / local IGM

Cooling w/ Radiation

Cooling w/ Radiation

For every Z there exists a threshold density = ionization parameter:

 Lower-n : in photoionization equilibrium (departures from equilibrium negligible)

Weigher-n: time-dependent collisional (impact of radiation negligible)

Metallicity (Z_{\odot})	$\begin{array}{c} n_{\rm th}(z=0) \\ ({\rm cm}^{-3}) \end{array}$	$U_{ m th}$
$\begin{array}{c} 1-2 \\ 10^{-1}-10^{-3} \end{array}$	10^{-5} 10^{-3}	$\begin{array}{l} 3.3\times 10^{-2}\\ 3.3\times 10^{-4} \end{array}$

Are the baryons Really in the IGM?

Stellar component galaxy surveys

HUDF

 $\Omega/\Omega_{\rm B}=0.005\pm0.002$

- Stellar component galaxy surveys
- Molecular gas –
 CO emission,
 H₂ absorption

 $\Omega/\Omega_{\rm B}$ = 0.001 – 0.1

Tacconi+06

- Stellar component galaxy surveys
- Molecular gas CO emission, H_2 absorption
- Neutral gas

(SDSS) Prochaska+05

- Stellar component galaxy surveys
- Molecular gas CO emission, H₂ absorption
- Neutral gas
- Warm ionized gas

(SDSS) Prochaska+05

Baryon census at z=3: Summary

Phase	fraction
Stars	0.005±0.002
Molecular gas	0.001-0.1
Neutral gas	0.016±0.002
Warm Ionized gas	0.8-0.95
Hot gas	?

What about the local universe?

Stars

gas

Molecular gasNeutral gas

Warm ionized

Danforth+08

Prochaska+08

What about the local universe?

- Stars
- Molecular gas
- Neutral gas
- Warm ionized gas
- Hot gas (Intracluster medium)

Same baryonic components at z=0

Phase	fraction
Stars	0.07±0.02
Molecular gas	0.0029±0.0015
Neutral gas	0.017±0.004
Ionized gas	0.28±0.11
Hot gas	0.04±0.015

Total ~ 0.4 ??!!

So where are they?

AdCOS / local IGM

Hydro simulations

Oppenheimer & Dave

Cosmological Simulations: WHIM

Cen & Ostriker 98

Gravitational Heating

Shocks heating of gas accreting onto large scale structure

Robust result of hydrodynamic simulations

Verified by analytic approximations

Some (~30-40%) in large virialized halos

Much outside, but nearby R_{vir}, some filamentary

(e.g. Sunyaev & Zeldivich 72; Cen & Ostriker 98; Dave+01; Furlanetto & Loeb 05; Bertone+08; Cen+12...)

So...

Phase	fraction
Stars	0.07±0.02
Molecular gas	0.0029±0.0015
Neutral gas	0.017±0.004
Ionized gas	0.28±0.11
WHIM	up to 0.6 ?
Hot gas	0.04±0.015

WHIM properties : over-density

WHIM properties: Metallicity

Mean Z=0.18

WHIM properties: Metallicity

[©] Z_{WHIM}~0.1

Searching for the WHIM

Emission or absorption ?

AdCOS / local IGM

Searching for the WHIM: Emission

Can provide a "map" of the WHIM but ~n²

e.g. Anderson, Bertone, Cappelluti, Ettori, Fang, Finoguenov, Galeazzi, Giodini, Molendi, Simionescu, Takei, Ursino, Zappacosta....

X-rays

Searching for the WHIM: Emission

- Can provide a "map"
- but ~n²
- Currently below detection limits (e.g.Bertone+10; Soltan 06) Too faint to close the baryon budget with current instruments

(But see, for example, Xray emission reported in Zappacosta+05, from the Sculptor wall, Werner+08, from a filament connecting Abell 222 & 223)

Searching for the WHIM

Tracers:

$$\begin{array}{c} \bullet & H \\ \bullet & O \\ \bullet & O \\ \bullet & Ne \\ \bullet & Ne \\ \bullet & O \\ \bullet &$$

Danforth+10,11; Savage+11 Danforth & Shull 05, 08; Tripp+08; Thom & Chen 08 Savage+05; Narayanan+09, 11; Meiring+12 Nicastro+05; Boute+09; Fang+02,07,10; Zappacosta+10; c.f. Kaastra+06; Williams+06; Rasmussen+07; Danforth+11; Yao+12;

Key question: observed -> total mass^{Danforth+11; Yao+12;} Gupta+12

What is the total mass?

- In a population (e.g. O VI survey)
 - "simple" correction
 - Use "standard" cosmological simulations
 - Improved simulations for specific observations (Oppenheimer & Dave 10; Shull+11; Gnat & Ferland 12)
- For individual absorbers
 - Assuming equilibrium conditions
 - Including non-equilibrium physics
 - (e.g. Gnat & Sternberg 07; Gnat+10)

What is the baryon fraction?

In individual absorbers

Equivalent	Table 3Equivalent widths and AOD column densities for transitions observed in the $z_{abs}=0.6838$ system.			
	Transition	W_0 mÅ	N_a (AOD) cm $^{-2}$	
	H I 1025	276 ± 17	$14.77 {\pm} 0.02$	
	H I 972	$246{\pm}18^a$	$<\!\!15.12$	
	H I 949	54 ± 15	$14.74 {\pm} 0.11$	
	H I 937	37 ± 9	$14.82 {\pm} 0.09$	
	C III 977	$188{\pm}12$	$13.65{\pm}0.02$	
	O III 832	148 ± 7^a	< 14.47	
	N IV 765	80±8	13.47 ± 0.04	
	O IV 787	153 ± 8	$14.60{\pm}0.02$	
	O VI 1031	$234{\pm}19$	$14.47 {\pm} 0.03$	
	O VI 1037	149 ± 23	$14.50{\pm}0.06$	
	Ne VIII 770	51 ± 12	$13.98{\pm}0.09$	
	Ne VIII 780	59 ± 11^a	< 14.39	
		^a Blended		

What is the baryon fraction?

In individual absorbers

Assuming equilibrium conditions

What is the baryon fraction?

- In individual absorbers
 - Assuming equilibrium conditions

Including non-equilibrium physics

(e.g. Yoshikawa & sasaki 06; Gnat & Sternberg 07; Gnat+10; Narayanan+10 Kwak & Shelton 10; Gnat & Ferland 2012) $\begin{bmatrix} 17\\ N(H I)=10^{14.35}\\ 16\end{bmatrix}$ $\begin{bmatrix} N(H I)=10^{14.35}\\ 16\end{bmatrix}$ $\begin{bmatrix} Z/H \end{bmatrix} = 0$ $[Z/H] = -1 \end{bmatrix}$

What is the total mass?

In a population (e.g. O VI survey)
 Cosmological simulations predict the abundance and properties of absorbers

What is Ω_{B} ?

- in a population
 - e.g. OVI survey:
 - Correct O VI to total oxygen: f_{O VI}
 - Correct O to total gas: O/H
 - Oerive baryon fraction in WHIM:

$$\Omega_{b}^{(\text{OVI})} = \left[\frac{\mu_{b}H_{0}}{c\rho_{\text{cr}}(\text{O/H})_{\odot}}\right] \int_{N_{\text{min}}}^{N_{\text{max}}} \frac{d\mathcal{N}(N)}{dz} \frac{N \, dN}{Z_{\text{O}}(N) f_{\text{OVI}}(N)}$$

What is the total mass?

In a population (e.g. O VI survey) "simple" correction f=0.2 Z=0.1

Gnat & Sternberg

07

AdCOS / local IGM

What is the total mass?

In a population (e.g. O VI survey) "simple" correction Improved corrections

Shull+11

summery

- WHIM is a robust consequence of gravitational structure formation in LCDM cosmology
- WHIM over-density: few x 10; Metallicity < 0.2</p>
- Currently, emission too faint to close the baryon budget
- © Absorption revealed the lower-T part of the WHIM (10⁵<T<10⁶ K), with ~30% $\Omega_{\rm B}$
- Still missing: ~30% of mass, in >10⁶ K shocks

AdCOS / local IGM

WANTEDI

Steady-State Shock Structure

Gnat & Sternberg 2009 ApJ, 693, 1514

COS

AdCOS / local IGM

Fitting COS Observations of WHIM Absorbers

T=10⁷K, Z=1

dataset: Danforth+14

preliminary

