
COSMOLOGY – PROBLEMS 1-10

Professor Avishai Dekel

1. The Hubble Expansion

The Hubble law is vvv = H0rrr. Show that (in a flat universe):

a. It is isotropic about any comoving observer.

b. It is the only velocity field permissible by the assumption of spatial homogeneity at
any given time (called “the cosmological principle”).

2. The Steady-State Model

The steady-state model assumes that the mean density in the universe and the Hubble
constant are both constant in time, ρ(t) = ρ0 and H(t) = H0. The Hubble expansion is
compensated by a continuous creation of matter everywhere.

a. In a sphere of radius R containing mass M , compute the rate of mass creation Ṁ
needed to compensate for the expansion, and then the relative change of mass ∆M/M
during time interval ∆t.

b. Given that ρ0 ∼ 10−29g cm−3 and H0 ∼ 70 km s−1Mpc−1, compute the total mass
creation per year inside a room (103cm), and in the whole solar system (∼ 1013cm).
Is this detectable?

c. Draw a diagram showing radius as a function of time for comoving shells of matter, for
the steady-state cosmology [H(t) =const.] in comparison with the standard big-bang
cosmology [ignore gravity, v(t) =const.].
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3. Areas and Volumes in the Robertson-Walker Metric

Assuming homogeneity and flat space locally, the line element on a 3-D surface of constant
t, using comoving spherical coordinates u, θ and φ, is

dℓ2 = a2(t) [du2 + S2
k(u) dγ2],

where a(t) is the universal expansion factor, u is the comoving radial coordinate (u = r/a),
dγ is the usual area element on a unit sphere,

dγ2 = dθ2 + sin2 θ dφ2,

and

Sk(u) =







sin(u) k = 1
u k = 0
sinh(u) k = −1

.

a. Calculate in a closed universe (k = 1) the area A of a sphere of comoving radius u.

b. How does A vary with growing u? Does it increase for all values of u? Try to
visualize by drawing a 2-D sphere for the universe (φ =const.) and considering the
circumference of a circle on it (u =const.).

c. Calculate the total volume of a closed universe as a function of a(t).

d. Repeat a-c for an open universe (k = −1).

Try to visualize the three geometries of the Robertson-Walker metric. Guidance is provided
in box 27.2 (page 723) in Gravitation by Misner, Thorne and Willer.

4. Newtonian Dynamics

Assume a 3-dimensional, Euclidean, homogeneous universe, with a spatially constant mass
density ρ(t) [today ρ(t0) = ρ0].

a. Consider a thin comoving spherical shell of matter of radius r(t) [today r(t0) = r0].
Adopt the Birkhoff hypothesis that the gravitational acceleration at any point on the
shell is determined by the matter interior to the shell. Write down the equation of
motion for the shell [namely a relation between r̈(t) and r(t).

b. Use the fact that the homogeneity implies a universal expansion parameter a(t)
[namely, for every shell of comoving radius u the radius at time t is provided by
r(t) = a(t)u] to obtain an equation of motion for a(t) [independently of the specific
shell considered].

c. Integrate to obtain an equation of energy conservation [involving a, ȧ, and a constant
in time ǫ]. Show that for a given shell of comoving radius u, this constant is related
to the total energy of the shell E via ǫ = 2E/u2.

d. Convince yourself that we can re-scale the distance units of u such that ǫ obtains one
of the three possible values ±1 or 0 for all the shells. Then ǫ is a constant parameter
which characterizes the cosmological model to be one of three possibilities.

e. For which value of ǫ will the universe expand forever (an unbound universe), and for
which will it eventually stop and turn-around to collapse into a Big Crunch (a bound
universe)? What happens at t → ∞ for ǫ = 0?

f. Show that there is a critical density, ρc, for which the universe is marginally bound
(ǫ = 0). What is this critical density today given that the Hubble constant is H0 =
60 km s−1Mpc−1 (1pc = 3 × 1018cm).

g. Try to relate the 3 dynamical models of ǫ = 0,±1 to the 3 geometrical models k = 0,±1
of the Robertson-Walker metric.
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5. Solving the Friedmann Equation, Λ = 0

Write the Friedmann equation in the matter-dominated era, for the case Λ = 0, as

ȧ2
−

2a∗

a
= −k, where a∗

≡
4π

3
ρm0 a3

0 = const. (1)

a. What is the solution for a(t) in the case k = 0?

b. What is the asymptotic solution at early times when a is small (for any k)?

c. For k = −1, what is the solution at late times, when a is large?

d. Solve it for the expansion factor a(t) in the following steps.

• Define the conformal time η by

dη ≡
dt

a(t)
. (2)

If we denote d/dη by a prime, note that ȧ = a′/a, and replace in eq. (1) the
variable t by the variable η.

• Now add to the game the time derivative of eq. (1) to obtain the differential
equation

a′′ + ka = a∗. (3)

• Show that that the following are solutions of eq. (3) for the cases k = ±1:

a = ka∗[1 − Ck(η)] where Ck(η) ≡

{

cos η k=1
cosh η k=-1

(4)

• In order to connect this to the cosmological time t, integrate eq. (2) to obtain

t = ka∗[η − Sk(η)] where Sk(η) ≡

{

sin η k=1
sinh η k=-1

(5)

Although this is not an explicit solution for a(t), it is a useful implicit solution,
involving the parameter η in the relation between a and t.

e. Show that in the limit of early times, η ≪ 1, the solution converges to the a(t) solution
obtained for the limiting cases in (b) and (c).

f. Draw a qualitative plot of the solutions for a(t) in the 3 cases of k. In particular note
for a bound universe what is the conformal time at maximum expansion and at the
big crunch, and what is a at maximum expansion.

g. In the radiation-dominates era, in the earlier universe, explain why the Friedmann
equation takes the form

ȧ2
−

(a†)2

a2
= −k, where (a†)2 ≡

8π

3
ρr0 a4

0 = const. (6)

Then show that the solution for the case k = 0 is

a(t) = (2a†)1/2t1/2.

h. Add the cosmological constant term to the right-hand-side of the Friedmann equation
in the matter-dominated era, eq. (1), namely +Λa2/3. What is the solution for a(t)
at late times?
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6. Light Travel in a Closed Universe

A photon is emitted at a given point (say the north pole of the coordinate system, where
the comoving radial coordinate is chosen to be ue = 0) right after the big bang (when
te = 0). It is observed at (to, uo).

a. Recall that the conformal time is defined by dη ≡ dt/a(t). Explain why dη = du along
a photon trajectory (namely ηo − ηe = uo − ue).

b. Plot a conformal space time diagram η versus u for the closed universe. Mark along
the space axis u the poles and the equator, and along the time axis η the big bang,
maximum expansion and big crunch. Plot the world line of the photon.

c. When is the whole universe contained within the horizon of every comoving observer?

d. Can one see events that happened at his position in space at some time in the past?

7. The Horizon and Causality

The comovinig radial distance along a light ray emitted at te and observed at t is

u =

∫ t

te

dt′

a(t′)
.

a. Assume a power-law expansion rate a ∝ tα with 0 < α < 1 (valid when Λ is negligible).
Show that a horizon exists, namely that when te → 0 the distance u traveled by the
photon is smaller than a certain maximum value, uh(t).

b. In the case above, express the horizon distance rh(t) in proper physical units for the
three cases k = 0,±1 [use Sk(u)].

c. Assume a flat universe (k = 0). Compute the comoving horizon distance uh(t) in
the radiation era and in the matter era [what is a(t) in those two cases? assume a
negligible Λ].

d. Show that in both cases the horizon radius grows like rh ∝ t (as expected by naive
intuition, rh ∼ ct).

e. Show that in both cases the mass contained within the horizon grows like Mh ∝ t.

f. Explain why the above result introduces a causality problem concerning the
homogeneity of the universe, and in particular given the observed isotropy of the
microwave background last-scattering surface.

8. Redshift of Black-Body Radiation

A black-body radiation is characterized by the Planck spectrum with temperature T .
The number of photons with a frequency in the interval (ν, ν + dν), inside a volume V , is:

dN =
8πν2

c3

V dν

e
hν

kT − 1
.

Assume that at time t1 the universe is filled with a black-body radiation with temperature
T1. Show that at any time t2 the radiation is still a black body with temperature

T2 = T1

a(t1)

a(t2)
.

[Consider dN in a comoving box, and recall how V and ν vary as a function of the expansion
factor a.]
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9. Fluctuation Power Spectrum

a. Explain why Pk ∝ k is the scale-invariant power spectrum expected for the initial
density fluctuations.

b. Explain why the CDM power spectrum obtains a maximum near a specific wave
number keq and why it asymptotically approaches Pk ∝ k−3 at k ≫ keq. What is the
physical origin of the scale corresponding to keq?

c. Express the CDM power spectrum, qualitatively via a schematic plot, in terms of the
rms density fluctuation δrms on a mass scale M . How do we learn from this function
about the hierarchical sequence of formation?
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10. Top-Hat Model for Galaxy formation

Assume that a proto-galaxy is a sphere of uniform density ρp, whose time evolution can
be described by a bound-closed Friedmann model (i.e. a “mini-universe” with k = 1
and Λ = 0). Assume that this sphere is embedded in a background universe which is
Einstein-deSitter (i.e. k = 0, Λ = 0), of mean density ρ. We wish to determine the way
the density contrast ρp/ρ evolves in time. Following is a guide, step by step.

a. From a small density perturbation till maximum expansion

1) Recall that the Friedmann equation of an Einstein-deSitter model in the matter
era is

ȧ2 =
2a∗

a
− k, a∗

≡
4π

3
Gρ0a

3
0 ,

where ρ0 and a0 are the values of the universal density and expansion factor
today. Write the implicit solution of the Friedmann equation for the universal
expansion factor a(t) in terms of the mass constant a∗ and the conformal time η,
namely write the expressions for a(η) and t(η). Do the same for the perturbation,
where you denote the corresponding quantities as ap, a∗

p, ηp, etc.

2) Relate the solutions inside the perturbation and in the background by demanding
that the physical time t is the same in both. Use this to relate η to ηp, and then to
express a in terms of ηp (rather than η). Recall that we defined a∗ ∝ ρ0a

3
0 = ρa3

(and a∗
p in analogy), and show that

ρp

ρ
=

9(ηp − sin ηp)
2

2(1 − cos ηp)3
.

3) Define the density perturbation by

δρ

ρ
≡

ρp − ρ

ρ
,

and use Taylor expansions to show that in the linear regime, when the
perturbation is small, δρ/ρ ≪ 1, namely at early times, ηp ≪ 1, the perturbation
growth rate is

δρ

ρ
∝ t2/3.

Compare to what is obtained using linear perturbation analysis in the general
(not necessarily spherical) case.

4) Show that at maximum expansion, when the perturbation turns around, the
density contrast is

ρp

ρ
=

9π2

16
≃ 5.5

Note that this is true for any spherical perturbation, no matter when it reaches
its maximum expansion.
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b. Dark-matter collapse

1) Let the mass inside the perturbation be M , and its radius at maximum expansion
be Rmax. Assume that the kinetic energy at maximum expansion is zero (namely
no no-radial motions). Assume that the collapse ends in virial equilibrium, where
the kinetic energy equals half the potential energy (absolute value):

V 2 =
GM

Rvir
.

Use energy conversation during the collapse of dark matter to show that

Rvir =
1

2
Rmax.

What is the corresponding growth of density inside the halo between maximum
expansion and virialization?

2) What is the density contrast in the virialized halo relative to the background
cosmological density at the time of virialization? In addition to the two factors
already computed above, we have to include the decrease of the cosmological
density between the time of maximum expansion (tmax) and the time of
virialization (tvir). Take this time to be roughly the time of collapse of the
closed “mini-universe”, namely when ηp = 2π. Show that the density contrast at
virialization is

ρp

ρ
≃ 176.

c. The epoch of galaxy formation

1) Let the observed mean density in a galactic halo be ρvir, when the cosmological
density today is ρ0. Based on the above computation, what is the epoch of
formation (namely virialization) of this halo? Express it in terms of redshift the
zvir (recall 1 + z = a0/a), and alternatively in terms of time tvir/t0.

2) Express ρ0 in terms of Ωm and the Hubble constant h (where H0 ≡

100h km s−1Mpc−1). Show that

(1 + z)vir ≃ 6

(

ρvir

10−24 g cm−3

)1/3

(Ωmh2)−1/3.

3) A halo is observed to have a flat rotation curve with velocity V = 220 km s−1 and
a virial radius of R = 100h−1kpc. What can we say about its formation epoch?

4) The gas loses energy by radiation and by dissipation during the collapse. By
observing the density of the gas (and stellar) component today, what can we say
about the epoch of galaxy formation?
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