Semi-Analytic Modeling of Galaxy Formation

halos cold gas leads to red-and-dead Ellipticals

Standard Picture of Infall to a Disc

Rees & Ostriker 77, Silk 77, White & Rees 78, ...

Perturbed expansion Halo virialization

Gas infall, shock heating at the virial radius

Radiative cooling Accretion to disc if t_{cool}<t_{ff} Stars & feedback

M<M_{cool} ~10¹²⁻

Semi-Analytic Modeling

- Dark-matter halo merger tree (from EPS or N-body simulation)
 - Sub-halos by semi-analytic dynamical friction or high-res simulation
- Gas physics via recipes with free parameters subgrid physics
 - Gas cooling and infall (M,z) streams, virial shock heating
 - Star formation (ρ_{gas} ,T)
 - Feedback from stars and supernovae
 - Black-holes, AGN feedback
- Observables

Merger Tree: conditional probability

spherical collapse or mergers

Extended Press-Schechter (EPS): Merger Tree

Given that a mass element belongs to halo M_1 at z_1 , what is the probability that it belonged to halo M_2 (M_1) at z_2 (z_1)?

Equivalent:

Given that $\delta_s(x;k_c)$ first crossed $\delta_c/D(a_1)$ at $k_c=k(M_1)$, what is the probability that it first crossed $\delta_c/D(a_2)$ at $k_c=k(M_2)$.

The same problem as before but with the origin shifted:

$$n(M_2, z_2 \mid M_1, z_1) dM_2 = -\left(\frac{2}{\pi}\right)^{1/2} \frac{M_1}{M_2} \frac{\delta_c (D_2^{-1} - D_1^{-1})}{(\sigma_2^2 - \sigma_1^2)^{1/2}} \frac{d\ln(\sigma_2^2 - \sigma_1^2)^{1/2}}{d\ln M_2} \exp\left(\frac{\delta_c^2 (D_2^{-1} - D_1^{-1})^2}{2(\sigma_2^2 - \sigma_1^2)}\right) \frac{dM_2}{M_2}$$

• # of bright E galaxies in a cluster: $M=10^{15}$ today, how many 10^{12} progenitors at z=2?

- descendents of LGBs: massive halos at z=3 have n=10⁻²Mpc⁻¹, what mass halos do they inhibit today?
- When did the most massive progenitor include half its current mass?
- How often do two 10¹² halos merge?
- Infall rate of spirals into clusters: How often does a 10¹⁵ halo accrete a 10¹² halo?

Cooling rate

Star Formation Rate

Jeans mass
$$M_J = \frac{4\pi}{3} \rho_m \left(\frac{\pi c_s^2}{G\rho}\right)^{3/2} \propto \frac{T^{3/2}}{\rho^{1/2}}$$

$$\dot{\rho}_* = \eta \frac{\rho_{gas}}{t_{dyn}} \propto \rho_{gas}^{3/2} \quad \eta \approx 0.01$$

Kennicutt-Schmidt law of SFR

Durham SAM – Benson: Full simulation

z=0.5

z=0

Durham SAM – Benson: Cluster region

Galaxy type correlated with large-scale structure

elliptical elliptical bulge+disk disk

Semi-Analytic Modeling

Elliptical galaxies in the local universe: biased with respect to the dark matter

ACDM CR : E and SO galaxies Credits : Mathis, Lemson, Springel, Kauffmann, White and Dekel. GIF simulation

Formation of galaxies in a cluster

z=1

z=0

In a standard Semi Analytic Simulation (GalICS)

Cattaneo, Dekel, Devriendt, Guiderdoni, Blaizot 06

star formation at low z

With Shutdown Above $10^{12} M_{\odot}$

Standard

With Shutdown Above $10^{12} M_{\odot}$

-20

-20

6

Environment dependence via halo mass

Bulge to disk ratio

Environment Dependence

M>M_{shock} → high HOD groups (at low z) →red sequence in dense environment

cold streams harassed in groups but survive in isolated galaxies even for M>M_{shock}

M_{group}~M_{*}(†) ∕ → big blue disks ↓ form at high z become big red spheroids later

Downsizing due to Shutdown

Cattaneo, Dekel, Faber 2006

bright central

intermediate central/satellites

faint satellites

in place by z~1

turn red after z~1

Massive high-z disks by cold narrow streams

Galaxy Formation at High Redshift: Cold Streams, Clumpy Disks & Compact Spheroids

Bimodality of Stream-Fed Galaxies

M_v>10¹²