COSMOLOGY

Professor Avishai Dekel

The Metric of a Homogeneous and Isotropic Universe

We chose to express the metric of space in spherical coordinates about a comoving observer, where $u=r / a(t)$ is the comoving radial coordinate. The isotropy implies that

$$
d \omega^{2}=d u^{2}+\sigma^{2}(u)\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)
$$

where $\sigma(u)$ is some function of u only. We wish to determine what functional form is allowed for $\sigma(u)$

In Eucleadian space $\sigma(u)=u$. This should be true also in curved space for small u.
For a general u, consider for simplicity the equatorial plane, $\theta=\pi / 2$, and the following diagram:

Figure 1: A schematic diagram in the $u-\phi$ plane
The origin is at O, and the points P and Q at radial distances u and $2 u$ respectively. Let the angles α and β be small. Therefore we can write y in two ways using the local flatness:

$$
\begin{equation*}
y=\sigma(2 u) \beta=\sigma(u) \alpha . \tag{1}
\end{equation*}
$$

Let x be a small interval as shown. Then we can express z in two ways:

$$
\begin{equation*}
z=\sigma(u+x) \beta=\sigma(x) \alpha+\sigma(u-x) \beta \tag{2}
\end{equation*}
$$

We multiply eq. 2 by $\sigma(u) / \beta$ and get using eq. 2

$$
\sigma(u+x) \sigma(u)=\sigma(x) \sigma(2 u)+\sigma(u-x) \sigma(u) .
$$

Now we take a derivative with respect to x (mark it with a prime), and obtain at $x=0$

$$
2 \sigma^{\prime}(u) \sigma(u)=\sigma^{\prime}(0) \sigma(2 u)
$$

Because the space is assumed to be locally flat, $\sigma(u) \rightarrow u$ when $u \rightarrow 0$, so $\sigma^{\prime}(0)=1$. We finally obtain a differential equation for $\sigma(u)$:

$$
2 \sigma^{\prime}(u) \sigma(u)=\sigma(2 u)
$$

There are 3 solutions to this equation, which we mark by $k=0, \pm 1$:

$$
\sigma(u)=S_{k}(u) \equiv\left\{\begin{array}{ll}
\sin (u) & k=1 \\
u & k=0 \\
\sinh (u) & k=-1
\end{array} .\right.
$$

We already know that $\sigma(u)=u$ is a solution, and one can easily convince oneself that the other two are "kosher" solutions by substituting them in the differential equation. These are the only solutions. The parameter k stands for the curvature of space.

A way to obtain these solutions without guessing is by writing $\sigma(u)$ as a series expansion

$$
\sigma(u)=u+a_{3} u^{3}+a_{5} u^{5}+\ldots
$$

The first term must be u because of the local flatness. Once we decide about a_{3}, the rest of the coefficients are determined by substituting in the differential equation. Depending on the sign of a_{3} we obtain the familiar Taylor series for either $A \sin (u / A)$ or $A \sinh (u / A)$. The constant A can be absorbed in the units by which we measure u.

The line element in physical, spherical coordinates, for a homogeneous and isotropic space, is therefore

$$
d \ell^{2}=a^{2}(t)\left[d u^{2}+S_{k}^{2}(u) d \gamma^{2}\right]
$$

where $d \gamma$ is the usual area element on a unit sphere, $d \gamma^{2}=d \theta^{2}+\sin ^{2} \theta d \phi^{2}$, and the function $S_{k}(u)$ is one of the three possibilities above.

