Hyperfine splitting in μp and $\mu^{3} He^{+}$

CREMA collaboration

Hyperfine splitting in μp and $\mu^{3} He^{+}$

CREMA collaboration

Measure $\Delta E(2S - 2P)$ \rightarrow charge radii

Measure $\Delta E(HFS)$ \rightarrow magnetic radii - Muonic hydrogen (µp)

- Muonic deuterium (μ D)
- Muonic helium ($\mu \, {
 m He}^+$)
- Hyperfine splitting in $\mu^{\,3}\mathrm{He^{+}}$
- Hyperfine splitting in μp

25.05.2016 - p. 1

Proton and deuteron puzzles ?

Charge and magnetic radii from scattering

Extraction of R_E from scattering is difficult

Extraction of R_M from scattering is more difficult

$$\left\langle R_{\rm E/M}^2 \right\rangle = -6 \frac{dG_{E/M}(Q^2)}{dQ^2} \Big|_{\rm Q^2=0}$$

$$G_E(Q^2) = 1 - \frac{Q^2}{6} \langle r_p^2 \rangle + \frac{Q^4}{120} \langle r_p^4 \rangle + \dots$$

- Low Q^2 yields slope but sensitivity is small
- Need larger lever-arm to get slope
- Larger Q^2 more sensitive but higher-order terms
- Need to have physical model or constraints
- Need to have fit function with enough flexibility but not to much

Hyperfine splitting vs. 2S-2P spectroscopy

• The 2S-2P energy splitting (Lamb shift)

 $E_L^{\text{th}} = 206.0336(15) - 5.2275(10) \frac{R_E^2}{E} + 0.0332(20) \text{ meV}$

$$\begin{split} \Delta E_{\text{finite size}} &= \frac{2\pi Z\alpha}{3} |\phi(0)|^2 R_E^2 \\ R_E &= -\frac{6}{G_E(0)} \frac{dG_E}{dQ^2} \Big|_{Q^2=0} \\ R_E^2 &\approx \int d\vec{r} \, \rho_E(\vec{r}) r^2 \end{split}$$

• The hyperfine splitting $\Delta E_{\rm HFS}^0 \sim (Z\alpha) \langle \vec{\mu}_{\mu} \cdot \vec{\mu}_N \rangle |\phi(0)|^2$

 $\Delta E_{\rm HFS}^{\rm th} = 182.819(1) - 1.301 \frac{R_Z}{R_Z} + 0.064(21) \text{ meV}$

$$\Delta E_{\text{finite size}} = -2(Z\alpha)m_r \,\Delta E_{\text{HFS}}^0 \,\mathbf{R}_Z$$

$$\frac{R_{Z}}{R_{Z}} = -\frac{4}{\pi} \int_{0}^{\infty} \frac{dQ}{Q^{2}} \left(G_{E}(Q^{2}) \frac{G_{M}(Q^{2})}{1+\kappa_{p}} - 1 \right)$$

 $\mathbf{R}_{\mathbf{Z}} = \int d^3 \vec{r} \, |\vec{r}| \int d^3 \vec{r'} \rho_E(\vec{r} - \vec{r'}) \rho_M(\vec{r'})$

Objectives and impact

Objectives and impact

Objectives and impact

Two ways to the polarizability contribution

2S-2P: Agreement HFS: First preliminary ChPT results A. Antognini PSAS'2016, Jerusalem 25.05.2016 – p. 6

Two ways to the polarizability contribution

HFS theory status

 $\Delta E_{\rm HFS}(1S) = \left[1 + \Delta_{\rm QED} + \Delta_{\rm weak+hVP} + \Delta_{\rm Zemach} + \Delta_{\rm recoil} + \Delta_{\rm pol}\right] \Delta E_0^{\rm HFS}$

Phys. Rev. A 68 052503, Phys. Rev. A 83, 042509, Phys. Rev. A 71, 022506

 Δ_{TPE}

	μ p)	$\mu^{3}\mathrm{He^{+}}$		
	Magnitude	Uncertainty	Magnitude	Uncertainty	
$\Delta E_0^{ m HFS}$	182.443 meV	0.1×10^{-6}	1370.725 meV	0.1×10^{-6}	
$\Delta_{ m QED}$	1.1×10^{-3}	1×10^{-6}	1.2×10^{-3}	1×10^{-6}	
$\Delta_{\rm weak+hVP}$	2×10^{-5}	2×10^{-6}			
Δ_{Zemach}	7.5×10^{-3}	7.5×10^{-5}	3.5×10^{-2}	2.2×10^{-4}	$\leftarrow G_E(Q^2), G_M(Q^2)$
$\Delta_{ m recoil}$	1.7×10^{-3}	10^{-6}	2×10^{-4}		$\leftarrow G_E, G_M, F_1, F_2$
$\Delta_{ m pol}$	4.6×10^{-4}	8×10^{-5}	$(3.5 \times 10^{-3})^*$	$(2.5 \times 10^{-4})^*$	$\leftarrow g_1(x,Q^2), g_2(x,Q^2)$

HFS theory status

 $\Delta E_{\rm HFS}(1S) = \left[1 + \Delta_{\rm QED} + \Delta_{\rm weak+hVP} + \Delta_{\rm Zemach} + \Delta_{\rm recoil} + \Delta_{\rm pol}\right] \Delta E_0^{\rm HFS}$

Phys. Rev. A 68 052503, Phys. Rev. A 83, 042509, Phys. Rev. A 71, 022506

 Δ_{TPE}

HFS theory status

 $\Delta E_{\rm HFS}(1S) = \left[1 + \Delta_{\rm QED} + \Delta_{\rm weak+hVP} + \Delta_{\rm Zemach} + \Delta_{\rm recoil} + \Delta_{\rm pol}\right] \Delta E_0^{\rm HFS}$

Phys. Rev. A 68 052503, Phys. Rev. A 83, 042509, Phys. Rev. A 71, 022506

 Δ_{TPE}

	μ p)	$\mu^{3} \mathrm{He^{+}}$		_	
	Magnitude	Uncertainty	Magnitude	Uncertainty		
$\Delta E_0^{\rm HFS}$	182.443 meV	0.1×10^{-6}	1370.725 meV	0.1×10^{-6}	-	
$\Delta_{ m QED}$	1.1×10^{-3}	1×10^{-6}	1.2×10^{-3}	1×10^{-6}		
$\Delta_{\rm weak+hVP}$	2×10^{-5}	2×10^{-6}				
Δ_{Zemach}	7.5×10^{-3}	7.5×10^{-5}	3.5×10^{-2}	2.2×10^{-4}	$\leftarrow G_E(Q^2), G_M(Q^2)$	
$\Delta_{ m recoil}$	1.7×10^{-3}	10^{-6}	2×10^{-4}		$\leftarrow G_E, G_M, F_1, F_2$	
$\Delta_{ m pol}$	4.6×10^{-4}	8×10^{-5}	$(3.5 \times 10^{-3})^*$	$(2.5 \times 10^{-4})^*$	$\leftarrow g_1(x,Q^2), g_2(x,Q^2)$	
BχPT LO (Hagelstein et al. '15) Disp. Rel. (Martynenko et al. '02 (Faustov et al. '06) (Carlson et al. '08)	 2)	$\Delta_{\mathrm{pol}}(2S)$		Not yet compute $\frac{\Delta E_{ m pol}}{\Delta E_{ m pol}} = 5\%$ for the $\frac{10\%}{10\%}$ from pre	ed but ne 2S-2P I. 2S-2P analysis	
arXiv1512.03765	0 2 4 6 ΔE ^(pol) [μe	8 10 12 14 eV]	$\delta\Delta E_{ m p}$ ChPT group Ongoing mea	$_{\rm ol}$ = $15~\mu{\rm eV}$ but s have been trigg suremnts of g_2 a	jered t JLab	
PAUL SCHERRER INSTITU	T		A. Antognini PS	SAS'2016, Jerusal	em 25.05.2016 – p. 7	

Magnetic radius from the hyperfine splitting

Model-independent determinations: $R_E^2 + R_M^2 = 1.35(12) \text{ fm}^2$ (H) $R_E^2 + R_M^2 = 1.49(18) \text{ fm}^2$ (µp) Karshenboim, arXiv:1405.6515 Extraction of R_M from R_Z requires models for the form factors

Principle of the HFS experiments

 μ^- stops in gas and forms a muonic atom

A laser pulse drives the hyperfine transition

Need a method to detect the occurred transition

Plot number of detected transitions versus the laser frequency

see also talk A. Vacchi

Principle of the μp **HFS experiment**

- μ^- of 10 MeV/c are detected \longrightarrow trigger the laser
 - μ^- stops in H $_2$ gas (500 mbar, 50 K) $\longrightarrow \mu p$ (F=0) formation
- Laser pulse: $\mu p(F=0) \longrightarrow \mu p(F=1)$
 - Collision: $\mu p(F=1) + H_2 \longrightarrow H_2 + \mu p(F=0) + E_{kin}$
 - Diffusion: the faster μp reach the target walls
- At the wall: μ^- transfer to high-Z atom $\longrightarrow (\mu Z)^*$ formation
 - $(\mu Z)^*$ de-excitation \rightarrow MeV X-rays, e⁻ and μ^- capture
 - Resonance: Number of X-rays/e⁻/capture signals after laser excitation versus laser frequency

m = -1

F=1

F=0

m = +1

Cross sections: thermalized vs. laser excited

Efficiencies and event rates

		Signal	Background	
#1	Muon beam at 10 MeV/c with 5 mm diameter	600 /s	600 /s	πE5
#2	Anti-coincidence rejection	6×10^{-1}	6×10^{-1}	anti-coincidence
#3	\implies Laser and DAQ trigger rate	240 /s	240 /s	
#4	Stops in gas (after anti-rejection)	6×10^{-1}	7×10^{-1}	
#5	Overlap laser volume/ μ stop volume	2×10^{-1}		
#6	$\mu \mathrm{p}$ density decrease due to diffusion	3×10^{-1}	2×10^{-1}	locar: abort dalay
#7	μ^- decay prior to laser time	5×10^{-1}	5×10^{-1}	laser. short delay
#8	Laser excitation probability ($E = 0.6 \text{ mJ}$, $N = 400$)	9×10^{-2}		laser: large energy
#9	Fraction of μp with kinetic energy > 0.1 eV	4×10^{-1}		
#10	$\mu \mathrm{p}$ reaching the walls (diffusion + decay)	1.5×10^{-1}	2×10^{-2}	cryogenic cavity
#11	Detection efficiency for cascade/capture events	5×10^{-1}	5×10^{-1}	
#12	Multiplication of efficiencies	5.0×10^{-5}	7.3×10^{-4}	_
#13	Event rate per hour on resonance	43	635	
#14	Time needed to see a 4σ effect over BG	5.5 h		
#15	Time needed for wavelength change	1 h	F	
#16	Number of points to be measured	170		$\pm 3\sigma$ theory uncertainty
#17	Beam time duration (70% up-time + setting up)	12 weeks		

Principle of the $\mu^{3} He^{+}$ **HFS experiment**

- μ^- of 10 MeV/c are detected \longrightarrow trigger a laser
 - μ^- stop in ³He gas (50 mbar, 300 K) $\longrightarrow \mu^3 \text{He}^+$
- Laser pulse: drives $F=0 \rightarrow F=1$ and $F=1 \rightarrow F=0$ transitions
 - \Rightarrow change of the avg. muon polarization
- Detect electron from muon decay
 - Decay asymmetry: $N_e(left)$ increases, $N_e(right)$ decreases
 - Resonance: $N_e(left) N_e(right)$ vs. laser frequency

 Δt

3

$\mu^{3}\mathrm{He^{+}}$ resonance search

- $(\mu \text{He})^+ + \text{He} + \text{He} \rightarrow \text{He}(\mu \text{He})^+ + \text{He}$
 - for precision experiment: p = 50 mbar $(\tau_{\mu \, He^+} = 1.8 \, \mu s)$
 - for resonance search: p = few bar (all muons in molecular state)
- How much the muonic transition is disturbed by the molecule?
 - Shift? Upper limit from μ He-e: 6 ppm [Pachucki and Karr PC]
 - Splitting? Upper limit from μ He-e: 4 GHz / 323 THz = 13 ppm

Number of frequency points:	650
Time needed for a 4σ effect over BG	2 h
Weeks needed for resonance search (scan)	12 (2)

Laser requirements

Experiment	$\mu \mathrm{p}$ 2S-2P (2009)	$\mu \mathrm{p}~HFS$	$\mu\mathrm{He^{+}}$ 2S-2P (2014)	$\mu^{3}\mathrm{He^{+}}\;\mathrm{HFS}$
Wavelength	6.0 $\mu { m m}$	6.7 μm	840-960 nm	930 nm
Pulse energy	0.15 mJ	1.5 mJ	12-6 mJ	50 mJ
Avg. Rate	220 Hz	250 Hz	220 Hz	500 Hz
Bandwidth	300 MHz	$\lesssim 300 \text{ MHz}$	< 300 MHz	$\lesssim 500 \text{ MHz}$
Delay	$< 1.2 \ \mu$ S	$< 1.2 \ \mu { m S}$	$< 1.2 \ \mu$ S	$< 1.2 \ \mu s$
Pulse energy in cavity	0.1 mJ	0.6 mJ	3.5 mJ	40 mJ
Avg. number of reflections	1000	400	1000	1500

$$\begin{pmatrix} \underline{\Delta\nu} \\ \nu \end{pmatrix}_{\mu p} = 5 \times 10^{-6} \text{ and } \begin{pmatrix} \underline{\Delta\nu} \\ \nu \end{pmatrix}_{\mu He^+} = 7 \times 10^{-6} \\ \Delta\nu_{\mu p} = 0.22 \text{ GHz} \text{ and } \Delta\nu_{\mu He^+} = 2.2 \text{ GHz}.$$

Narrow lines:

 \Rightarrow Difficult to find the line

 \Rightarrow Sub-ppm accuracy require little statistics

A. Antognini PSAS'2016, Jerusalem 25.05.2016 – p. 15

The laser systems

Needs to develop cutting-edge thin-disk laser technologies

Needs to develop cutting-edge parametric down-conversion stages

The multi-pass cavities

 $N = \frac{1}{1 - L_{\rm tot}}$

$$L_{\text{tot}} = L_{\text{ref}} + L_{\text{hole}} + L_{\text{scat}} + L_{\text{defect}}$$

	N	$L_{ m tot}$	λ	challenge
$\mu \mathrm{p}$	500	2×10^{-3}	6.7 μ m	cryogenics
$\mu^{3} \mathrm{He^{+}}$	1500	6×10^{-4}	930 nm	50 mJ pulses

a)

b)

c)

A. Antognini PSAS'2016, Jerusalem 25

25.05.2016 – p. 18

$\mu \mathbf{Z}$ atoms

Properties:

- H-like atoms (electrons can be neglected)
- MeV transition frequencies
- MeV finite size effects

Measure:

- X-ray emitted during the muonic cascade
- using high-resolution Ge detectors

Complications:

- nuclear polarizability
- nuclear excitation during the cascade

 A. Antognini

PSAS'2016, Jerusalem

25.05.2016 - p. 19

$\mu \mathbf{Z}$ atoms: motivation

Atomic parity violation in Ra:

- Measure E1 admixture in E2 transition
 - \rightarrow Weinberg angle with 5 fold improvement over Cs
- Charge radius with 0.2% rel. accuracy needed

Measure radioactive nuclei (only μ g allowed):

- most of the stable nuclei already measured
 - \rightarrow charge radii with 2×10^{-4} rel. accuracy

- some radioactive nuclei measurable with our low-energy μ^- beam line

Atomic parity violation with muons (speculative)

Motivation, summary, outlook

A. Antognini

i PSAS'2016, Jerusalem

25.05.2016 - p. 21

Motivation, summary, outlook

A. Antognini

i PSAS'2016, Jerusalem

25.05.2016 - p. 21

CREMA collaboration

F. Biraben, P. Indelicato, L. Julien, F. Nez	Labor. Kastler Brossel, Paris
M. Diepold, T.W. Hänsch, J. Krauth, R. Pohl, T. Kohlert	MPQ, Garching, Germany
F.D. Amaro, L.M.P. Fernandes, C.M.B. Monteiro, J.M.F. dos Santos	Uni Coimbra, Portugal
J.F.C.A. Veloso	Uni Aveiro, Portugal
M. Abdou Ahmed, T. Graf,	IFSW, Uni Stuttgart
A. Antognini, M. Hildebrandt, K. Kirch, A. Knecht F. Kottmann, E. Rapisarda, K. Schuhmann, D. Taqqu	ETH & PSI, Switzerland
YW. Liu	N.T.H. Uni, Hsinchu, Taiwan
P. Amaro, J. Machado, J.P. Santos	Uni Lisbon, Portugal

