Rare Noble Gas Isotopes: Dating Ice and Water

Sven Ebser Kirchhoff-Institute for Physics, Group Oberthaler Heidelberg University

May 27, 2016

ATTA Collaboration in Heidelberg

Werner Aeschbach-Hertig

Stefan Beyersdorfer

Emeline

Arne Kersting

Florian Ritterbusch USTC

Water sampling

Mathouchanh Argon extraction

Sven Ebser

Lisa Ringena

KIP

Markus K. Oberthaler

Zhongyi Feng

LAndreas Kamrad

Rare Noble Gas Isotopes

Studying exotic nuclear structure, testing QED ⁶He and ⁸He or ³He and ⁴He

Searching for physics beyond the standard model Rare Neon isotopes

Dating of ice and water

 ^{39}Ar

Monitoring of the Nuclear Non-Proliferation Treaty $$^{85}{\rm Kr}$$

Krypton contamination in Xenon Dark Matter detectors Kr contamination in Xe

Rare Noble Gas Isotopes

Studying exotic nuclear structure, testing QED ⁶He and ⁸He or ³He and ⁴He

Searching for physics beyond the standard model Rare Neon isotopes

Dating of ice and water

Monitoring of the Nuclear Non-Proliferation Treaty ⁸⁵Kr

Krypton contamination in Xenon Dark Matter detectors Kr contamination in Xe

Sven Ebser

Heidelberg University

Groundwater

- Water resource management
- Climate reconstruction

Ocean

- Circulations (Global Conveyor Belt, North Atlantic Current, ...)
- Mixing processes (CO₂ uptake by oceans,...)

Groundwater

- Water resource management
- Climate reconstruction

Ocean

- Circulations (Global Conveyor Belt, North Atlantic Current, ...)
- Mixing processes (CO₂ uptake by oceans,...)

Groundwater

- Water resource management
- Climate reconstruction

lce

- Climate reconstruction
- Glaciological studies

- Circulations (Global Conveyor Belt, North Atlantic Current, ...)
- Mixing processes (CO₂ uptake by oceans,...)

Groundwater

- Water resource management
- Climate reconstruction

lce

- Climate reconstruction
- Glaciological studies

16 5

isotope	half life
²²² Rn	3.824 d
³ Н	12.32 a
⁸⁵ Kr	10.76 a
¹⁴ C	5730 a
⁸¹ Kr	232 ka
³⁶ CI	301 ka

isotope	half life
²²² Rn	3.824 d
³ Н	12.32 a
⁸⁵ Kr	10.76 a
¹⁴ C	5730 a
⁸¹ Kr	232 ka
³⁶ Cl	301 ka
³⁹ Ar	269 a

isotope	half life
²²² Rn	3.824 d
³ Н	12.32 a
⁸⁵ Kr	10.76 a
¹⁴ C	5730 a
⁸¹ Kr	232 a
³⁶ Cl	301 ka
³⁹ Ar	269 a

 Conservative tracer not involved in chemical processes

isotope	half life
²²² Rn	3.824 d
³ Н	12.32 a
⁸⁵ Kr	10.76 a
¹⁴ C	5730 a
⁸¹ Kr	232 ka
³⁶ Cl	301 ka
³⁹ Ar	269 a

- Conservative tracer not involved in chemical processes
- Anthropogenic contribution $<5\,\%$
- Variations in atmospheric $^{39}\mathrm{Ar}$ concentration during the last 1000 years < 7~%

$^{39}{\rm Ar}$: $^{40}{\rm Ar}$ = 1 : 1 000 000 000 000 000

Public debit of the USA in US-cents

$^{39}{\rm Ar}$: $^{40}{\rm Ar}$ = 1 : 1 000 000 000 000 000

Public debit of the USA in US-cents

 ${}^{39}\text{Ar}{:}^{40}\text{Ar}=4000$ times to the moon and there is one cent different!

Detection methods for ³⁹Ar

• Radioactivity:

Low-Level-Counting (LLC): ${}^{39}\text{Ar} \rightarrow {}^{39}\text{K} + e^- + \bar{\nu}_e$ Only large samples (1-3 tons of water)

Mass:

Accelerator Mass Spectrometry (AMS): Possible, but difficult for noble gases

• Atomic spectrum:

Atom Trap Trace Analysis (ATTA) Complement for rare and long-lived noble gases ATTA for Rare Krypton Isotopes

Ultrasensitive Isotope Trace Analyses with a Magneto-Optical Trap

	⁸⁵ Kr	⁸¹ Kr	³⁹ Ar
half life	10.76 a	232 ka	269 a
relative abundance	$2 \cdot 10^{-11}$	$6\cdot 10^{-13}$	$8\cdot 10^{-16}$

ATTA for Rare Krypton Isotopes

Ultrasensitive Isotope Trace Analyses with a Magneto-Optical Trap

C. Y. Chen,¹ Y. M. Li,¹ K. Bailey,¹ T. P. O'Connor,¹ L. Young,² Z.-T. Lu^{1*} SCIENCE VOL 286 5 NOVEMBER 1999

One million year old groundwater in the Sahara revealed by krypton-81 and chlorine-36

N. C. Sturchio,¹ X. Du,^{2,3} R. Purtschert,⁴ B. E. Lehmann,⁴ M. Sultan,⁵ L. J. Patterson,¹ Z.-T. Lu,² P. Müller,² T. Bigler,⁴ K. Bailey,² T. P. O'Connor,² L. Young,⁶ R. Lorenzo,⁴ R. Becker,⁵ Z. El Alfy,⁷ B. El Kaliouby,⁸ Y. Dawood,⁸ and A. M. A. Abdallah⁸

Received 8 December 2003; revised 28 January 2004; accepted 12 February 2004; published 12 March 2004.

	⁸⁵ Kr	⁸¹ Kr	³⁹ Ar
half life	10.76 a	232 ka	269 a
relative abundance	$2\cdot 10^{-11}$	$6\cdot 10^{-13}$	$8\cdot 10^{-16}$

ATTA for Rare Krypton Isotopes

Ultrasensitive Isotope Trace Analyses with a Magneto-Optical Trap

C. Y. Chen,¹ Y. M. Li,¹ K. Bailey,¹ T. P. O'Connor,¹ L. Young,² Z.-T. Lu^{1*} SCIENCE VOL 286 5 NOVEMBER 1999

One million year old groundwater in the Sahara revealed by krypton-81 and chlorine-36

N. C. Sturchio,¹ X. Du,^{2,3} R. Purtschert,⁴ B. E. Lehmann,⁴ M. Sultan,⁵ L. J. Patterson,¹ Z.-T. Lu,² P. Müller,² T. Bigler,⁴ K. Bailey,² T. P. O'Connor,² L. Young,⁶ R. Lorenzo,⁴ R. Becker,⁵ Z. El Alfy,⁷ B. El Kaliouby,⁸ Y. Dawood,⁸ and A. M. A. Abdallah⁸

Received 8 December 2003; revised 28 January 2004; accepted 12 February 2004; published 12 March 2004.

PRL 106, 103001 (2011) PHYSICAL REVIEW LETTERS

week ending 11 MARCH 2011

³⁹Ar Detection at the 10⁻¹⁶ Isotopic Abundance Level with Atom Trap Trace Analysis

W. Jiang,¹ W. Williams,¹ K. Bailey,¹ A. M. Davis,^{2,3} S.-M. Hu,⁴ Z.-T. Lu,^{1,2,5} T. P. O'Connor,¹ R. Purtschert,⁶ N. C. Sturchio,⁷ Y. R. Sun,⁴ and P. Mueller¹

	⁸⁵ Kr	⁸¹ Kr	³⁹ Ar
half life	10.76 a	232 ka	269 a
relative abundance	$2 \cdot 10^{-11}$	$6\cdot 10^{-13}$	$8 \cdot 10^{-16}$

Isotope shifts:

Isotope shifts:

Heidelberg University

Isotope shifts:

Isotope shifts:

Isotope shifts:

6 11

Isotope shifts:

argon cooled source

No other abundant argon isotope with hyperfine structure (nuclear spin of $^{39}\mbox{Ar}$ I = $^7\!/\!2)$

No other abundant argon isotope with hyperfine structure (nuclear spin of $^{39}\mbox{Ar}$ I = $^7\!/_2)$

 \rightarrow Normalization with atmospheric ³⁹Ar reference (3.6 atoms/h)

No other abundant argon isotope with hyperfine structure (nuclear spin of $^{39}\mathrm{Ar}$ I = $^{7}\!/_{2})$

 \rightarrow Normalization with atmospheric ³⁹Ar reference (3.6 atoms/h)

 \rightarrow A stable count rate during and between all measurements is required!

No other abundant argon isotope with hyperfine structure (nuclear spin of 39 Ar I = ${}^{7}/{}_{2}$)

 \rightarrow Normalization with atmospheric ³⁹Ar reference (3.6 atoms/h)

 \rightarrow A stable count rate during and between all measurements is required!

atmospheric measurements

F. Ritterbusch et al. (2014), Groundwater dating with Atom Trap Trace Analysis of ³⁹Ar, Geophys. Res. Lett., 41

No other abundant argon isotope with hyperfine structure (nuclear spin of 39 Ar I = ${}^{7}/{}^{2}$)

 \rightarrow Normalization with atmospheric ³⁹Ar reference (3.6 atoms/h)

 \rightarrow A stable count rate during and between all measurements is required!

@AGUPUBLICATIONS

Geophysical Research Letters

RESEARCH LETTER

10.1002/2014GL061120

Key Points:

 First dating of groundwater with Atom Trap Trace Analysis of Argon-39

 Argon-39-ATTA has the potential for Argon-39 analysis of small water and ice samples

Groundwater dating with Atom Trap Trace Analysis of ³⁹Ar

F. Ritterbusch¹, S. Ebser¹, J. Welte¹, T. Reichel², A. Kersting², R. Purtschert³, W. Aeschbach-Hertig², and M. K. Oberthaler¹

¹Kirchhoff-Institute for Physics, Heidelberg University, Heidelberg, Germany, ²Institute of Environmental Physics, Heidelberg University, Heidelberg, Germany, ³Climate and Environmental Physics, University of Bern, Bern, Switzerland

Abstract We report on the realization of Atom Trap Trace Analysis for ³⁹Ar and its first application to dating of groundwater samples. The presented system achieves an atmospheric ³⁹Ar count rate as high as

F. Ritterbusch et al. (2014), Groundwater dating with Atom Trap Trace Analysis of ³⁹Ar, Geophys. Res. Lett., 41

Sven Ebser

F. Ritterbusch et al. (2014), Groundwater dating with Atom Trap Trace Analysis of ³⁹Ar, Geophys. Res. Lett., 41

	F18/2	Uster404	HR544259	
NGT $[^{\circ}C]$	7.8 ± 0.6	7.3 ± 0.5 a	4.3 ± 1.1	
³ H [TU]	7.40 ± 0.16	0.4 ± 0.1^{a}	0.6 ± 0.9	
¹⁴ C [pmC]	84.03 ± 0.24	22.1 ± 0.4^{a}	0.025 ± 0.020	
³⁹ Ar age ATTA [a]	46 ± 71	574 ± 95	> 652	
and the Revente at al 1009				

^avalues from *Beyerle et. al, 1998*

F. Ritterbusch et al. (2014), Groundwater dating with Atom Trap Trace Analysis of ³⁹Ar, Geophys. Res. Lett., 41

Sven Ebser

	F18/2	Uster404	HR544259	
NGT $[^{\circ}C]$	7.8 ± 0.6	$7.3\pm0.5~^a$	4.3 ± 1.1	
³ H [TU]	7.40 ± 0.16	0.4 ± 0.1^{a}	0.6 ± 0.9	
¹⁴ C [pmC]	84.03 ± 0.24	22.1 ± 0.4^{a}	0.025 ± 0.020	
³⁹ Ar age ATTA [a] 46 \pm 71 574 \pm 95 > 652				
avalues from Reverse at 21,1009				

^avalues from Beyerle et. al, 1998

F. Ritterbusch et al. (2014), Groundwater dating with Atom Trap Trace Analysis of ³⁹Ar, Geophys. Res. Lett., 41

Sven Ebser

	F18/2	Uster404	HR544259		
NGT $[^{\circ}C]$	7.8 ± 0.6	$7.3\pm0.5~^{a}$	4.3 ± 1.1		
³ H [TU]	7.40 ± 0.16	0.4 ± 0.1^{a}	0.6 ± 0.9		
¹⁴ C [pmC]	84.03 ± 0.24	22.1 ± 0.4^{a}	0.025 ± 0.020		
³⁹ Ar age ATTA [a]	46 ± 71	574 ± 95	> 652		
A due from Broude et al 1000					

^avalues from *Beyerle et. al, 1998*

F. Ritterbusch et al. (2014), Groundwater dating with Atom Trap Trace Analysis of ³⁹Ar, Geophys. Res. Lett., 41

Sven Ebser

	F18/2	Uster404	HR544259
NGT $[^{\circ}C]$	7.8 ± 0.6	7.3 ± 0.5 a	4.3 ± 1.1
³ H [TU]	7.40 ± 0.16	0.4 ± 0.1^{a}	0.6 ± 0.9
¹⁴ C [pmC]	84.03 ± 0.24	22.1 ± 0.4^{a}	0.025 ± 0.020
³⁹ Ar age ATTA [a]	46 ± 71	574 \pm 95	> 652

^avalues from Beyerle et. al, 1998

ightarrow Groundwater dating with ³⁹Ar-ATTA demonstrated

F. Ritterbusch et al. (2014), Groundwater dating with Atom Trap Trace Analysis of ³⁹Ar, Geophys. Res. Lett., 41

Sven Ebser

Throughput configuration

Required sample size: 30 mL/h 0.5 -1 L STP argon \leftrightarrow 1000 - 2500 kg water or 500 - 1000 kg ice

Throughput configuration

Required sample size: 30 mL/h 0.5 -1 L STP argon \leftrightarrow 1000 - 2500 kg water or 500 - 1000 kg ice

Recycling configuration

Required sample size due to contamination: 4 -10 mL STP argon \leftrightarrow 10 - 25 L water or 4 - 10 kg ice

Reduction of the needed sample size by more than a factor 100!

In Progress: ³⁹Ar Dating of Glacier Ice and Ocean Water

In Progress: ³⁹Ar Dating of Glacier Ice and Ocean Water

Anika Frölian

Hans see: www.matterwave.de

In an $^{40}\mathrm{Ar}$ spectroscopy cell: 40% are gained by each transition, together 80%

In an $^{40}\mathrm{Ar}$ spectroscopy cell: 40% are gained by each transition, together 80%

A realisation for ³⁹Ar has to be investigated

Bichromatic Force: Basic Principle

Radiative force

Force is limited: $F_{rad} < \hbar k \frac{\gamma}{2}$
Bichromatic Force: Basic Principle

Force is limited: $F_{rad} < \hbar k \frac{\gamma}{2}$

Bichromatic Force: Basic Principle

Force is limited: $F_{rad} < \hbar k \frac{\gamma}{2}$

Force is not limited by the spontaneous decay rate

Bichromatic Force: Basic Principle

Force is limited: $F_{rad} < \hbar k \frac{\gamma}{2}$

Force is not limited by the spontaneous decay rate

Calculation: Yatsenko (1991, 2004), Cs: J. Söding et. al. (1996), Rb: Williams/Metcalf (1999), He: Cashen/Metcalf (2001)

Bichromatic Force: Realisation

Bichromatic Force: Realisation

• Average force $\overline{F} = \frac{\hbar k}{\pi} \Delta$ (only limited by power!)

• Average force $\overline{F} = \frac{\hbar k}{\pi} \Delta$ (only limited by power!)

• Optimum phase
$$\phi = \frac{\pi}{2}$$

 $\overline{F} = \frac{\hbar k}{\pi} \Delta$

• For ³⁹Ar the realisation of the repumper still has to be investigated

Summary

³⁹Ar and Atom Trap Trace Analysis as an application of a rare noble gas

First demonstration of ATTA of 39 Ar with groundwater (GRL 2014) and reduction of the sample size down to 4 ml

Study of new techniques for ATTA:

- Optical pumping
- Bichromatic force