The OLIVIA Experiment -'Trapless' ⁸Li β-Decay Study

Or Hen MIT

<u>In Collaboration With:</u> J.M. Conrad (MIT), J. Spitz (U. Michigan), G. Ron (HUJI), D. Gazit (HUJI)

PSAS'2016, Hebrew University, May 26th, 2016.

The Standard Model

 $-\frac{1}{2}\partial_{\nu}g^{a}_{\mu}\partial_{\nu}g^{a}_{\mu} - g_{s}f^{abc}\partial_{\mu}g^{a}_{\nu}g^{b}_{\mu}g^{c}_{\nu} - \frac{1}{4}g^{2}_{s}f^{abc}f^{adc}g^{b}_{\mu}g^{c}_{\nu}g^{d}_{\mu}g^{c}_{\nu} +$ $\frac{1}{2}ig_s^2(q_i^{\sigma}\gamma^{\mu}q_i^{\sigma})g_{\mu}^{a} + \bar{G}^a\partial^2 G^a + g_s f^{abc}\partial_{\mu}\bar{G}^a G^b g_{\mu}^c - \partial_{\nu}W_{\mu}^+\partial_{\nu}W_{\mu}^- M^{2}W_{\mu}^{+}W_{\mu}^{-} - \frac{1}{2}\partial_{\nu}Z_{\mu}^{0}\partial_{\nu}Z_{\mu}^{0} - \frac{1}{2c_{*}^{2}}M^{2}Z_{\mu}^{0}Z_{\mu}^{0} - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}H\partial_{\mu}H - \frac{1}{2}\partial_{\mu}H\partial_{$ $\tfrac{1}{2}m_{h}^{2}H^{2} - \partial_{\mu}\phi^{+}\partial_{\mu}\phi^{-} - M^{2}\phi^{+}\phi^{-} - \tfrac{1}{2}\partial_{\mu}\phi^{0}\partial_{\mu}\phi^{0} - \tfrac{1}{2c_{*}^{2}}M\phi^{0}\phi^{0} - \beta_{h}[\tfrac{2M^{2}}{a^{2}} + \frac{1}{2}M^{2}\phi^{0}\partial_{\mu}\phi^{0} - \frac{1}$ $W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + A_{\mu}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] - \frac{1}{2}g^{2}W_{\mu}^{+}W_{\mu}^{-}W_{\nu}^{+}W_{\nu}^{-} +$ ${}^{1}_{2}g^{2}W^{+}_{\mu}W^{-}_{\mu}W^{+}_{\mu}W^{-}_{\nu} + g^{2}c^{2}_{\nu}(Z^{0}_{\mu}W^{+}_{\mu}Z^{0}_{\mu}W^{-}_{\nu} - Z^{0}_{\mu}Z^{0}_{\mu}W^{+}_{\mu}W^{-}_{\nu}) +$ $g^2 s_w^2 (A_\mu W_\mu^+ A_\nu W_\nu^- - A_\mu A_\mu W_\nu^+ W_\nu^-) + g^2 s_w c_w [A_\mu Z_\nu^0 (W_\mu^+ W_\nu^- - M_\mu^- M_\mu^-) + g^2 s_w c_w [A_\mu Z_\nu^0 (W_\mu^+ W_\nu^- - M_\mu^-) + g^2 s_w c_w]$ $W^+_{\nu}W^-_{\mu}) - 2A_{\mu}Z^0_{\mu}W^+_{\nu}W^-_{\nu}] - g\alpha[H^3 + H\phi^0\phi^0 + 2H\phi^+\phi^-] \frac{1}{6}g^2\alpha_h[H^4 + (\phi^0)^4 + 4(\phi^+\phi^-)^2 + 4(\phi^0)^2\phi^+\phi^- + 4H^2\phi^+\phi^- + 2(\phi^0)^2H^2]$ $gMW^+_{\mu}W^-_{\mu}H - \frac{1}{2}g\frac{M}{c_*^2}Z^0_{\mu}Z^0_{\mu}H - \frac{1}{2}ig[W^+_{\mu}(\phi^0\partial_{\mu}\phi^- - \phi^-\partial_{\mu}\phi^0) W_{\mu} (\phi^{0} \partial_{\mu} \phi^{+} - \phi^{+} \partial_{\mu} \phi^{0})] + \frac{1}{2} g [W_{\mu}^{+} (H \partial_{\mu} \phi - \phi \ \partial_{\mu} H) - W_{\mu} (H \partial_{\mu} \phi^{+} - \phi^{+} \partial_{\mu} \phi^{0})]$ $(\phi^{+}\partial_{\mu}H)$] + $\frac{1}{2}g\frac{1}{c_{\mu}}(Z^{0}_{\mu}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)-ig\frac{s^{2}_{\mu}}{c_{\mu}}MZ^{0}_{\mu}(W^{+}_{\mu}\phi^{-}-W^{-}_{\mu}\phi^{+}))$ $igs_w MA_\mu (W^+_\mu \phi^- - W^-_\mu \phi^+) - ig \frac{1-2c_w^2}{2c_w} Z^0_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) +$ $igs_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) - \frac{1}{4}g^2 W^+_\mu W^-_\mu [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] \frac{1}{4}g^2 \frac{1}{c^2} Z^0_{\mu} Z^0_{\mu} [H^2 + (\phi^0)^2 + 2(2s^2_w - 1)^2 \phi^+ \phi^-] - \frac{1}{2}g^2 \frac{s^2_w}{c_w} Z^0_{\mu} \phi^0 (W^+_{\mu} \phi^- + \phi^0)^2 + 2(2s^2_w - 1)^2 \phi^+ \phi^-]$ $W_{\mu}^{-}\phi^{+}) - \frac{1}{2}ig^{2}\frac{s_{w}^{2}}{c_{w}}Z_{\mu}^{0}H(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) + \frac{1}{2}g^{2}s_{w}A_{\mu}\phi^{0}(W_{\mu}^{+}\phi^{-} +$
$$\begin{split} & W_{\mu} \stackrel{\phi}{\rightarrow} \stackrel{+}{\rightarrow} \frac{1}{2} i g^2 s_w A_{\mu} H (W_{\mu}^+ \phi^- - W_{\mu}^- \phi^+) - g^2 \frac{s_\omega}{c_\lambda} (2c_\omega^2 - \mu) Z_{\mu}^0 A_{\mu} \phi^+ \phi^- - g^1 s_w^2 A_{\mu} A_{\mu} \phi^+ \phi^- - \bar{c}^\lambda (\gamma \partial + m_h^\lambda) c^\lambda - \bar{\nu}^\lambda \gamma \partial \nu^\lambda - \bar{c}^\lambda_\lambda (\gamma \partial + m_h^\lambda) u^\lambda_\lambda - \bar{d}^\lambda_\lambda (\gamma \partial + m_h^\lambda) u^\lambda_\lambda - \bar{d$$
 m_d^{λ} d_j^{λ} + $igs_w A_{\mu} [-(\bar{e}^{\lambda}\gamma e^{\lambda}) + \frac{2}{3}(\bar{u}_j^{\lambda}\gamma u_j^{\lambda}) - \frac{1}{3}(\bar{d}_j^{\lambda}\gamma d_j^{\lambda})] + \frac{ig}{4c_w} Z_{\mu}^0 [(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + igs_w) - \frac{1}{3}(\bar{d}_j^{\lambda}\gamma d_j^{\lambda})] + \frac{ig}{4c_w} Z_{\mu}^0]$ $\gamma^{5}(\nu^{\lambda}) + (\bar{e}^{\lambda}\gamma^{\mu}(4s_{w}^{2} - 1 - \gamma^{5})e^{\lambda}) + (\bar{u}_{i}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2} - 1 - \gamma^{5})u_{i}^{\lambda}) +$ $(\bar{d}_{j}^{\lambda}\gamma^{\mu}(1 - \frac{8}{3}s_{w}^{2} - \gamma^{5})d_{j}^{\lambda})] + \frac{ig}{2\sqrt{2}}W_{\mu}^{+}[(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})e^{\lambda}) + (\bar{u}_{j}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})e^{\lambda})]$ $\gamma^5 C_{\lambda\kappa} d_j^{\kappa}] + \frac{ig}{2\sqrt{2}} W^-_{\mu} [(e^{\lambda} \gamma^{\mu} (1 + \gamma^5) \nu^{\lambda}) + (\bar{d}_j^{\kappa} C^{\dagger}_{\lambda\kappa} \gamma^{\mu} (1 + \gamma^5) u_j^{\lambda})] +$ $\frac{ig}{2\sqrt{2}}\frac{m_e^{\lambda}}{M}\left[-\phi^+(\bar{\nu}^{\lambda}(1-\gamma^5)e^{\lambda})+\phi^-(\bar{e}^{\lambda}(1+\gamma^5)\nu^{\lambda})\right]-\frac{g}{2}\frac{m_e^{\lambda}}{M}\left[H(\bar{e}^{\lambda}e^{\lambda})+\phi^-(\bar{e}^{\lambda}(1+\gamma^5)\nu^{\lambda})\right]-\frac{g}{2}\frac{m_e^{\lambda}}{M}\left[H(\bar{e}^{\lambda}e^{\lambda})+\phi^-(\bar{e}^{\lambda}(1+\gamma^5)\nu^{\lambda})\right]-\frac{g}{2}\frac{m_e^{\lambda}}{M}\left[H(\bar{e}^{\lambda}e^{\lambda})+\phi^-(\bar{e}^{\lambda}(1+\gamma^5)\nu^{\lambda})\right]-\frac{g}{2}\frac{m_e^{\lambda}}{M}\left[H(\bar{e}^{\lambda}e^{\lambda})+\phi^-(\bar{e}^{\lambda}(1+\gamma^5)\nu^{\lambda})\right]-\frac{g}{2}\frac{m_e^{\lambda}}{M}\left[H(\bar{e}^{\lambda}e^{\lambda})+\phi^-(\bar{e}^{\lambda}(1+\gamma^5)\nu^{\lambda})\right]-\frac{g}{2}\frac{m_e^{\lambda}}{M}\left[H(\bar{e}^{\lambda}e^{\lambda})+\phi^-(\bar{e}^{\lambda}(1+\gamma^5)\nu^{\lambda})\right]-\frac{g}{2}\frac{m_e^{\lambda}}{M}\left[H(\bar{e}^{\lambda}e^{\lambda})+\phi^-(\bar{e}^{\lambda}(1+\gamma^5)\nu^{\lambda})\right]-\frac{g}{2}\frac{m_e^{\lambda}}{M}\left[H(\bar{e}^{\lambda}e^{\lambda})+\phi^-(\bar{e}^{\lambda}(1+\gamma^5)\nu^{\lambda})\right]-\frac{g}{2}\frac{m_e^{\lambda}}{M}\left[H(\bar{e}^{\lambda}e^{\lambda})+\phi^-(\bar{e}^{\lambda}(1+\gamma^5)\nu^{\lambda})\right]-\frac{g}{2}\frac{m_e^{\lambda}}{M}\left[H(\bar{e}^{\lambda}e^{\lambda})+\phi^-(\bar{e}^{\lambda}(1+\gamma^5)\nu^{\lambda})\right]$ $i\phi^{0}(\bar{e}^{\lambda}\gamma^{5}e^{\lambda})] + \frac{ig}{2M\sqrt{2}}\phi^{+}[-m_{d}^{\kappa}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1-\gamma^{5})d_{j}^{\kappa}) + m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})]$ $\gamma^{5}d_{j}^{\kappa}$] + $\frac{ig}{2M\sqrt{2}}\phi^{-}[m_{d}^{\lambda}(\bar{d}_{j}^{\lambda}C_{\lambda\kappa}^{\dagger}(1+\gamma^{5})u_{j}^{\kappa}) - m_{u}^{\kappa}(\bar{d}_{j}^{\lambda}C_{\lambda\kappa}^{\dagger}(1-\gamma^{5})u_{j}^{\kappa}] - m_{u}^{\kappa}(\bar{d}_{j}^{\lambda}C_{\lambda\kappa}^{\dagger}(1-\gamma^{5})u_{j}^{\kappa}] - m_{u}^{\kappa}(\bar{d}_{j}^{\lambda}C_{\lambda\kappa}^{\dagger}(1-\gamma^{5})u_{j}^{\kappa}) - m_{u}^{\kappa}(\bar{d}_{j}^{\lambda}C_{\lambda\kappa}^{\star}(1-\gamma^{5})u_{j}^{\kappa}) - m_{u}^{\kappa}(\bar{d}_{j}^{\lambda}C_{\lambda\kappa}^{\star}(1-\gamma^{5})u_{j}^{\kappa}) - m_{u}^{\kappa}(\bar{d}_{j}^{\lambda}C_{\lambda\kappa}^{\star}(1-\gamma^{5})u_{j}^{\kappa}) - m_{u}^{\kappa}(\bar{d}_{j}^{\lambda}C_{\lambda\kappa}^{\star}(1-\gamma^{5})u_{j}^{\kappa}) - m_{u}^{\kappa}(\bar{d}_{j}^{\lambda}C_{\lambda\kappa}^{\star}(1-\gamma^{5})u_{j}^{\kappa}) - m_{u}^{$ $\frac{g}{2}\frac{m_{\tilde{u}}^{\lambda}}{M}H(\bar{u}_{i}^{\lambda}u_{i}^{\lambda}) - \frac{g}{2}\frac{m_{\tilde{d}}^{\lambda}}{M}H(\bar{d}_{i}^{\lambda}d_{i}^{\lambda}) + \frac{ig}{2}\frac{m_{\tilde{u}}^{\lambda}}{M}\phi^{0}(\bar{u}_{i}^{\lambda}\gamma^{5}u_{i}^{\lambda}) - \frac{ig}{2}\frac{m_{\tilde{d}}^{\lambda}}{M}\phi^{0}(\bar{d}_{i}^{\lambda}\gamma^{5}d_{i}^{\lambda}) - \frac{ig}{2}\frac{m_{\tilde{u}}^{\lambda}}{M}\phi^{0}(\bar{d}_{i}^{\lambda}\gamma^{5}d_{i}^{\lambda}) - \frac{ig}{2}\frac{m_{\tilde{u}}$ $\bar{X}^+(\partial^2 - M^2)X^+ + \bar{X}^-(\partial^2 - M^2)X^- + \bar{X}^0(\partial^2 - \frac{M^2}{2})X^0 + \bar{Y}\partial^2Y +$ $igc_w W^+_u (\partial_u \bar{X}^0 X - \partial_u \bar{X}^+ X^0) + igs_w W^+_u (\partial_u \bar{Y} X^w - \partial_u \bar{X}^+ Y) +$ $igc_{w}W_{\mu}^{\mu}(\partial_{\mu}X^{-}X^{0} - \partial_{\mu}X^{0}X^{+}) + igs_{w}W_{\mu}^{\mu}(\partial_{\mu}X^{-}Y - \partial_{\mu}YX^{+}) +$ $igc_w Z^0_\mu (\partial_\mu \bar{X}^+ X^+ - \partial_\mu \bar{X}^- X^-) + igs_w A_\mu (\partial_\mu \bar{X}^+ X^+ - \partial_\mu \bar{X}^- X^-) \frac{1}{2}gM[\bar{X}^+X^+H + \bar{X}^-X^-H + \frac{1}{c_w^2}\bar{X}^0X^0H] + \frac{1}{2c_w^2}igM[\bar{X}^+X^0\phi^+ - \frac{1}{2c_w^2}h^2]$ $\bar{X}^{-}X^{0}\phi^{-}] + \frac{1}{2c_{-}}igM[\bar{X}^{0}X^{-}\phi^{+} - \bar{X}^{0}X^{+}\phi^{-}] + igMs_{w}[\bar{X}^{0}X^{-}\phi^{+} - \bar{X}^{0}X^{+}\phi^{-}] + igMs_{w}[\bar{X}^{0}X^{-}\phi^{+}] + ig$ $\bar{X}^{0}X^{+}\phi^{-}] + \frac{1}{2}igM[\bar{X}^{+}X^{+}\phi^{0} - \bar{X}^{-}X^{-}\phi^{0}]$

The Standard Model

 $\begin{array}{l} -\frac{1}{2}\partial_{\nu}g^{a}_{\mu}\partial_{\nu}g^{a}_{\mu} - g_{s}f^{abc}\partial_{\mu}g^{a}_{\nu}g^{b}_{\mu}g^{b}_{\nu} - \frac{1}{4}g^{2}_{s}f^{abc}f^{adc}g^{b}_{\mu}g^{c}_{\nu}g^{d}_{\mu}g^{c}_{\nu} + \\ \frac{1}{2}ig^{2}_{s}(q^{e}_{\tau}\gamma^{\mu}q^{e}_{\tau})g^{a}_{\mu} + \bar{G}^{a}\partial^{2}G^{a} + g_{s}f^{abc}\partial_{\mu}\bar{G}^{a}G^{b}g^{e}_{\mu} - \partial_{\nu}W^{+}_{\mu}\partial_{\nu}W^{-}_{\mu} - \\ M^{2}W^{+}_{\mu}W^{-}_{\mu} - \frac{1}{2}\partial_{\nu}Z^{0}_{\mu}\partial_{\nu}Z^{0}_{\mu} - \frac{1}{2c^{e}_{\nu}}M^{2}Z^{0}_{\mu}Z^{0}_{\nu} - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}H\partial_{\mu}H - \\ \end{array}$

 $\frac{1}{2}m_h^2H^2 - \partial_\mu\phi^+\partial_\mu\phi^- - M^2\phi^+\phi^- - \frac{1}{2}\partial_\mu\phi^0\partial_\mu\phi^0 - \frac{1}{2\pi}M\phi^0$

 $\frac{2M}{M}H + \frac{1}{2}(H^2 + \phi^0\phi^0 + 2\phi^+\phi^-)$

Quarks V C F V

eptons

 $\begin{array}{c} (\bar{u}) = (1 + (1 + \bar{u}) + (1 + \bar{v})) + (1 + \bar{v}) + (1 + \bar{v}) + (\bar{u}_{1}^{*} \gamma^{\mu}(1 + \bar{v}) + (\bar{u}_{2}^{*} \gamma^{\mu}(1 + \bar{v}) + \bar{u}) + (\bar{v}^{*} \gamma^{*} \bar{v}^{*} + \bar{v}^{*} - (\bar{v}^{*} \gamma^{*} + (1 + \bar{v}^{*}) \bar{v}^{*})] + \frac{ig}{2\chi^{2}} \frac{m^{2}}{M} [-\bar{v}^{*} (\bar{v}^{*} \gamma^{*} + (1 + \bar{v}^{*}) \bar{v}^{*}) - \frac{g}{2} \frac{m^{2}}{M} H(\bar{v}^{*} h^{2} + (\bar{v}^{*} \gamma^{*} + (\bar{v}^{*} \gamma^{*} - \bar{v}^{*}) \bar{v}^{*})] + \frac{ig}{2\chi^{2}} \frac{m^{2}}{2} (\bar{v}^{*} - \bar{v}^{*} - \bar{v}$

Quarks

The Standard Model

 $\begin{array}{c} -\frac{1}{2}\partial_{\nu}g_{\mu}^{\mu}\partial_{\nu}g_{\mu}^{a} - g_{s}f^{abc}\partial_{\mu}g_{\nu}^{b}g_{\mu}^{b}g_{\nu}^{c} - \frac{1}{4}g_{s}^{2}f^{abc}f^{adc}g_{\mu}^{b}g_{\nu}^{c}g_{\mu}^{d}g_{\nu}^{c} + \\ \frac{1}{2}ig_{s}^{2}(q_{\tau}^{c}\gamma^{\mu}q_{\tau}^{c})g_{\mu}^{a} + \bar{G}^{a}\partial^{2}G^{a} + g_{s}f^{abc}\partial_{\mu}\bar{G}^{a}G^{b}g_{\mu}^{c} - \partial_{\nu}W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - \\ M^{2}W_{\mu}^{+}W_{\mu}^{-} - \frac{1}{2}\partial_{\nu}Z_{\mu}^{0}\partial_{\nu}Z_{\mu}^{0} - \frac{1}{2\sigma^{2}}M^{2}Z_{\mu}^{0}Z_{\mu}^{0} - \frac{1}{2}\partial_{\mu}A_{\mu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}H\partial_{\mu}H - \end{array}$

 $\frac{1}{2}m_{\mu}^{2}H^{2} - \partial_{\nu}\phi^{+}\partial_{\nu}\phi^{-} - M^{2}\phi^{+}\phi^{-} - \frac{1}{2}\partial_{\nu}\phi^{0}\partial_{\nu}\phi^{0} - \frac{1}{2}M$

 $^{2M}H + \frac{1}{2}(H^2 + \phi^0\phi^0 + 2\phi^0\phi^0)$

The Standard Model is the Biggest Triumph of Physics !?

$$\begin{split} \| \dot{\theta}_{1}^{(q)}(1) - (\dot{\phi}_{2}) &= \frac{1}{2\sqrt{2}} W_{\mu}^{-1} [(e^{\lambda} \gamma^{\mu} (1 + \gamma^{5}) e^{\lambda}) + (u_{j}^{2} \gamma^{\mu} (1 + \gamma^{5}) e^{\lambda})] \\ &= \frac{ig}{2\sqrt{2}} \frac{m^{\lambda}}{M} [-\phi^{+} (\bar{e}^{\lambda} (1 - \gamma^{5}) e^{\lambda}) + \phi^{-} (\bar{e}^{\lambda} (1 + \gamma^{5}) \nu^{\lambda})] - \frac{g}{2} \frac{m^{\lambda}}{M} [H(\bar{e}^{\lambda} e^{\lambda}) + i\phi^{0} (\bar{e}^{\lambda} \gamma^{5} e^{\lambda})] + \frac{ig}{2M\sqrt{2}} \phi^{-} [-m_{d}^{\lambda} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa} (1 - \gamma^{5}) d^{\kappa}_{j}) + m_{h}^{\lambda} (u_{j}^{\lambda} C_{\lambda \kappa} (1 + \gamma^{5}) d^{\kappa}_{j}] + \frac{ig}{2M\sqrt{2}} \phi^{-} [m_{d}^{\lambda} (d^{\lambda}_{j}^{\lambda} C_{\lambda \kappa} (1 - \gamma^{5}) d^{\kappa}_{j}) - m_{\kappa}^{\kappa} (d^{\lambda}_{j} C_{\lambda \kappa}^{\dagger} (1 - \gamma^{5}) u^{\kappa}_{j}] - \frac{g}{2} \frac{m^{\lambda}}{M} H(\bar{u}_{j}^{\lambda} d^{\lambda}_{j}) + \frac{ig}{2} \frac{m^{\lambda}}{M} \phi^{0} (\bar{u}_{j}^{\lambda} \gamma^{5} u^{\lambda}_{j}) - \frac{ig}{2} \frac{m^{\lambda}}{M} \phi^{0} (d^{\lambda}_{j} \gamma^{5} d^{\lambda}_{j}) + \bar{\chi}^{-} (\partial^{2} - M^{2}) X^{-} + \bar{X}^{0} (\partial^{2} - \frac{M^{2}}{2}) X^{0} + \bar{Y} \partial^{2} Y + igc_{w} W_{\mu}^{\mu} (\partial_{\mu} \bar{X}^{0} X - \partial_{\mu} \bar{X}^{+} X^{0}) + igs_{w} W_{\mu}^{\mu} (\partial_{\mu} \bar{X}^{-} X - \partial_{\mu} \bar{X}^{+} Y) + igc_{w} U_{\mu}^{\mu} (\partial_{\mu} \bar{X}^{-} X^{0} - \partial_{\mu} \bar{X}^{0} X^{-}) + igs_{w} U_{\mu}^{\mu} (\partial_{\mu} \bar{X}^{+} X^{-} \partial_{\mu} \bar{X}^{-}) - \frac{1}{2}gM[\bar{X}^{+} X^{+} + \partial_{\mu} \bar{X}^{-} X^{-} + ig^{\lambda} \partial^{0} (M^{\lambda}_{j} \gamma^{0} U^{\lambda}) + \frac{1}{2e_{w}}} igM[\bar{X}^{+} X^{0} \phi^{\lambda} - X^{-} \nabla^{-}) - \frac{1}{2}gM[\bar{X}^{+} X^{+} + H \bar{X}^{-} X^{-} H + \frac{1}{e^{\lambda}}} \bar{\xi}^{0} N M[\bar{X}^{+} X^{+} \partial^{\mu} - X^{-} X^{-} \phi^{0}] \\ + N^{0} \chi^{0} \chi^{-} (\bar{\chi}^{-}) + \frac{1}{2} igM[\bar{X}^{0} X^{-} \phi^{-} - X^{-} X^{-} \phi^{0}] \\ + N^{0} \chi^{0} \chi^{0} \chi^{-} - \frac{1}{2} \frac{1}{2} igM[\bar{X}^{0} X^{+} \phi^{-} - X^{-} X^{-} \phi^{0}] \\ + N^{0} \chi^{0} \chi^{0} \chi^{0} - \frac{1}{2} \frac{1}{2} igM[\bar{X}^{0} X^{+} \phi^{-} - X^{-} X^{-} \phi^{0}] \\ + N^{0} \chi^{0} \chi^{0} \chi^{0} - \frac{1}{2} \frac{1}{2} igM[\bar{X}^{0} X^{+} \phi^{-} - X^{-} X^{-} \phi^{0}] \\ + N^{0} \chi^{0} \chi^{$$

But..... We still don't know Matter Anti-Matter Asymmetry, Dark Matter, Dark Energy, Black Holes, Gravity,

Quarks

The Standard Model

 $\begin{array}{l} -\frac{1}{2}\partial_{\nu}g^{a}_{\mu}\partial_{\nu}g^{a}_{\mu} - g_{s}f^{abc}\partial_{\mu}g^{a}_{\nu}g^{b}_{\mu}g^{c}_{\nu} - \frac{1}{4}g^{2}_{s}f^{abc}f^{adc}g^{b}_{\mu}g^{c}_{\nu}g^{d}_{\mu}g^{c}_{\nu} + \\ \frac{1}{2}ig^{2}_{s}(q^{c}_{i}\gamma^{\mu}q^{c}_{j})g^{a}_{\mu} + \bar{G}^{a}\partial^{2}G^{a} + g_{s}f^{abc}\partial_{\mu}\bar{G}^{a}G^{b}g^{c}_{\mu} - \partial_{\nu}W^{+}_{\mu}\partial_{\nu}W^{-}_{\mu} - \end{array}$ $M^{2}W_{\mu}^{+}W_{\mu}^{-} - \frac{1}{2}\partial_{\nu}Z_{\mu}^{0}\partial_{\nu}Z_{\mu}^{0} - \frac{1}{2c^{2}}M^{2}Z_{\mu}^{0}Z_{\mu}^{0} - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}H\partial_{\mu}H \frac{1}{2}m_{\mu}^{2}H^{2} - \partial_{\nu}\phi^{+}\partial_{\nu}\phi^{-} - M^{2}\phi^{+}\phi^{-} - \frac{1}{2}\partial_{\nu}\phi^{0}\partial_{\nu}\phi^{0} - \frac{1}{2}M$ $\frac{2M}{H}H + \frac{1}{2}(H^2 + \phi^0\phi^0 + 2\phi^0\phi^0)$

The standard model is incomplete so UC there MUST be new physics out there...

 $\overline{T_{j'}} + \frac{\alpha}{2\sqrt{2}} W_{\mu} [(e^{\lambda} \gamma^{\mu} (1 + \gamma^5) \nu^{\lambda}) + (\bar{d}_i^{\kappa} C_{\lambda\kappa}^{\dagger} \gamma^{\mu} (1 + \gamma^5) u_i^{\lambda})] +$ $\frac{ig}{2\sqrt{2}}\frac{m_{\lambda}^{\lambda}}{M}\left[-\phi^{+}(\bar{\nu}^{\lambda}(1-\gamma^{5})e^{\lambda})+\phi^{-}(\bar{e}^{\lambda}(1+\gamma^{5})\nu^{\lambda})\right]-\frac{g}{2}\frac{m_{\lambda}^{\lambda}}{M}\left[H(\bar{e}^{\lambda}e^{\lambda})+\right.$ $i\phi^{\bar{0}}(\bar{e}^{\lambda}\gamma^{5}e^{\lambda})] + \frac{ig}{2M\sqrt{2}}\phi^{+}[-m_{d}^{\kappa}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1-\gamma^{5})d_{j}^{\kappa}) + m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})]$ $\gamma^5)d_j^{\kappa}] + \frac{ig}{2M\sqrt{2}}\phi^{-}[m_d^{\lambda}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1+\gamma^5)u_j^{\kappa}) - m_u^{\kappa}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1-\gamma^5)u_j^{\kappa}] - m_u^{\kappa}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1-\gamma^5)u_j^{\kappa}] - m_u^{\kappa}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1-\gamma^5)u_j^{\kappa}) - m_u^{\kappa}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\star}(1-\gamma^5)u_j^{\kappa}) - m_u^{\kappa}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1-\gamma^5)u_j^{\kappa}) - m_u^{\kappa}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\star}(1-\gamma^5)u_j^{\kappa}) - m_u^{\kappa}(\bar{d}_j^{\kappa}) - m_u^{\kappa}(\bar{d}_j^{\kappa}) - m_u^{\kappa}(\bar{d}_j^{\kappa}) - m_u^{\kappa}(\bar{d}_j^{\kappa}) - m_u^{\kappa}(\bar{d}_j^{\kappa}) - m_u^{\kappa}(\bar{d}_j$ $\frac{g}{2}\frac{m_{\tilde{u}}^{\lambda}}{M}H(\bar{u}_{i}^{\lambda}u_{i}^{\lambda}) - \frac{g}{2}\frac{m_{\tilde{d}}^{\lambda}}{M}H(\bar{d}_{i}^{\lambda}d_{i}^{\lambda}) + \frac{ig}{2}\frac{m_{\tilde{u}}^{\lambda}}{M}\phi^{0}(\bar{u}_{i}^{\lambda}\gamma^{5}u_{i}^{\lambda}) - \frac{ig}{2}\frac{m_{\tilde{d}}^{\lambda}}{M}\phi^{0}(\bar{d}_{i}^{\lambda}\gamma^{5}d_{i}^{\lambda}) +$ $\bar{X}^{+}(\partial^{2} - M^{2})X^{+} + \bar{X}^{-}(\partial^{2} - M^{2})X^{-} + \bar{X}^{0}(\partial^{2} - \frac{M^{2}}{c^{2}})X^{0} + \bar{Y}\partial^{2}Y +$ $igc_w W^+_u (\partial_u \bar{X}^0 X - \partial_u \bar{X}^+ X^0) + igs_w W^+_u (\partial_u \bar{Y} X^w - \partial_u \bar{X}^+ Y) +$ $igc_w W^{\mu}_{\mu} (\partial_{\mu} X^- X^0 - \partial_{\mu} X^0 X^+) + igs_w W^{\mu}_{\mu} (\partial_{\mu} X^- Y - \partial_{\mu} Y X^+) +$ $igc_w Z^0_\mu (\partial_\mu \bar{X}^+ X^+ - \partial_\mu \bar{X}^- X^-) + igs_w A_\mu (\partial_\mu \bar{X}^+ X^+ - \partial_\mu \bar{X}^- X^-) \frac{1}{2}gM[\bar{X}^+X^+H + \bar{X}^-X^-H + \frac{1}{c^2}\bar{X}^0X^0H] + \frac{1-2c_w^2}{2c_w}igM[\bar{X}^+X^0\phi^+ - \frac{1}{2c_w}\bar{X}^0H]$ $\bar{X}^{-}X^{0}\phi^{-}] + \frac{1}{2c_{-}}igM[\bar{X}^{0}X^{-}\phi^{+} - \bar{X}^{0}X^{+}\phi^{-}] + igMs_{w}[\bar{X}^{0}X^{-}\phi^{+} - \bar{X}^{0}X^{+}\phi^{-}] + igMs_{w}[\bar{X}^{0}X^{-}\phi^{+}] + igMs_{w}[\bar{X}^{0}X^{-}\phi$ $\bar{X}^{0}X^{+}\phi^{-}] + \frac{1}{2}igM[\bar{X}^{+}X^{+}\phi^{0} - \bar{X}^{-}X^{-}\phi^{0}]$

But..... We still don't know Matter Anti-Matter Asymmetry, Dark Matter, Dark Energy, Black Holes, Gravity,

High Energy Vs. High Precision

Freeman Dyson on 16 discoveries awarded the Nobel Prize between 1945 and 2008:

The results of my survey are then as follows: four discoveries on the energy frontier, four on the rarity frontier, eight on the accuracy frontier. Only a quarter of the discoveries were made on the energy frontier, while half of them were made on the accuracy frontier. For making important discoveries, high accuracy was more useful than high energy.

BSM Physics Searches @ Low Energy

1. Start with a Jook at the effect
of the new physics
on well defined process we know very (very) well. Breakfast observables. reads 4. Measured with Sweets 🌨 hígh precísíon. 5. Look for (small) Drinks deviations. 2. Consider general new physics (by introducing new Sides Other operators).

BSM Physics Searches @ Low Energy

1. Start with a 3. Look at the effect process we know very (very) well. => ⁸Lí β-Decay of the new physics on well defined Breakfast observables. reads 4. Measured with Sweets 🌨 hígh precísíon. 5. Look for (small) Drinks deviations. 2. Consider general new physics (by introducing new Sides Other operators).

BSM Physics Searches @ Low Energy

 $\frac{3}{2} \frac{1}{2} \frac{1}$

1. Start with a

Why β decay? Historically β decay measurements resulted in many discoveries of new physics that were instrumental in the development of the standard model as we know it.

β Decay History

1911 – 1927: β energy spectrum measurement in nuclear β decay.

- Expectation: Discrete spectrum (≈ Q-Value)
- Observation: Continues spectrum with a clear endpoint (≈ Q-Value)
- **1930:** Pauli's proposal: Existence of a light neutral 'neutron' like particle emitted in the β decay process
- **1931:** Fermi changes Pauli's 'neutron' to 'neutrino' and formulate a 'contact interaction' model for beta decay.
 - QED analogy; assuming vector interactions

β Decay History

1911 – 1927: β energy spectrum measurement in nuclear β decay.

- Expectation: Discrete spectrum (≈ Q-Value)
- Observation: Continues spectrum with a clear endpoint (≈ Q-Value)
- **1930:** Pauli's proposal: Existence of a light neutral 'neutron' like particle emitted in the β decay process
- **1931:** Fermi changes Pauli's 'neutron' to 'neutrino' and formulate a 'contact interaction' model for beta decay.
 - QED analogy; assuming vector interactions

1956: Cowan-Reines observe reactor anti-neutrinos.

- Use nuclear reactors as a high-flux anti-neutrino source.
- Water target for inverse beta decay: $\bar{v_e} + p \rightarrow n + e^+$
- Add ¹⁰⁸Cd to capture the neutron ($\tau \approx 5 \mu$ sec).
- Use liquid scintillator to measure gammas from positron annihilation and ^{109m}Cd decay.

1957: Wu et al. observes parity violation in ⁶⁰Co decay.

Goldhaber measures the neutrino helicity.

=> Neutrinos are left handed. Weak Interaction is V-A

Searching Under the Lamppost ...

Measuring Everything we can:

- Energy Spectra
- Angular Correlations
- Half-Lives
- Polarizations

... Constraining New Physics

Comparing to Theory and Probing:

- Non V-A Contribution (S, T, P)
- Right-handed Currents (V+A
- Massive Neutrinos.
- CKM Unitary.

+ Many open questions in 'standard' nuclear physics

... Constraining New Physics

Comparing to Theory and Probing:

- Non V-A Contribution (S, T, P).
- Right-handed Currents (V+A).
- Massive Neutrinos.
- CKM Unitary.

+ Many open questions in 'standard' nuclear physics

• General Hamiltonian:

 $H_{int} = \sum_{X = \{V, A, T, S, P\}} (\overline{\psi}_P O_X \psi_n) (C_X \overline{\psi}_e O_X \psi_v + C'_X \overline{\psi}_e O_X \gamma^5 \psi_v)$

• General Hamiltonian:

 $H_{int} = \sum_{X = \{V, A, T, S, P\}} (\overline{\psi}_P O_X \psi_n) (C_X \overline{\psi}_e O_X \psi_v + C'_X \overline{\psi}_e O_X \gamma^5 \psi_v)$

• Standard Model V-A assumption:

 $C_V = -C'_V = 1$; $C_A = -C'_A = -1.27$

• General Hamiltonian:

 $H_{int} = \sum_{X = \{V, A, T, S, P\}} (\overline{\psi}_P O_X \psi_n) (C_X \overline{\psi}_e O_X \psi_v + C'_X \overline{\psi}_e O_X \gamma^5 \psi_v)$

Standard Model V-A assumption:

 $C_V = -C'_V = 1$; $C_A = -C'_A = -1.27$

• Decay Rate: $\Gamma dE_e d\Omega_e d\Omega_v$ $\propto \left[1 + \alpha_{\beta v} \frac{\vec{P}_e \cdot \vec{P}_v}{E_e E_v} + b \frac{m_e}{E_e} + \frac{\langle \vec{I} \rangle}{I} \cdot \left(A_\beta \frac{\vec{P}_e}{E_e} + B_v \frac{\vec{P}_v}{E_v} + D \frac{\vec{P}_e \times \vec{P}_v}{E_e E_v} \right) \right]$

• General Hamiltonian:

 $H_{int} = \sum_{X = \{V, A, T, S, P\}} (\overline{\psi}_P O_X \psi_n) (C_X \overline{\psi}_e O_X \psi_v + C'_X \overline{\psi}_e O_X \gamma^5 \psi_v)$

Standard Model V-A assumption:

 $C_V = -C'_V = 1$; $C_A = -C'_A = -1.27$

• Decay Rate: $\Gamma dE_{e} d\Omega_{e} d\Omega_{v}$ $\propto \left[1 + \alpha_{\beta v} \frac{\vec{P}_{e} \cdot \vec{P}_{v}}{E_{e}E_{v}} + b \frac{m_{e}}{E_{e}} + \frac{\langle \vec{I} \rangle}{I} \cdot \left(A_{\beta} \frac{\vec{P}_{e}}{E_{e}} + B_{v} \frac{\vec{P}_{v}}{E_{v}} + D \frac{\vec{P}_{e} \times \vec{P}_{v}}{E_{e}E_{v}} \right) \right]$ $\alpha_{\beta v} = \left[\frac{|M_{F}|^{2} \left(|C_{V}|^{2} + |C'_{V}|^{2} - |C_{S}|^{2} - |C'_{S}|^{2} \right)}{-\frac{1}{3} |M_{GT}|^{2} \left(|C_{A}|^{2} + |C'_{A}|^{2} - |C_{T}|^{2} - |C'_{T}|^{2} \right)} \right] \xi^{-1}$

• General Hamiltonian:

 $H_{int} = \sum_{X = \{V, A, T, S, P\}} (\overline{\psi}_P O_X \psi_n) (C_X \overline{\psi}_e O_X \psi_v + C'_X \overline{\psi}_e O_X \gamma^5 \psi_v)$

Standard Model V-A assumption:

 $C_V = -C'_V = 1$; $C_A = -C'_A = -1.27$

- Decay Rate: $\Gamma dE_{e} d\Omega_{e} d\Omega_{v}$ $\propto \left[1 + \alpha_{\beta v} \frac{\vec{P}_{e} \cdot \vec{P}_{v}}{E_{e} E_{v}} + b \frac{m_{e}}{E_{e}} + \frac{\langle \vec{I} \rangle}{I} \cdot \left(A_{\beta} \frac{\vec{P}_{e}}{E_{e}} + B_{v} \frac{\vec{P}_{v}}{E_{v}} + D \frac{\vec{P}_{e} \times \vec{P}_{v}}{E_{e} E_{v}} \right) \right]$ $\alpha_{\beta v} = \left[\frac{|M_{F}|^{2} \left(|C_{V}|^{2} + |C'_{V}|^{2} - |C_{S}|^{2} - |C'_{S}|^{2} \right)}{|-\frac{1}{3}|M_{GT}|^{2} \left(|C_{A}|^{2} + |C'_{A}|^{2} - |C_{T}|^{2} - |C'_{T}|^{2} \right)} \right] \xi^{-1}$
- Sensitivity to new physics: $\left(\frac{M_W}{M_{New}}\right)^2 \sim A_{CC}$

New Physics in β Decay

Standard Model:

 $H_{\beta} = (\bar{\psi}_n \gamma_{\mu} \psi_p) (C_V \bar{\psi}_e \gamma^{\mu} \psi_{\nu} + C'_V \bar{\psi}_e \gamma^{\mu} \gamma_5 \psi_{\nu})$ $- (\bar{\psi}_n \gamma_{\mu} \gamma_5 \psi_p) (C_A \bar{\psi}_e \gamma^{\mu} \gamma_5 \psi_{\nu} + C'_A \bar{\psi}_e \gamma^{\mu} \psi_{\nu})$ $C_V = C'_V = 1$

$$C_A = C'_A = 1.26$$

A-V vs. Tensor Currents

- Kinematical distributions sensitive to type of current (from a recent measurement of ⁸Li decay):
- Energy distribution of recoiling ion (from two alpha measurement).
- Angle between neutrino and electron.

Resulting Constrain: C_T/C_A < 10% (95% C.L.)

Combined Constraint:

One sentence summery: measuring heavy particles with low energy in very very hard!

- (anti)Neutrino reconstructed from the measured momenta of the recoil system and beta particle.
- Recoil system is heavy and has low energy.
- Angular reconstruction requires well defined vertex
- => Must use traps!
- + Nuclear Uncertainties

Trap (MOT, Dipole, Ion, Electrostatic, ...)

Wait...

Measure Decay Products (β, ion; Scintillators, MCP, ...)

Analyze the Data and Compare to SM Prediction • Well localized vertex

the ion

Isotope selectivity (low backgrounds)

Less interactions

Standard β Decay Experiment

Why Trap?

- Cold and Dilute:
 - No 'smearing' of the ion.
 - Less interactions.
- Well localized vertex.
- Isotope selectivity (low backgrounds). e^{-}

The OLIVIA Experiment

The OLIVIA Experiment

⁸Li
$$\rightarrow e^- + \bar{v}_e + {}^8B(\rightarrow \alpha + \alpha)$$

- Good for theory:
 - Almost pure GT.
 - Light nucleus 'exact' calculations possible.
- Excellent for experiment:
 - Easy to produce using proton / neutron induced reactions.
 - 0.8 sec lifetime.
 - Very high Q-value.
 - Two ~3.5 MeV alphas in the final state.

The Case for ⁸Li

- Goal: High-Statistics High-Precision Measurement of ⁸Li beta decay using a **TPC instead of a trap**
- Reminder: ⁸Li $\rightarrow e^- + \bar{v}_e + {}^8Be(\rightarrow \alpha + \alpha)$
- Steps:
 - Build a TPC with sensitivity to 1 5 MeV Alphas and 1
 16 MeV electrons.
 - Setup a ⁸Li production scheme.
 - Build a ⁸Li Transport system to the TPC.
 - Perform the measurement \odot

MITPC

Little MITPC

- 2.8L
- 0.2 10 MeV nuclear recoil
- 4 months of data at Double Chooz far hall
- Now at MIT for OLIVIA

- 60L
- 0.3 20 MeV nuclear recoil
- 7 months of data at Double Chooz near hall
- Now taking data at FNAL

Event Readout for Alpha Track

Two Alpha Event

Energy Reconstruction

Energy Reconstruction

Adding scintillators to the side of the field cage:

⁸Li Production

⁸Li Production using a DT generator: ¹¹B(n, α)⁸Li

⁸Li Production using a DT generator: ¹¹B(n, α)⁸Li

⁸Li Production using a DT generator: ¹¹B(n, α)⁸Li

Resolution Effects

Nominal resolutions:

2% - Energy, 1° – In-Plane angle, 2° – out-of-plane angle.

Energy resolution is the main issue. Can be improved using:

- lower gas pressure
- larger volume TPC
- Better camera

For "back to back" alphas:

- MITPC is a great, proven, 3D alpha detector!
- Based on the reported SNO rates we can measure 10⁷ decays in 2 - 3 months of data taking.
- Finalizing simulations to optimize the resolutions and extract the expected C_T/C_A sensitivity.
- Initial DT feasibility runs planed for the summer.
- Physics running planed for 2017 (2018).