Charge radii from hydrogen-like muonic atoms - Shedding light on the Proton Radius Puzzle -

Julian J. Krauth

on behalf of the CREMA Collaboration

PSAS conference 2016, Jerusalem

CREMA Collaboration

(Charge Radius Experiment with Muonic Atoms)

Max-Planck-Institut für Quantenoptik, Garching, Germany

M. Diepold, B. Franke, J. Götzfried, T. W. Hänsch, T. Kohlert, J. J. Krauth, F. Mulhauser, T. Nebel and <u>R. Pohl</u>

Institut für Strahlwerkzeuge, Universität Stuttgart, Germany

M. Abdou-Ahmed, T. Graf, A. Voss, B. Weichelt

Institut für Teilchenphysik, ETH Zürich, Switzerland

A. Antognini, F. Kottmann, B. Naar, K. Schuhmann, D. Taqqu

Paul Scherrer Institut, Switzerland

▶ A. J. Dax, M. Hildebrandt, K. Kirch, A. Knecht

LKB, École Supérieure, CNRS, and Université P. et M. Curie, France

▶ F. Biraben, S. Galtier, P. Indelicato, L. Julien, F. Nez, C. Szabo-Foster

LIBPhys, Physics Department, Universidade de Coimbra, Portugal

▶ F. D. Amaro, L. M. P. Fernandes, A. L. Gouvea, J. M. F. dos Santos, J. F. C. A. Veloso

i3N, Universidade de Aveiro, Campus de Santiago, Portugal

D. S. Covita, C. M. B. Monteiro

LIBPhys, Dep. Física, Universidade NOVA de Lisboa, Portugal

P. Amaro, J. Machado, J. P. Santos

Physics Department, National Tsing Hua University, Taiwan

► T.-L. Chen, Y.-W. Liu

Shrinking the proton

$$\begin{split} r_p^{\text{CODATA}} &= 0.8775(51)\,\text{fm} \\ & \Downarrow \\ r_p^{\text{CREMA}} &= 0.84087(39)\,\text{fm} \end{split}$$

- 4% smaller
- \bullet > 10fold precision
- 7σ discrepant

[P. J. Mohr et al., Rev. Mod. Phys. 80, 633-730 (2008)]
 [R. Pohl et al. (CREMA-coll.), Nature 466, 213 (2010)]
 [A. Antognini et al. (CREMA-coll.), Science 339, 417 (2013)]

About the proton radius

The proton radius $r_{\rm p}$ is the

rms charge radius of the proton

which is given by the slope of the electric form factor:

$$r_{\rm p}^2 = -6 \frac{dG_{\rm E}}{dQ^2}\Big|_{Q^2=0} \quad \left(\simeq \int r^2 \rho(r) d^3 r\right)$$
(1)

 r_p is therefore a parameter of the charge distribution of the proton.

Its measurement is necessary for

- understanding the proton
- testing higher order bound-state QED in hydrogen
- checking R_∞
- It can be measured in several ways...

Proton radius from muonic hydrogen (μp)

The Proton Radius Puzzle

Summarizing all *electronic* measurements of r_p (spectroscopy and scattering), yields a 7σ discrepancy to the CREMA measurement.

The Proton Radius Puzzle

Summarizing all *electronic* measurements of r_p (spectroscopy and scattering), yields a 7σ discrepancy to the CREMA measurement.

two-photon exchange (TPE)

TPE in the Lamb shift

TPE in history (huge deviations!!!)

Year	Source	Value [meV]	Uncert.
1992	Fukushima <i>et al.</i>	1.24 + el.	
1994	Lu and Rosenfelder	1.450 + el.	0.060
1995	Leidemann and Rosenfelder	1.500 + el.	0.025
2011	Pachucki	1.680	0.016
2013	Friar (ZRA)	1.941	0.019
2014	TRIUMF/Hebrew group	1.690	0.020
2015	Pachucki and Wienczek	1.717	0.020
2014	Carlson <i>et al.</i>	2.011	0.740
2016	our compiled theory value	1.7096	0.0200

green: modern determinations

Table 3

Deuteron structure contributions to the Lamb shift in muonic deuterium. Values are in meV. For source 4, the N³LO calculation by Hernandez et al. [58] we use their value from the rightmost two columns of their Tab. 3 that differs most from their "AV18" value. Their terms $\delta_{21}^{(1)}$, $\delta_{21}^{(1)}$ and δ_{2em} (Friar term) are not listed because they cancel (see text). Items with a diamond \blacklozenge are corrected from the published values, see footnotes.

Item	Contribution	Pachucki [55] AV18	Friar [60] ZRA	Hernandez et al. [58] AV18 N ³ LO [†]	Pach.& Wienczek [65] AV18	Carlson et al. [64] data	Our choice value source
	Source	1	2	3 4	5	6	
p1	Dipole	$1.910 \delta_0 E$	1.925 Leading C1	$1.907 1.926 \delta_{D1}^{(0)}$	$1.910 \delta_0 E$		$1.9165 \pm 0.0095 = 345$
p2	Rel. corr. to p1, longitudinal part	$-0.035 \delta_R E$	-0.037 Subleading C1	$-0.029 - 0.030 \delta_L^{(O)}$	$-0.026 = \delta_R E$		
p3	Rel. corr. to p1, transverse part			0.012 0.013 $\delta_T^{(0)}$			
p_4	Rel. corr. to p1, higher-order				$0.004 \delta_{HO}E$		
sum	Total rel. corr., p2+p3+p4	-0.035	-0.037	-0.017 -0.017	-0.022		-0.0195 ± 0.0025 3-5
p5	Coulomb distortion, leading	$-0.255 \delta_{C1}E$			$-0.255 \delta_{C1}E$		
p6	Coul. distortion, next order	$-0.006 = \delta_{C2}E$			$-0.006 = \delta_{C2}E$		
sum	Total Coulomb distortion, p5+p6	-0.261		$-0.262 - 0.264 \delta_C^{(0)}$	-0.261		-0.2625 ± 0.0015 3-5
p7	El. monopole excitation	$-0.045 \delta_{Q0}E$	-0.042 C0	-0.042 -0.041 $\delta^{(2)}_{R2}$	$-0.042 = \delta_{Q0}E$		
p8	El. dipole excitation	$0.151 = \delta_{Q1}E$	0.137 Retarded C1	$0.139 0.140 \delta^{(2)}_{D1D3}$	$0.139 = \delta_{Q1}E$		
p9	El. quadrupole excitation	$-0.066 \delta_{Q2}E$	-0.061 C2	-0.061 -0.061 $\delta_Q^{(2)}$	$-0.061 \delta_{Q2}E$		
sum	Tot. nuclear excitation, p7+p8+p9	0.040	0.034 C0 + ret-C1 + C2	0.036 0.038	0.036		0.0360 ± 0.0020 2-5
p10	Magnetic	-0.008 $\diamond a$ $\delta_M E$	-0.011 M1	$-0.008 -0.007 \delta_M^{(0)}$	$-0.008 \delta_M E$		-0.0090 ± 0.0020 2-5
SUM_1	Total nuclear (corrected)	1.646	1.648 *	1.656 1.676	1.655		1.6615 ± 0.0103
p11	Finite nucleon size		0.021 Retarded C1 f.s.	0.020° 0.021° $\delta_{NS}^{(2)}$	$0.020 \delta_{FS}E$		
p12	n p charge correlation		-0.023 pn correl. f.s.	$-0.017 -0.017 \delta_{nx}^{(1)}$	$-0.018 \delta_{FZ}E$		
sum	p11+p12		-0.002	0.003 0.004	0.002		0.0010 ± 0.0030 2-5
p13	Proton elastic 3rd Zemach moment	0.043(3) AnE	$0.030 \langle r^3 \rangle_{(2)}^{PP}$		0.043(3) AnE		$0.0289 \pm 0.0015 \text{ Eq.}(13)^d$
p14	Proton inelastic polarizab.]		0.027(2) 4 ^N (e.4)	1	Lo operation A printer	10.0380 ± 0.0030 6
p15	Neutron inelastic polarizab.			∫ 0.0±1(±) 0 _{pol} [04]	$0.016(8) \delta_N E$	∫ ^{0.020(2)} ∆E	J 0.0280 ± 0.0020 0
p16	Proton & neutron subtraction term						$-0.0098 \pm 0.0098 \text{ Eq.}(15)^{\circ}$
sum	Nucleon TPE, p13+p14+p15+p16	0.043(3)	0.030	0.027(2)	0.059(9)		0.0471 ± 0.0101 ^f
SUM_2	Total nucleon contrib.	0.043(3)	0.028	0.030(2)	0.061(9)		0.0476 ± 0.0105
	Sum, published	1.680(16)	1.941(19)	1.690(20)	1.717(20)	2.011(740)	
	Sum, corrected		1.697(19) 4	1.714(20) ^A	1.707(20) ⁱ	$1.748(740)^{j}$	1.7096 ± 0.0147

^aCorrected from -0.016 meV, see Ref. [65] below Eq. (45).

^bThe Coulomb distortion contribution p5+p6 of -0.263 meV (our choice) has been added to Friar's sum of 1.911 meV to make the numbers comparable.

^dRescaled from the muonic hydrogen values from Refs. [66, 74]. See text.

"Rescaled from the muonic hydrogen value from Ref. [74]. See text.

⁹Corrections: p5+p6, p14+p15+p16. Items p3+p4 (higher-order corr. to p1) would increase this value by another ~ 0.015 meV.

^bCorrections: p13, p16. Item p11 updated from 0.015 meV ^c.

^jCorrections: p5+p6.

J.J. Krauth

181

^cCorrected from +0.015 meV [70, 71].

[/]See text.

^{&#}x27;Correction: p16.

Table 3

Deuteron structure contributions to the Lamb shift in muonic deuterium. Values are in meV. For source 4, the N³LO calculation by Hernandez et al. [58] we use their value from the rightmost two columns of their Tab. 3 that differs most from their "AV18" value. Their terms $\xi_{21}^{(1)}$, $\xi_{23}^{(1)}$, and ξ_{2em} (Friar term) are not listed because they cancel (see text). Items with a diamond \blacklozenge are corrected from the published values, see footnotes.

Item	Contribution	Pachucki [55]		Pachucki [55] Friar [60]		Hernandez et al. [58]		Pach.& Wienczek [65]		Carlson et al. [64]	Our choice			
		AV18		ZRA		AV18	N ³ LO [†]		AV18		data		value	source
	Source	1		2		3	4		5		6			
p1	Dipole	1.910	$\delta_0 E$	1.925	Leading C1	1.907	1.926	$\delta_{D1}^{(0)}$	1.910	$\delta_0 E$		1.9165	± 0.0095	3-5
p2	Rel. corr. to p1, longitudinal part	-0.035	$\delta_R E$	-0.037	Subleading C1	-0.029	-0.030	$\delta_L^{(0)}$	-0.026	$\delta_R E$				
p3	Rel. corr. to p1, transverse part					0.012	0.013	$\delta_T^{(0)}$						
p4	Rel. corr. to p1, higher-order								0.004	$\delta_{HO}E$				
sum	Total rel. corr., p2+p3+p4	-0.035		-0.037		-0.017	-0.017		-0.022			-0.0195	± 0.0025	3-5
p5	Coulomb distortion, leading	-0.255	$\delta_{C1}E$						-0.255	$\delta_{C1}E$				
p6	Coul. distortion, next order	-0.006	$\delta_{C2}E$						-0.006	$\delta_{C2}E$				
sum	Total Coulomb distortion, p5+p6	-0.261				-0.262	-0.264	$\delta_C^{(0)}$	-0.261			-0.2625	\pm 0.0015	3-5
								(2)						

limiting factors of accuracy: dipole term, subtraction term

SUM_1	Total nuclear (corrected)	1.646	1.648 *	1.656 1.676	1.655		1.6615 ± 0.0103	
p11	Finite nucleon size		0.021 Retarded C1 f.s.	$0.020^{\circ} = 0.021^{\circ} \delta_{NS}^{(2)}$	$0.020 = \delta_{FS}E$			
p12	n p charge correlation		-0.023 pn correl. f.s.	$-0.017 -0.017 \delta_{np}^{(1)}$	$-0.018 \delta_{FZ}E$			
sum	p11+p12		-0.002	0.003 0.004	0.002		0.0010 ± 0.0030	2-5
p13	Proton elastic 3rd Zemach moment	0.043(3) AnE	$0.030 \ \langle r^3 \rangle_{(2)}^{pp}$		0.043(3) AnE		0.0289 ± 0.0015	Eq.(13) ^d
p14	Proton inelastic polarizab.]		0.007/0) 4 ^N (e.i)	1	Lo operation A month	10.0280 + 0.0020	6
p15	Neutron inelastic polarizab.			∫ 0.0±1(±) 0 _{pol} [04]	$0.016(8) \delta_N E$	1 (0.020(2) DE	J 0.0280 ± 0.0020	0
p16	Proton & neutron subtraction term						-0.0098 ± 0.0098	$Eq.(15)^{\circ}$
sum	Nucleon TPE, p13+p14+p15+p16	0.043(3)	0.030	0.027(2)	0.059(9)		0.0471 ± 0.0101	1
SUM.2	Total nucleon contrib.	0.043(3)	0.028	0.030(2)	0.061(9)		0.0476 ± 0.0105	
	Sum, published	1.680(16)	1.941(19)	1.690(20)	1.717(20)	2.011(740)		
	Sum, corrected		1.697(19) *	1.714(20) ^A	1.707(20) ⁱ	$1.748(740)^{j}$	1.7096 ± 0.0147	

^oCorrected from -0.016 meV, see Ref. [65] below Eq. (45).

^bThe Coulomb distortion contribution p5+p6 of -0.263 meV (our choice) has been added to Friar's sum of 1.911 meV to make the numbers comparable.

^dRescaled from the muonic hydrogen values from Refs. [66, 74]. See text.

"Rescaled from the muonic hydrogen value from Ref. [74]. See text.

⁹Corrections: p5+p6, p14+p15+p16. Items p3+p4 (higher-order corr. to p1) would increase this value by another ~ 0.015 meV.

^bCorrections: p13, p16. Item p11 updated from 0.015 meV ^c.

^jCorrections: p5+p6

181

^cCorrected from +0.015 meV [70, 71].

[/]See text.

^{&#}x27;Correction: p16.

TPE in the Lamb shift

extract TPE from muonic data:

- 3 measured transitions, 2 fit parameters (LS, 2S HFS)
- $\Delta E_{\text{LS}} = \Delta E_{\text{QED}} + \Delta E_{\text{fin.size}} (\text{coeff} \times r_{\text{d}}^2) + \Delta E_{\text{TPE}}^{\text{LS}}$

use

- $r_{\rm p}(\mu{\rm p}) = 0.84087(39)\,{\rm fm}$
- electronic iso-shift: $r_{\rm d}^2 r_{\rm p}^2 = 3.82007(65)\,{\rm fm}^2$

 $\rightarrow r_{\rm d}(\mu p + i s o)$

insert deuteron radius in Lamb shift and extract TPE.

TPE in the Lamb shift

TPE in history (huge deviations!!!)

Year	Source	Value [meV] Uncert.
1992	Fukushima <i>et al.</i>	1.24 + el.
1994	Lu and Rosenfelder	$1.450 + el. \ 0.060$
1995	Leidemann and Rosenfelder	$1.500 + el. \ 0.025$
2011	Pachucki	1.680 0.016
2013	Friar (ZRA)	1.941 0.019
2014	TRIUMF/Hebrew group	1.690 0.020
2015	Pachucki and Wienczek	1.717 0.020
2014	Carlson <i>et al.</i>	2.011 0.740
2016	our theory value	1.7096 0.0200
2016	our exp. value	1.7638 0.0068

green: modern determinations

TPE in 2S HFS

- estimated by Faustov *et al.*, PRA90, 012520 (2014): 0.2226(49) meV (3.5% of total 2S HFS) single-sourced!!!
- using

 $\Delta E_{\rm HFS} = \Delta E_{\rm QED} + \Delta E_{\rm Zemach}(\textit{coeff} \times \textit{r}_{\rm Z}) + \Delta E_{\rm TPE}^{\rm HFS}$ and

current deuterium theory, the Sick Zemach radius, and the μ d measurements, we get:

$$\Delta E_{\rm TPE}^{\rm HFS} = 0.2178(74)\,{\rm meV}$$

[R. Pohl et al. (CREMA-coll.), submitted]

 \rightarrow Agreement in 2S HFS!

experimental results

the size of the deuteron

$\rightarrow~7.5\sigma$ deviation between $r_{\rm d}(\mu{\rm d})$ and CODATA-2010.

[R. Pohl et al. (CREMA-coll.), Measurement of the deuteron charge radius, submitted]

the size of the deuteron

\rightarrow 7.5 σ deviation between r_d(μ d) and CODATA-2010.

[R. Pohl et al. (CREMA-coll.), Measurement of the deuteron charge radius, submitted]

the size of the deuteron

 \rightarrow 7.5 σ deviation between r_d(μ d) and CODATA-2010.

[R. Pohl et al. (CREMA-coll.), Measurement of the deuteron charge radius, submitted]

theory

- $\mu^4 \text{He}^+$ theory summary (Diepold *et al.*, to be submitted)
 - main sources of uncertainty: polarizability contributions
 - nuclear Friar-moment, 77 μeV
 - inelastic nuclear polarizability contribution, 100 μeV
 - proton Friar-moment, $28 \,\mu\text{eV}$
 - inelastic nucleon polarizability contribution, 97 μeV
 - proton-neutron subtraction term, 86 $\mu \mathrm{eV}$
 - + Lamb shift (without pol.) and Fine Structure, each ${\leq}\,16\,\mu{\rm eV}$
 - experimental uncertainty, 48 μeV

theory

- $\mu^4 \text{He}^+$ theory summary (Diepold *et al.*, to be submitted)
 - main sources of uncertainty: polarizability contributions
 - nuclear Friar-moment, 77 μeV

proton i nui moment, $20\,\mu$

• inelastic nuclear polarizability contribution, $100 \,\mu {
m eV}$

Special thanks to Ji et al.!

- inelastic nucleon polarizability contribution, 97 μeV
- proton-neutron subtraction term, 86 $\mu \mathrm{eV}$
- + Lamb shift (without pol.) and Fine Structure, each ${\leq}\,16\,\mu{\rm eV}$
- experimental uncertainty, 48 μeV

preliminary experimental results

previous measurements / predictions

- agrees with e-p scattering value of $1.681(4)\,{\rm fm}$
- previous Zavattini value (CERN) was disproved, $>5\sigma$ off
- radii from Zavattini and CREMA do not differ a lot: incomplete theory cancels wrong measurement

theory

- μ^3 He⁺ theory summary (Franke *et al.*, in preparation)
 - main sources of uncertainty: polarizability contributions
 - nuclear Friar-moment, 190 $\mu \mathrm{eV}$
 - inelastic nuclear polarizability contribution, 160 μeV
 - nucleon Friar-moment, $26 \,\mu {\rm eV}$
 - inelastic nucleon polarizability contribution, $123\,\mu\mathrm{eV}$
 - TPE contributions to 2S HFS not calculated yet! (needed for extraction of the Zemach radius)
 - experimental uncertainty similar to helium-4.

theory

- $\mu^3 \text{He}^+$ theory summary (Franke *et al.*, in preparation)
 - main sources of uncertainty: polarizability contributions

Special thanks to Nevo Dinur *et al.*!

(first *ab initio* calc. of nucl. struc. in μ^3 He)

- nucleon Friar-moment, $26 \,\mu {\rm eV}$
- inelastic nucleon polarizability contribution, $123\,\mu\mathrm{eV}$
- TPE contributions to 2S HFS not calculated yet! (needed for extraction of the Zemach radius)
- experimental uncertainty similar to helium-4.

eV

very preliminary

very preliminary

very preliminary

very preliminary

helium isotope shift

value from re-evaluated theory in

- * Cancio Pastor et al., PRL 108, 143001 (2012)
- ** Pachucki et al., PRA 85, 042517 (2012)

Current situation and outlook

- proton smaller (Pohl et al. Nature 2010, Antognini et al. Science 2013)
- deuteron smaller (Pohl et al. (CREMA), submitted)
- r_{α} agrees with e^- -scattering
- analysis of helium-3 nearly finished, theory still incomplete
- give an independent value for the helium isotope shift
- extract polarizability in 2S HFS of μ^3 He
- more experiments to come: H(2S-4P), H(2S-2P), MUSE, He⁺, μ p(HFS), ISR, PRAD, and many more

Thank you for your attention!

