

Nucleon Form Factors at the (M)EIC/MeRHIC

Guy Ron Nuclear Science Division Lawrence Berkeley Lab

EIC Workshop Rutgers University Mar. 14, 2010

Nuc

Happy π Day

tthe

OUTLINE

- Form Factors 101.
- High Q²
 - Motivation
 - Possibilities
- Low Q²
 - Motivation
 - Possibilities
- Summary

$$\frac{d\sigma_R}{d\Omega} = \frac{\alpha^2}{Q^2} \left(\frac{E'}{E}\right)^2 \frac{\cot^2\frac{\theta_e}{2}}{1+\tau}$$

Rutherford - Point-Like

$$\tau = \frac{Q^2}{4M^2}, \ \varepsilon = \left[1 + 2(1+\tau)\tan^2\frac{\theta_e}{2}\right]^{-1}$$

$$\frac{d\sigma_R}{d\Omega} = \frac{\alpha^2}{Q^2} \left(\frac{E'}{E}\right)^2 \frac{\cot^2\frac{\theta_e}{2}}{1+\tau} \qquad \text{Rutherford - Point-Like}$$

$$\frac{d\sigma_M}{d\Omega} = \frac{d\sigma_R}{d\Omega} \times \left[1 + 2\tau \tan^2\frac{\theta}{2}\right] \qquad \text{Mott - Spin-1/2}$$

$$\tau = \frac{Q^2}{4M^2}, \ \varepsilon = \left[1 + 2(1+\tau)\tan^2\frac{\theta_e}{2}\right]^{-1}$$

$$\frac{d\sigma_R}{d\Omega} = \frac{\alpha^2}{Q^2} \left(\frac{E'}{E}\right)^2 \frac{\cot^2 \frac{\theta_e}{2}}{1+\tau}$$

Rutherford - Point-Like

$$\frac{d\sigma_M}{d\Omega} = \frac{d\sigma_R}{d\Omega} \times \left[1 + 2\tau \tan^2\frac{\theta}{2}\right] \qquad \text{Mott - Spin-1/2}$$

$$\frac{d\sigma_{Str}}{d\Omega} = \frac{d\sigma_{M}}{d\Omega} \times \left[G_{E}^{2}(Q^{2}) + \frac{\tau}{\varepsilon}G_{M}^{2}(Q^{2})\right] \quad \begin{array}{l} \text{Rosenbluth -} \\ \text{Spin-1/2 with} \end{array}$$

Structure

$$\tau = \frac{Q^2}{4M^2}, \ \varepsilon = \left[1 + 2(1+\tau)\tan^2\frac{\theta_e}{2}\right]^{-1}$$

$$G_E^p(0) = 1$$
 $G_E^n(0) = 0$

$$G_M^p = 2.793$$
 $G_M^n = -1.91$

Sometimes
$$G_E = F_1 - \tau F_2$$

$$G_M = F1 + F_2$$

$$\frac{d\sigma_R}{d\Omega} = \frac{\alpha^2}{Q^2} \left(\frac{E'}{E}\right)^2 \frac{\cot^2 \frac{\theta_e}{2}}{1+\tau}$$

$$\frac{d\sigma_M}{d\Omega} = \frac{d\sigma_R}{d\Omega} \times \left[1 + 2\tau \tan^2 \frac{\theta}{2} \right]$$

Everything we don't know goes here!

$$\frac{d\sigma_{Str}}{d\Omega} = \frac{d\sigma_{M}}{d\Omega} \times \left[G_{E}^{2}(Q^{2}) + \frac{\tau}{\varepsilon}G_{M}^{2}(Q^{2})\right] \quad \begin{array}{l} \text{Rosenbluth -} \\ \text{Spin-1/2 with} \end{array}$$

Structure

$$\tau = \frac{Q^2}{4M^2}, \ \varepsilon = \left[1 + 2(1+\tau)\tan^2\frac{\theta_e}{2}\right]^{-1}$$

$$G_E^p(0) = 1$$
 $G_E^n(0) = 0$

$$G_M^p = 2.793$$
 $G_M^n = -1.91$

Sometimes
$$G_E = F_1 - \tau F_2$$

$$G_M = F1 + F_2$$

Rosenbluth Separation

$$\sigma_R = (d\sigma/d\Omega)/(d\sigma/d\Omega)_{\text{Mott}} = \tau G_M^2 + \varepsilon G_E^2$$

- Measure the reduced cross section at several values of ϵ (angle/beam energy combination) while keeping Q2 fixed.
- Linear fit to get intercept and slope.
- But... G_M suppressed for low Q² (and G_E for high).
- Also normalization issues/ acceptance issues/etc. make it hard to get high precision.

Recoil Polarization

(Secondary scattering of nucleon)

$$I_0 P_t = -2\sqrt{\tau (1+\tau)} G_E G_M \tan \frac{\theta_e}{2}$$

$$I_0 P_l = \frac{E_e + E_{e'}}{M} \sqrt{\tau (1+\tau)} G_M^2 \tan^2 \frac{\theta_e}{2}$$

$$P_n = 0 (1\gamma)$$

$$\mathcal{R} \equiv \mu_p \frac{G_E}{G_M} = -\mu_p \frac{P_t}{P_l} \frac{E_e + E_{e'}}{2M} \tan \frac{\theta_e}{2}$$

- · A single measurement gives ratio of form factors.
- Interference of "small" and "large" terms allow measurement at practically all values of Q².

$$\mathcal{A} = P_b P_t \frac{\overbrace{a \cos \theta^* G_M^2 + b \sin \theta^* \cos \phi^* G_E G_M}^{A_{LT}}}{cG_M^2 + dG_E^2}$$

Measure asymmetry at two different target settings, say $\theta^*=0$, 90. Ratio of asymmetries gives ratio of form factors. Functionally identical to recoil polarimetry measurements.

Measure asymmetry at two different target settings, say $\theta^*=0$, 90. Ratio of asymmetries gives ratio of form factors. Functionally identical to recoil polarimetry measurements.

Canceling (some of) the uncertainties

$$\mathcal{A} = P_b P_t \underbrace{a \cos \theta^* G_M^2 + b \sin \theta^* \cos \phi^* G_E G_M}^{A_{LT}} cG_M^2 + dG_E^2$$

Measure asymmetry at two different target settings, say $\theta^*=0$, 90. Ratio of asymmetries gives ratio of form factors. Functionally identical to recoil polarimetry measurements.

Canceling (some of) the uncertainties

$$\mathcal{A} = P_b P_t \frac{\overbrace{a \cos \theta^* G_M^2 + b \sin \theta^* \cos \phi^* G_E G_M}^{A_{LT}}}{cG_M^2 + dG_E^2}$$

Simultaneous measurement with two different values of θ^* . Ratio of asymmetries related to FF ratio and cancels systematics.

$$\frac{G_E}{G_M} = -\frac{a(\tau, \theta_e) \cos \theta_1^* - \Gamma a(\tau, \theta_e) \cos \theta_2^*}{\cos \phi_1^* \sin \theta_1^* - \Gamma \cos \phi_2^* \sin \phi_2^2}$$
$$a(\tau, \theta_e) = \sqrt{\tau (1 + (1 + \tau) \tan^2(\theta_e/2))}$$
$$\Gamma = \mathcal{A}_1/\mathcal{A}_2$$

Set p beam polarization to intermediate angle such that $\theta_1^* \neq \theta_2^*$.

Getting GE & GM from Ratios + Cross Sections

Cross section at high/low Q² dominated by one term (Rosenbluth separation not feasible).

Ratio gives second equation

→ Can now solve 2 equations in two variables to get both Ffs. Multiple cross section measurements at the same Q² give cross check.

$$\sigma_R = \tau G_M^2 + \varepsilon G_E^2$$

$$\mathcal{R} = \mu \frac{G_E}{G_M}$$

$$\sigma_R = \tau G_M^2 + \varepsilon \frac{G_M^2 \mathcal{R}^2}{\mu^2}$$

$$G_M^2 = \sigma_R / (\tau + \varepsilon \mathcal{R}^2 / \mu^2)$$

G. Ron et al., Phys. Rev. Lett. 99, 202002 (2007)

High Q² Measurements

The high Q² discrepancy

• At high Q² Rosenbluth and polarization measurements for the proton are in violent disagreement.

• Almost certainly explained by multi-γ effects.

"As $G_E=F_1 - \tau F_2$, it is a priori quite likely that G_E becomes negative for large values of k^2 " - N. Dombey, Rev. Mod. Phys. 41, 1 (1969). - Not supported by new results.

The high Q² discrepancy

12 Gev GMP @JLab

12 Gev Gmn @JLab

Prospects for High Q2 ep with EIC

- 3GeV Electron + 30 GeV Proton.
- $\mathcal{L} = 10^{34} \text{ cm}^{-1} \text{ sec}^{-1}$.
- Full angular (ϕ) detector coverage.
- $\Delta Q^2/Q^2 = 0.1$.

Systematics Limited					Statistics Limited		
Q^2 (GeV ²)	10	20	30	40	50	60	
θe	56.25	74.97	87.28	96.4	103.6	109.5	
θ_{P}	6.12	8.77	10.9	12.76	14.5	16.1	
E' _e	3.74	4.5	5.24	6	6.74	7.5	
\mathcal{E}_{p}^{\prime}	28.3	27.56	26.81	26.06	25.31	24.56	
Events / year	186000	7300	1000	250	80	30	
$(\Delta \sigma / \sigma)_{stat}$	0.2%	1.2%	3.1%	6.3%	11.2%	18.2%	
$(\Delta A/A)_{stat}$	0.3%	1.6%	4.4%	9%	15.8%	25.8%	

Prospects for High Q2 ep with EIC

Asymmetry as a function of proton polarization angle for $Q^2 = 10 \text{ GeV}^2$

Systematic uncertainty in asymmetry as a function of proton polarization angle for $Q^2=10~{\rm GeV}^2$. $\Delta\theta_{\rm pol}=5^{\circ}$

Low Q² Measurements

Why Low Q2?

- Deviations from dipole form evident.
- Probe static properties $(Q^2 \rightarrow 0)$ and peripheral structure.
- Small Q² does not allow for pQCD, many competing EFTs.
- Hitting the π mass region (2π cut in Pauli/Dirac FFs).
- Potentially impacts many high precision measurements (nucleon GPDs, parity violation, Zemach radius,...).

Some Models

VMD

 $F(Q^2) = \Sigma \frac{C_{\gamma V_i}}{Q^2 + M_{V_i}^2} F_{V_i N}(Q^2)$ Breaks down at high Q^2

Lattice QCD (not really a model)

RCQM

Point Form Light Front

di-Quark

CBM/LFCBM

PQCD

Helicity Conservation

Counting rules $\frac{Q^2F_2}{F_1} o ext{Constant}$

State of the Art

• Rosenbluth:

- Mainz has concluded a high precision cross section survey.
- Measured cross sections downto Q² ≈0.01GeV².

• Polarization Data (FF Ratio):

- Bates BLAST (Beam-Target Asymmetry) Q² = 0.16 − 0.6 GeV²,
 C. B. Crawford et al., Phys. Rev. Lett. 98, 052301 (2007).
- JLab LEDEX (Recoil Polarization) Q² =0.22–0.5 GeV², G. Ron et al., Phys. Rev. Lett. 99, 202002 (2007).
- JLab E08007 Part I (Recoil Polarization) $Q^2 = 0.25 0.7 \text{ GeV}^2$ (Very high precision), X. Zhan PhD Thesis.
- JLab E08007 Part II (Beam-Target Asymmetry) $Q^2 = 0.01 0.4$ GeV² (Very high precision) Tentative 2012.
- Strong deviation fron unity at low Q².
- Attributed to $G_{Ep} \langle G_D$.

State of the Art

Low/High @2 Data Matching

Low/High Q² Data Matching

State of the Art

- Proton polarimetery not feasible for high proton beam energies $(T_p \sim T_{p'})$.
- Very forward scattered electron.
- Luminosity drop significantly when lowering beam energies.
- Cross section measurement gives essentially G_E (charge radius).
- But.... Statistics not an issue.
- Limiting factor is systematic uncertainties (in particular proton beam polarization direction).

Q^2 (GeV ²)	10-4	5.10-4	10-3	5·10 ⁻³	0.01
θe	0.19	0.427	0.6	1.35	1.9
X5 (cm ⁻²)	2.60E-23	1.00E-24	2.50E-25	1.00E-26	2.50E-27
Rate (Hz)	9.1	1.75	0.875	0.175	0.0875
T _{0.5%} (hr)	1.22	6.35	12.7	63.5	127

- $\Delta Q^2/Q^2 = 0.01$.
- Assuming "CDF Style" roman pots detectors 1m from intersection point.
- Smallest possible angle
 ~0.2deg.
- Lowest possible Q² ~10⁻⁴ GeV².
- Uncertainties always dominated by systematics -In particular proton beam polarization direction.

Asymmetry as a function of Q^2 ($\theta_{pol} = 45$).

Asymmetry as a function of electron beam energy ($Q^2=0.001~{\rm GeV}^2$, $\theta_{\rm pol}=45$).

Lower beam energy is better.

Electron angle as a function of electron beam energy.

Lower beam energy is better. Negligible effect from proton beam energy.

q-vector angle as a function of Q^2 .

Since for low $Q^2 \theta_q \sim 90$ deg, need intermediate θ polarization.

• Possible fix for beam polarization direction uncertainty \rightarrow Calibrate polarization direction online using measured intermediate Q^2 values.

Q^2 (GeV^2)	10-4	5.10-4	10-3	5·10 ⁻³	0.01	0.3	0.5
θe	0.19	0.427	0.6	1.35	1.9	10.43	13.45
X5 (cm ⁻²)	2.60E-23	1.00E-24	2.50E-25	1.00E-26	2.50E-27	1.00E-30	2.30E-31
Rate (4/z)	9.1	1.75	0.875	0.175	0.0875	3.25	1.13
T _{0.5%} (hr)	1.22	6.35	12.7	63.5	127		

Measurable online using standard "barrel" detector. High precision FF ratio data available.

1% uncertainty on FFR \rightarrow 0.1 uncertainty on θ_B (at 10 degrees)

What it could look like....

SUMMARY

- EIC feasible for both high and low Q^2 measurements.
- Both ratio of FFs and cross section can (in principle) be simultaneously measured, giving individual form factors.
- Luminosity not an issue for low Q^2 measurements better with lower electron beam energy.
- For High Q^2 we need $L^{-10^{34}}$ sec⁻¹ cm⁻².
- Primary concerns:
 - Polarization direction uncertainty for proton beam.
 - Design of "roman pot" style detector for small angles.
- Other things I'd like to see:
 - Polarized positrons for multi-y studies.
 - Polarized D, ³He, ⁷Li (compare quasi-free/elastic ep):
 - Is D really p+n?
 - Is 3He(pol) really n(pol)?