

Nucleon Form Factors at the (M)EIC/MeRHIC

Guy Ron
Nuclear Science Division
Lawrence Berkeley Lab

5-10 GeV electron ring recirculating linac
EIC Workshop Rutgers University Mar. 14, 2010

OUTLINE

- Form Factors 101.
- High Q ${ }^{2}$
- Motivation
- Possibilities
- Low Q ${ }^{2}$
- Motivation
- Possibilities
- Summary

Electron Scattering Cross-Section ($1-\gamma$)

$$
\frac{d \sigma_{R}}{d \Omega}=\frac{\alpha^{2}}{Q^{2}}\left(\frac{E^{\prime}}{E}\right)^{2} \frac{\cot ^{2} \frac{\theta_{e}}{2}}{1+\tau}
$$

Rutherford - Point-Like

$$
\tau=\frac{Q^{2}}{4 M^{2}}, \varepsilon=\left[1+2(1+\tau) \tan ^{2} \frac{\theta_{e}}{2}\right]^{-1}
$$

Electron Scattering Cross-Section ($1-\gamma$)

$$
\frac{d \sigma_{R}}{d \Omega}=\frac{\alpha^{2}}{Q^{2}}\left(\frac{E^{\prime}}{E}\right)^{2} \frac{\cot ^{2} \frac{\theta_{e}}{2}}{1+\tau}
$$

Rutherford - Point-Like

$$
\frac{d \sigma_{M}}{d \Omega}=\frac{d \sigma_{R}}{d \Omega} \times\left[1+2 \tau \tan ^{2} \frac{\theta}{2}\right]
$$

Mott - Spin-1/2

$$
\tau=\frac{Q^{2}}{4 M^{2}}, \varepsilon=\left[1+2(1+\tau) \tan ^{2} \frac{\theta_{e}}{2}\right]^{-1}
$$

Electron Scattering Cross-Section ($1-\gamma$)

$$
\begin{aligned}
& \frac{d \sigma_{R}}{d \Omega}=\frac{\alpha^{2}}{Q^{2}}\left(\frac{E^{\prime}}{E}\right)^{2} \frac{\cot ^{2} \frac{\theta_{c}}{2}}{1+\tau} \quad \text { Rutherford - Point-Like } \\
& \frac{d \sigma_{M}}{d \Omega}=\frac{d \sigma_{R}}{d \Omega} \times\left[1+2 \tau \tan ^{2} \frac{\theta}{2}\right] \quad \text { Mott-Spin-1/2 } \\
& \frac{d \sigma_{S t r}}{d \Omega}=\frac{d \sigma_{M}}{d \Omega} \times\left[G_{E}^{2}\left(Q^{2}\right)+\frac{\tau}{\varepsilon} G_{M}^{2}\left(Q^{2}\right)\right] \begin{array}{l}
\text { Rosenbluth- } \\
\text { Spin-1/2 with } \\
\text { Structure }
\end{array} \\
& \tau=\frac{Q^{2}}{4 M^{2}, \varepsilon=\left[1+2(1+\tau) \tan ^{2} \frac{\theta_{e}}{2}\right]^{-1}} \\
& G_{E}^{p}(0)=1 \quad G_{E}^{n}(0)=0 \\
& G_{M}^{p}=2.793 \quad G_{M}^{n}=-1.91 \\
& \text { Sometimes } \quad G_{E}=F_{1}-\tau F_{2} \\
& \text { written using: } \quad G_{M}=F 1+F_{2}
\end{aligned}
$$

Electron Scattering Cross-Section ($1-\gamma$)

$$
\frac{d \sigma_{R}}{d \Omega}=\frac{\alpha^{2}}{Q^{2}}\left(\frac{E^{\prime}}{E}\right)^{2} \frac{\cot ^{2} \frac{\theta_{c}}{2}}{1+\tau} \quad \text { Everything we don't }
$$

$$
\frac{d \sigma_{M}}{d \Omega}=\frac{d \sigma_{R}}{d \Omega} \times\left[1+2 \tau \tan ^{2} \frac{\theta}{2}\right]
$$

$$
d \sigma_{S t r}=\frac{d \sigma_{M}}{} \times\left[G_{2}^{2}\left(O^{2}\right)+\tau G_{2}^{2}\left(O^{2}\right)\right] \text { Rosenbluth - }
$$

Spin-1/2 with
Structure

$$
\tau=\frac{Q^{2}}{4 M^{2}}, \varepsilon=\left[1+2(1+\tau) \tan ^{2} \frac{\theta_{\varepsilon}}{2}\right]^{-1}
$$

$$
G_{E}^{p}(0)=1 \quad G_{E}^{n}(0)=0
$$

$$
G_{M}^{p}=2.793 \quad G_{M}^{n}=-1.91
$$

sometimes $\quad G_{E}=F_{1}-\tau F_{2}$ written using: $\quad G_{M}=F 1+F_{2}$

Measurement Techniques

Rosenbluth Separation

$$
\sigma_{R}=(d \sigma / d \Omega) /(d \sigma / d \Omega)_{\mathrm{Mott}}=\tau G_{M}^{2}+\varepsilon G_{E}^{2}
$$

- Measure the reduced cross section at several values of ε (angle/beam energy combination) while keeping Q2 fixed.
- Linear fit to get intercept and slope.
- But... G_{M} suppressed for low Q^{2} (and G_{E} for high).
- Also normalization issues/ acceptance issues/etc. make it hard to get high precision.

Measurement Techniques

Recoíl Polarization (secondary scattering of nucleon)

$$
\begin{gathered}
I_{0} P_{t}=-2 \sqrt{\tau(1+\tau)} G_{E} G_{M} \tan \frac{\theta_{e}}{2} \\
I_{0} P_{l}=\frac{E_{e}+E_{e^{\prime}}}{M} \sqrt{\tau(1+\tau)} G_{M}^{2} \tan ^{2} \frac{\theta_{e}}{2} \\
P_{n}=0(1 \gamma)
\end{gathered}
$$

$$
\mathcal{R} \equiv \mu_{p} \frac{G_{E}}{G_{M}}=-\mu_{p} \frac{P_{t}}{P_{l}} \frac{E_{e}+E_{e^{\prime}}}{2 M} \tan \frac{\theta_{e}}{2}
$$

- A single measurement gives ratio of form factors.
- Interference of "small" and "large" terms allow measurement at practically all values of Q^{2}.

Measurement Techniques

Beam-Target Asymmetry (Polarized Beam Polarized Target) Polarized Cross Section: $\sigma=\Sigma+h \Delta$

$$
\mathcal{A}=\frac{\sigma_{+}-\sigma_{-}}{\sigma_{+}+\sigma_{-}}
$$

$\sigma=\Sigma h \Delta$

$$
\mathcal{A}=P_{b} P_{t} \frac{\overbrace{\frac{\cos \theta^{*} G_{M}^{2}}{A_{T}}+\overbrace{b \sin \theta^{*} \cos \phi^{*} G_{E} G_{M}}^{A_{L}}}^{c G_{M}^{2}+d G_{E}^{2}}}{A_{L T}}
$$

Measure asymmetry at two different target settings, say $\theta^{*}=0,90$. Ratio of asymmetries gives ratio of form factors. Functionally identical to recoil polarimetry measurements.

Measurement Techniques

Beam-Target Asymmetry (Polarized Beam Polarized Target) Polarized Cross Section: $\sigma=\Sigma+h \Delta$

$$
\mathcal{A}=\frac{\sigma_{+}-\sigma_{-}}{\sigma_{+}+\sigma_{-}}
$$

Relevant for EIC

$$
\mathcal{A}=P_{b} P_{t} \frac{\overbrace{a \cos \theta^{*} G_{M}^{2}}+\overbrace{b \sin \theta^{*} \cos \phi^{*} G_{E} G_{M}}}{c G_{M}^{2}+d G_{E}^{2}}
$$

Measure asymmetry at two different target settings, say $\theta^{*}=0,90$. Ratio of asymmetries gives ratio of form factors. Functionally identical to recoil polarimetry measurements.

Canceling (some of) the uncertainties

Beam-Target Asymmetry

$$
\mathcal{A}=\frac{\sigma_{+}-\sigma_{-}}{\sigma_{+}+\sigma_{-}}
$$

(Polarized Beam Polarized Target) Polarized Cross Section: $\sigma=\Sigma+h \Delta$

$$
\mathcal{A}=\overbrace{P_{b} P_{t}} \overbrace{\frac{\cos \theta^{*} G_{M}^{2}}{A_{T}}+\overbrace{b \sin \theta^{*} \cos \phi^{*} G_{E} G_{M}}^{c G_{M}^{2}+d G_{E}^{2}}}^{A_{L T}}
$$

Measure asymmetry at two different target settings, say $\theta^{*}=0,90$. Ratio of asymmetries gives ratio of form factors. Functionally identical to recoil polarimetry measurements.

Canceling (some of) the uncertainties

$$
\mathcal{A}=P_{b} P_{t} \overbrace{\frac{a \cos \theta^{*} G_{M}^{2}}{A_{T}}+\overbrace{b \sin \theta^{*} \cos \phi^{*} G_{E} G_{M}}^{c G_{M}^{2}+d G_{E}^{2}}}^{A_{L T}}
$$

Simultaneous measurement with two different values of θ^{*}. Ratio of asymmetries related to ff ratio and cancels systematics.

$$
\begin{aligned}
& \frac{G_{E}}{G_{M}}=-\frac{a\left(\tau, \theta_{e}\right) \cos \theta_{1}^{*}-\Gamma a\left(\tau, \theta_{e}\right) \cos \theta_{2}^{*}}{\cos \phi_{1}^{*} \sin \theta_{1}^{*}-\Gamma \cos \phi_{2}^{*} \sin \phi_{2}^{2}} \\
& a\left(\tau, \theta_{e}\right)=\sqrt{\tau\left(1+(1+\tau) \tan ^{2}\left(\theta_{e} / 2\right)\right)} \\
& \Gamma=\mathcal{A}_{1} / \mathcal{A}_{2}
\end{aligned}
$$

Set p beam polarization to intermediate angle such that $\theta_{1}{ }^{*} \neq \theta_{2}{ }^{*}$.

Getting $G_{E} \& G_{M}$ from Ratios + Cross Sections

Cross section at high/low Q^{2} dominated by one term (Rosenbluth separation not feasible).

Ratio gives second equation

\rightarrow Can now solve 2 equations in two variables to get both ffs. Multiple cross section measurements at the same Q^{2} give cross check.

$$
\begin{aligned}
& \sigma_{R}=\tau G_{M}^{2}+\varepsilon G_{E}^{2} \\
& \mathcal{R}=\mu \frac{G_{E}}{G_{M}} \\
& \sigma_{R}=\tau G_{M}^{2}+\varepsilon \frac{G_{M}^{2} \mathcal{R}^{2}}{\mu^{2}} \\
& G_{M}^{2}=\sigma_{R} /\left(\tau+\varepsilon \mathcal{R}^{2} / \mu^{2}\right)
\end{aligned}
$$

G. Ron et al., Phys. Rev. Lett. 99, 202002 (2007)

High Q² Measurements

The high Q^{2} discrepancy

- At high Q^{2} Rosenbluth and polarization measurements for the proton are in violent disagreement.

I. Qattan et al., Phys. Rev. Lett. 94, 142301 (2005).
- Almost certainly explained by multi- γ effects.
"As $G_{E}=F_{1}-\tau F_{2}$, it is a priori quite likely that G_{E} becomes negative for large values of $\mathrm{k}^{2 \prime \prime}$ - N. Dombey, Rev. Mod. Phys. 41, I (1969). - Not supported by new results.

The high Q^{2} discrepancy

- At
 results.

12GeVGMp@JLab

$12 G e V G m n @ \jmath L a b$

Prospects for High Q^{2} ep with EIC

- 3 GeV Electron +30 GeV Proton.
- $C=10^{34} \mathrm{~cm}^{-1} \mathrm{sec}^{-1}$.
- Full angular (φ) detector coverage.
- $\Delta \mathrm{Q}^{2} / \mathrm{Q}^{2}=0.1$.

Q^{2} $(G e \sqrt{2})$	10	20	30	40	50	60
θe	56.25	74.97	87.28	96.4	103.6	109.5
θ_{P}	6.12	8.77	10.9	12.76	14.5	16.1
E_{e}^{\prime}	3.74	4.5	5.24	6	6.74	7.5
ϵ_{P}^{\prime}	28.3	27.56	26.81	26.06	25.31	24.56
Events $/$ year	186000	7300	1000	250	80	30
$(\Delta \sigma / \sigma)_{\text {stat }}$	0.2%	1.2%	3.1%	6.3%	11.2%	18.2%
$(\Delta A / A)_{\text {stat }}$	0.3%	1.6%	4.4%	9%	15.8%	25.8%

Prospects for High Q^{2} ep with EIC

Asymmetry as a function of proton polarization angle for $Q^{2}=10 \mathrm{GeV}^{2}$

systematic uncertainty in asymmetry as a function of proton polarization angle for $Q^{2}=10 \mathrm{GeV}^{2}$. $\Delta \theta_{\text {pol }}=5^{\circ}$

Low Q2 Measurements

Why Low Q^{2} ?

- Deviations from dipole form evident.
- Probe static properties $\left(\mathrm{Q}^{2} \rightarrow 0\right)$ and peripheral structure.

VMD
Some Models

$$
\begin{aligned}
& \qquad F\left(Q^{2}\right)=\Sigma \frac{C_{\gamma V_{i}}}{Q^{2}+M_{V_{i}}^{2}} F_{V_{i} N}\left(Q^{2}\right) \\
& \text { Breaks down at high } Q^{2}
\end{aligned}
$$

- Small Q^{2} does not allow for pQCD, many competing EFTs.

RCQM
Point Form
Light Front

- Hitting the π mass region (2π cut in Pauli/Dirac FFs).
di-Quark
- Potentially impacts many high precision measurements (nucleon GPDs, parity violation, Zemach radius,...).

CBM/LFCBM

State of the Art

- Rosenbluth:
- Mainz has concluded a high precision cross section survey.
- Measured cross sections downto $\mathrm{Q}^{2} \approx 0.01 \mathrm{GeV}^{2}$.
- Polarization Data (FF Ratio):
- Bates BLAST (Beam-Target Asymmetry) - $\mathrm{Q}^{2}=0.16-0.6 \mathrm{GeV}^{2}$, C. B. Crawford et al., Phys. Rev. Lett. 98, 052301 (2007).
- JLab LEDEX (Recoil Polarization) - $\mathrm{Q}^{2}=0.22-0.5 \mathrm{GeV}^{2}$, G. Ron et al., Phys. Rev. Lett. 99, 202002 (2007).
- JLab E08007 Part I (Recoil Polarization) - $Q^{2}=0.25-0.7 \mathrm{GeV}^{2}$ (Very high precision), X. Zhan PhD Thesis.
- JLab E08007 Part II (Beam-Target Asymmetry) - $\mathrm{Q}^{2}=0.01-0.4$ GeV^{2} (Very high precision) Tentative 2012.
- Strong deviation fron unity at low Q^{2}.
- Attributed to $G_{E p}\left\langle G_{D}\right.$.

State of the Art

- Rnconh1ıth.

Low/High Q^{2} Data Matching

Low/High Q^{2} Data Matching

State of the Art

Prospects for Low Q^{2} ep with EIC

- Proton polarimetery not feasible for high proton beam energies $\left(\mathrm{T}_{\mathrm{p}} \sim \mathrm{T}_{\mathrm{p}^{\prime}}\right)$.
- Very forward scattered electron.
- Luminosity drop significantly when lowering beam energies.
- Cross section measurement gives essentially G_{E} (charge radius).
- But.... Statistics not an issue.
- Limiting factor is systematic uncertainties (in particular proton beam polarization direction).

Q^{2} $(G e \sqrt{2})$	10^{-4}	$5 \cdot 10^{-4}$	10^{-3}	$5 \cdot 10^{-3}$	0.01
θe	0.19	0.427	0.6	1.35	1.9
$x 5$ $\left(\mathrm{~cm}^{-2}\right)$	$2.60 \mathrm{E}-23$	$1.00 \mathrm{E}-24$	$2.50 \mathrm{E}-25$	$1.00 \mathrm{E}-26$	$2.50 \mathrm{E}-27$
Rate $(\mathrm{H} / \mathrm{z})$	9.1	1.75	0.875	0.175	0.0875
$T_{0.57}$ $(h r)$	1.22	6.35	12.7	63.5	127

- $\Delta Q^{2} / Q^{2}=0.01$.
- Assuming "CDF Słyle" roman pots detectors 1 m from intersection point.
- Smallest possible angle ~0.2deg.
- Lowest possible $Q^{2}{ }^{\sim} 0^{-4} \mathrm{GeV}^{2}$.
- Uncertainties always dominated by systematics In particular proton beam polarization direction.

Prospects for Low Q ${ }^{2}$ ep with EIC

Asymmetry as a function of $Q^{2}\left(\boldsymbol{\theta}_{\text {pol }}=\right.$ 45).

Asymmetry as a function of electron beam energy ($Q^{2}=0.001 \mathrm{GeV}^{2}, \theta_{\text {pol }}=$ 45).

Lower beam energy is better.

Prospects for Low Q^{2} ep with EIC

Electron angle as a function of electron beam energy. Lower beam energy is better. Negligíble effect from proton beam energy.
q-vector angle as a function of Q^{2}.
Since for low $Q^{2} \boldsymbol{\theta}_{q} \sim g o$ deg,
need intermediate $\boldsymbol{\theta}$ polarization

Prospects for Low Q^{2} ep with EIC

- Possible fix for beam polarization direction uncertainty \rightarrow Calibrate polarization direction online using measured intermediate Q^{2} values.

Q^{2} $\left(\mathrm{GeV}^{2}\right)$	10^{-4}	$5 \cdot 10^{-4}$	10^{-3}	$5 \cdot 10^{-3}$	0.01	0.3	0.5
θe	0.19	0.427	0.6	1.35	1.9	10.43	13.45
XS $\left(\mathrm{cm}^{-2}\right)$	$2.60 \mathrm{E}-23$	$1.00 \mathrm{E}-24$	$2.50 \mathrm{E}-25$	$1.00 \mathrm{E}-26$	$2.50 \mathrm{E}-27$	$1.00 \mathrm{E}-30$	$2.30 \mathrm{E}-31$
Rate (H / z)	9.1	1.75	0.875	0.175	0.0875	3.25	1.13
$T_{0.5 \%}$ (hr)	1.22	6.35	12.7	63.5	127	2	

Measurable online using standard "barrel" detector. High precision ff ratio data available.
1% uncertainty on FFR $\rightarrow 0.1$ uncertainty on θ_{B} (at 10 degrees)

What it could look like....

SUMMARY

- EIC feasible for both high and low Q2 measurements.
- Both ratio of FFs and cross section can (in principle) be simultaneously measured, giving individual form factors.
- Luminosity not an issue for low Q^{2} - measurements better with lower electron beam energy.
- For High Q2 we need L ${ }^{\sim} 10^{34} \mathrm{sec}^{-1} \mathrm{~cm}^{-2}$.
- Primary concerns:
- Polarization direction uncertainty for proton beam.
- Design of "roman pot" style detector for small angles.
- Other things l'd like to see:
- Polarized positrons for multi- γ studies.
- Polarized D, ${ }^{3} \mathrm{He}, 7 \mathrm{Li}$ (compare quasi-free/elastic ep):
- Is D really p+n?
- Is ${ }^{3} \mathrm{He}(\mathrm{pol})$ really $n(p o l) ?$

