האוניברסיטה העברית בירושלים The Hebrew University of Jerusalem

The Hebrew University Radioactive Neon Isotope Program

Guy Ron Hebrew University of Jerusalem ISOL@MYRRHA Workshop

Outline

(Very) short intro

Why neon?

Some technical aspects of the HUJI program

Production schemes and relevance to MYRRHA.

WHERE TO SEARCH FOR BEYOND SM PHYSICS?

* Brute force (" Swifter, Higher, Stronger"):

So higher in energy/luminosity.

LHC/Tevatron/ILC.

Finesse:

- # High precision experiments.
- Detect the effect of beyond SM on low energy observables.
- * "Table top" experiments: 0νββ, atomic PNC, EDM, vβ correlation.
- Accelerator based: Proton/Neutron weak charge (Qweak, PRex,).

WHERE TO SEARCH FOR BEYOND SM PHYSICS?

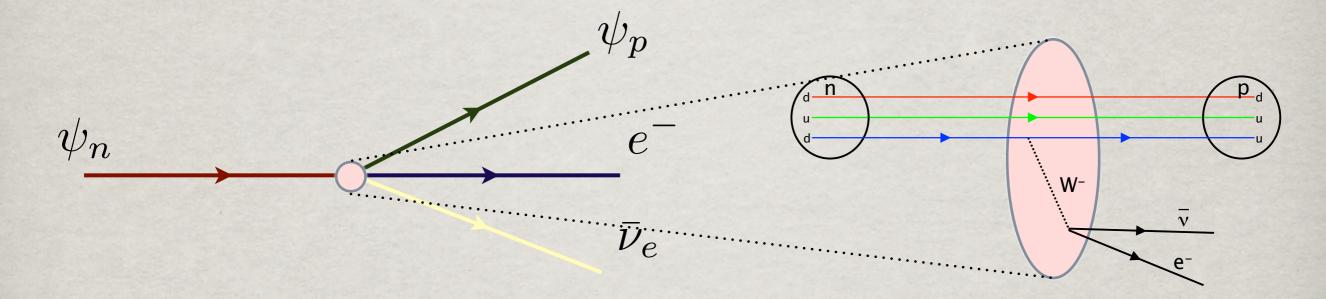
* Brute force (" Swifter, Higher, Stronger"):

So higher in energy/luminosity.

LHC/Tevatron/ILC.

Finesse:

High precision experiments.


Detect the effect of beyond SM on low energy observables.

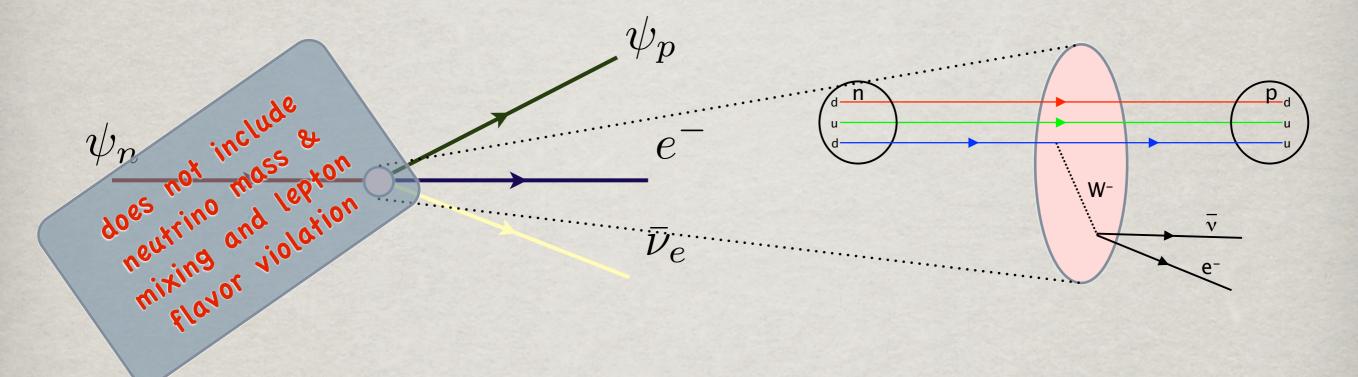
* "Table top" experiments: 0νββ, atomic PNC, EDM, vβ correlation.

Accelerator based: Proton/Neutron weak charge (Qweak, PRex,).

Weak Interaction

NUCLEAR DECAY

 $H_{\beta} =$


19 Free Parameters

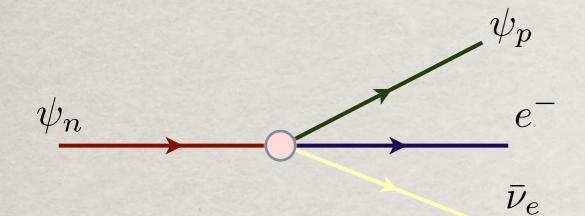
110 complex couplings

arbitrary phase)

 $(\bar{\psi}_n\psi_p)(C_s\bar{\psi}_e\psi_\nu+C'_s\bar{\psi}_e\psi_\nu\gamma_5\psi_\nu)$ $+(\bar{\psi}_n\gamma_\mu\psi_p)(C_V\bar{\psi}_e\gamma^\mu\psi_\nu+C_V'\bar{\psi}_e\gamma^\mu\gamma_5\psi_\nu)$ $+\frac{1}{2}(\bar{\psi}_n\sigma_{\lambda\nu}\psi_p)(C_T\bar{\psi}_e\sigma^{\lambda\nu}\psi_\nu+C_T'\bar{\psi}_e\sigma^{\lambda\nu}\gamma_5\psi_\nu)$ $-(\bar{\psi}_n\gamma_\mu\gamma_5\psi_p)(C_A\bar{\psi}_e\gamma^\mu\gamma_5\psi_\nu+C_A'\bar{\psi}_e\gamma^\mu\psi_\nu)$ $+(\bar{\psi}_n\gamma_5\psi_p)(C_P\bar{\psi}_e\gamma_5\psi_\nu+C'_P\bar{\psi}_e\psi_\nu)$

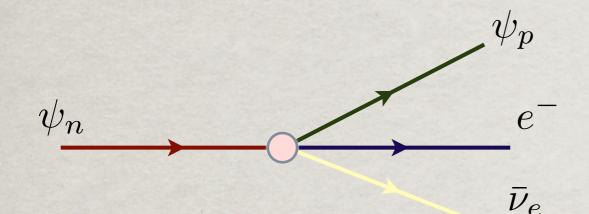
NUCLEAR DECAY

 $H_{\beta} =$

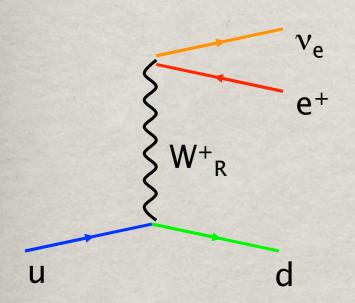

19 free Parameters

110 complex couplings

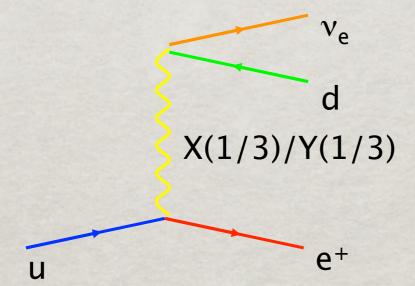
arbitrary phase)


 $(\bar{\psi}_n\psi_p)(C_s\bar{\psi}_e\psi_\nu+C'_s\bar{\psi}_e\psi_\nu\gamma_5\psi_\nu)$ $+(\bar{\psi}_n\gamma_\mu\psi_p)(C_V\bar{\psi}_e\gamma^\mu\psi_\nu+C_V'\bar{\psi}_e\gamma^\mu\gamma_5\psi_\nu)$ $+\frac{1}{2}(\bar{\psi}_n\sigma_{\lambda\nu}\psi_p)(C_T\bar{\psi}_e\sigma^{\lambda\nu}\psi_\nu+C_T'\bar{\psi}_e\sigma^{\lambda\nu}\gamma_5\psi_\nu)$ $-(\bar{\psi}_n\gamma_\mu\gamma_5\psi_p)(C_A\bar{\psi}_e\gamma^\mu\gamma_5\psi_\nu+C_A'\bar{\psi}_e\gamma^\mu\psi_\nu)$ $+(\bar{\psi}_n\gamma_5\psi_p)(C_P\bar{\psi}_e\gamma_5\psi_\nu+C'_P\bar{\psi}_e\psi_\nu)$

This is Standard Model


 $H_{\beta} = (\bar{\psi}_{n}\gamma_{\mu}\psi_{p})(C_{V}\bar{\psi}_{e}\gamma^{\mu}\psi_{\nu} + C_{V}'\bar{\psi}_{e}\gamma^{\mu}\gamma_{5}\psi_{\nu})$ $-(\bar{\psi}_{n}\gamma_{\mu}\gamma_{5}\psi_{p})(C_{A}\bar{\psi}_{e}\gamma^{\mu}\gamma_{5}\psi_{\nu} + C_{A}'\bar{\psi}_{e}\gamma^{\mu}\psi_{\nu})$ $C_{V} = C_{V}' = 1$ $C_{A} = C_{A}' = 1.26$

This is Standard Model


 $H_{\beta} = (\bar{\psi}_{n}\gamma_{\mu}\psi_{p})(C_{V}\bar{\psi}_{e}\gamma^{\mu}\psi_{\nu} + C_{V}'\bar{\psi}_{e}\gamma^{\mu}\gamma_{5}\psi_{\nu})$ $-(\bar{\psi}_{n}\gamma_{\mu}\gamma_{5}\psi_{p})(C_{A}\bar{\psi}_{e}\gamma^{\mu}\gamma_{5}\psi_{\nu} + C_{A}'\bar{\psi}_{e}\gamma^{\mu}\psi_{\nu})$ $C_{V} = C_{V}' = 1$ $C_{A} = C_{A}' = 1.26$

This is Not.

Right handed bosons

 $C \neq C'$

Scalar or Tensor Leptoquarks

$$C_T \neq 0$$
$$C_S \neq 0$$

SUSY slepton flavor mixing.
SUSY LR mixing.
many more (with different C's)...

Total decay rate (electron polarízation not detected)

 $\frac{d\Gamma}{dE_{\beta}d\Omega_{\beta}d\Omega_{\nu}}$

$$\propto \xi \left\{ 1 + a \frac{\vec{p_e} \cdot \vec{p_\nu}}{E_e E_\nu} + b \frac{m}{E_e} + c \left[\frac{1}{3} \frac{\vec{p_e} \cdot \vec{p_\nu}}{E_e E_\nu} - \frac{(\vec{p_e} \cdot \vec{j})(\vec{p_\nu} \cdot \vec{j})}{E_e E_\nu} \right] \right. \\ \left. \left[\frac{J(J+1) - 3 < (\vec{J} \cdot \vec{j})^2 >}{J(2J-1)} \right] + \frac{<\vec{J}>}{J} \cdot \left[A \frac{\vec{p_e}}{E_e} + B \frac{\vec{p_\nu}}{E_\nu} + D \frac{\vec{p_e} \times \vec{p_\nu}}{E_e E_\nu} \right] \right\}$$

B DECAY 101 Total decay rate (electron polarízation not detected)

 $\frac{d\Gamma}{dE_{\beta}d\Omega_{\beta}d\Omega_{\nu}}$

$$\propto \xi \left\{ 1 + \left(a \frac{\vec{p_e} \cdot \vec{p_\nu}}{E_e E_\nu} \right) + b \frac{m}{E_e} + c \left[\frac{1}{3} \frac{\vec{p_e} \cdot \vec{p_\nu}}{E_e E_\nu} - \frac{(\vec{p_e} \cdot \vec{j})(\vec{p_\nu} \cdot \vec{j})}{E_e E_\nu} \right] \right\}$$

$$\left[\frac{J(J+1) - 3 < (\vec{J} \cdot \vec{j})^2 >}{J(2J-1)} \right] + \frac{<\vec{J}>}{J} \cdot \left[A \frac{\vec{p_e}}{E_e} + B \frac{\vec{p_\nu}}{E_\nu} + D \frac{\vec{p_e} \times \vec{p_\nu}}{E_e E_\nu} \right]$$

Electron-neutrino correlation

$$\begin{aligned} \xi a &= |M_F|^2 \left(-|C_S|^2 + |C_V|^2 - |C_S'|^2 + |C_V'|^2 \right) + \\ &= \frac{|M_{GT}|^2}{3} \left(|C_T|^2 - |C_A|^2 + |C_T'|^2 - |C_A'|^2 \right) \\ \xi &= |M_F|^2 \left(|C_S|^2 + |C_V|^2 + |C_S'|^2 + |C_V'|^2 \right) + \\ &= |M_{GT}|^2 \left(|C_T|^2 + |C_A|^2 + |C_T'|^2 + |C_A'|^2 \right) \end{aligned}$$

B DECAY 101 Total decay rate (electron polarízation not detected)

 $\frac{d\Gamma}{dE_\beta d\Omega_\beta d\Omega_\nu}$

$$\propto \xi \left\{ 1 + \left(a \frac{\vec{p}_e \cdot \vec{p}_\nu}{E_e E_\nu}\right) + b \frac{m}{E_e} + c \left[\frac{1}{3} \frac{\vec{p}_e \cdot \vec{p}_\nu}{E_e E_\nu} - \frac{(\vec{p}_e \cdot \vec{j})(\vec{p}_\nu \cdot \vec{j})}{E_e E_\nu}\right] \right\}$$
$$\left[\frac{J(J+1) - 3 < (\vec{J} \cdot \vec{j})^2 >}{J(2J-1)}\right] + \frac{<\vec{J}>}{J} \cdot \left[A \frac{\vec{p}_e}{E_e} + B \frac{\vec{p}_\nu}{E_\nu} + D \frac{\vec{p}_e \times \vec{p}_\nu}{E_e E_\nu}\right]$$

P(e) = -1

Electron-neutrino correlation

$$\begin{aligned} \xi a &= |M_F|^2 \left(-|C_S|^2 + |C_V|^2 - |C_S'|^2 + |C_V'|^2 \right) + \\ &\quad \frac{|M_{GT}|^2}{3} \left(|C_T|^2 - |C_A|^2 + |C_T'|^2 - |C_A'|^2 \right) \\ \xi &= |M_F|^2 \left(|C_S|^2 + |C_V|^2 + |C_S'|^2 + |C_V'|^2 \right) + \\ &\quad |M_{GT}|^2 \left(|C_T|^2 + |C_A|^2 + |C_T'|^2 + |C_A'|^2 \right) \\ \end{aligned}$$

$$\begin{aligned} Pure \ Fermi: \ a = 1 \end{aligned}$$

Total decay rate (electron polarízation not detected)

 $\frac{d\Gamma}{dE_\beta d\Omega_\beta d\Omega_\nu}$

$$\propto \xi \left\{ 1 + \left(a \frac{\vec{p}_e \cdot \vec{p}_\nu}{E_e E_\nu}\right) + b \frac{m}{E_e} + c \left[\frac{1}{3} \frac{\vec{p}_e \cdot \vec{p}_\nu}{E_e E_\nu} - \frac{(\vec{p}_e \cdot \vec{j})(\vec{p}_\nu \cdot \vec{j})}{E_e E_\nu}\right] \right\}$$
$$\left[\frac{J(J+1) - 3 < (\vec{J} \cdot \vec{j})^2 >}{J(2J-1)}\right] + \frac{<\vec{J}>}{J} \cdot \left[A \frac{\vec{p}_e}{E_e} + B \frac{\vec{p}_\nu}{E_\nu} + D \frac{\vec{p}_e \times \vec{p}_\nu}{E_e E_\nu}\right]$$

P(e) = -1

Electron-neutrino correlation

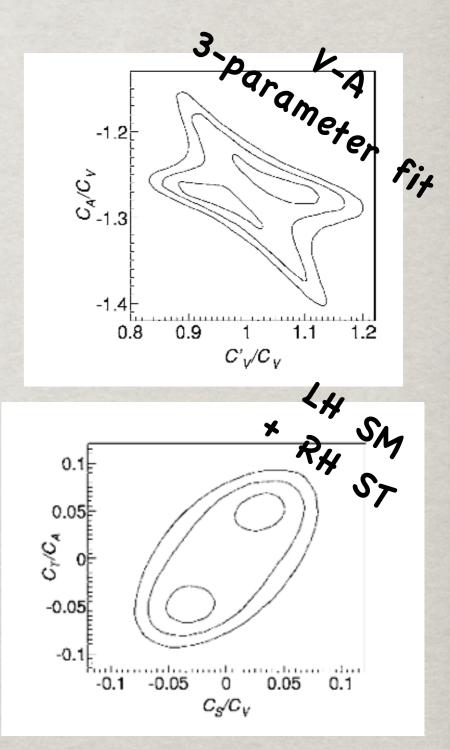
$$\begin{aligned} \xi a &= |M_F|^2 \left(-|C_S|^2 + |C_V|^2 - |C_S'|^2 + |C_V'|^2 \right) + \\ &\quad \frac{|M_{GT}|^2}{3} \left(|C_T|^2 - |C_A|^2 + |C_T'|^2 - |C_A'|^2 \right) \\ \xi &= |M_F|^2 \left(|C_S|^2 + |C_V|^2 + |C_S'|^2 + |C_V'|^2 \right) + \\ &\quad |M_{GT}|^2 \left(|C_T|^2 + |C_A|^2 + |C_T'|^2 + |C_A'|^2 \right) \\ \end{aligned}$$

$$\begin{aligned} \beta &+ v \text{ carry 1 unit AM} \rightarrow \\ \text{emitted in opposite} \\ \text{directions (factor of 3)} \\ \text{from spin directions)} \end{aligned}$$

$$P(v) = +1$$

$$Pure GT: a = -1/3$$

B DECAY 101 Possible observables in nuclei $\propto \xi \left\{ 1 + \frac{a}{E_e E_{\nu}} + \frac{b}{E_e} \frac{m}{E_e} + c \left| \frac{1}{3} \frac{\vec{p_e} \cdot \vec{p_{\nu}}}{E_e E_{\nu}} - \frac{(\vec{p_e} \cdot \vec{j})(\vec{p_{\nu}} \cdot \vec{j})}{E_e E_{\nu}} \right| \right\}$ $\left[\frac{J(J+1) - 3 < (\vec{J} \cdot \vec{j})^2 >}{J(2J-1)}\right] + \frac{\langle \vec{J} \rangle}{J} \cdot \left[A\frac{\vec{p_e}}{E_e} + B\frac{\vec{p_\nu}}{E_\nu} + D\frac{\vec{p_e} \times \vec{p_\nu}}{E_e E_\nu}\right]\right\}$


 $d\Gamma$

 $\frac{d\Gamma}{dE_{\beta}d\Omega_{\beta}d\Omega_{\nu}}$

Parameter	Observable	Sensitivity	SM Prediction
۵	β-v (recoil) correlation	Tensor & Scalar terms	1 for pure Fermi -1/3 for pure GT or combination
b (Fierz term)	Comparison of $\beta^{\scriptscriptstyle +}$ to EC rate	SV/T/A interference	0
A	β asymmetry for polarized nuclei	Tensor, ST/VA Parity	Nucleus dependent
B	∨ asymmetry (recoil) for polarized nuclei	Tensor,TA/ST/VA/SA/VT Parity	Nucleus dependent
D	Triple product	ST/VA Interference TRI	0

LIMITS ON NON-SM COUPLING

- * Very large model space.
- * Not spanned by collider experiments.
- Current best limits not very stringent.
- ** Naively $\frac{C_T}{C_A}, \frac{C_S}{C_S} \propto \left(\frac{M_W}{M_{NewPhys}}\right)^2$ so uncertainty to 0.01 probes new physics at ~ 1TeV!
- Possible effects on high energy results (W production at D0).

N. Severijns, M. Beck, and O. Naviliat-Cuncic, Rev. Mod. Phys. 78, 991 (2006) J. Sromki, AIP Conf Proc 338 (1995)

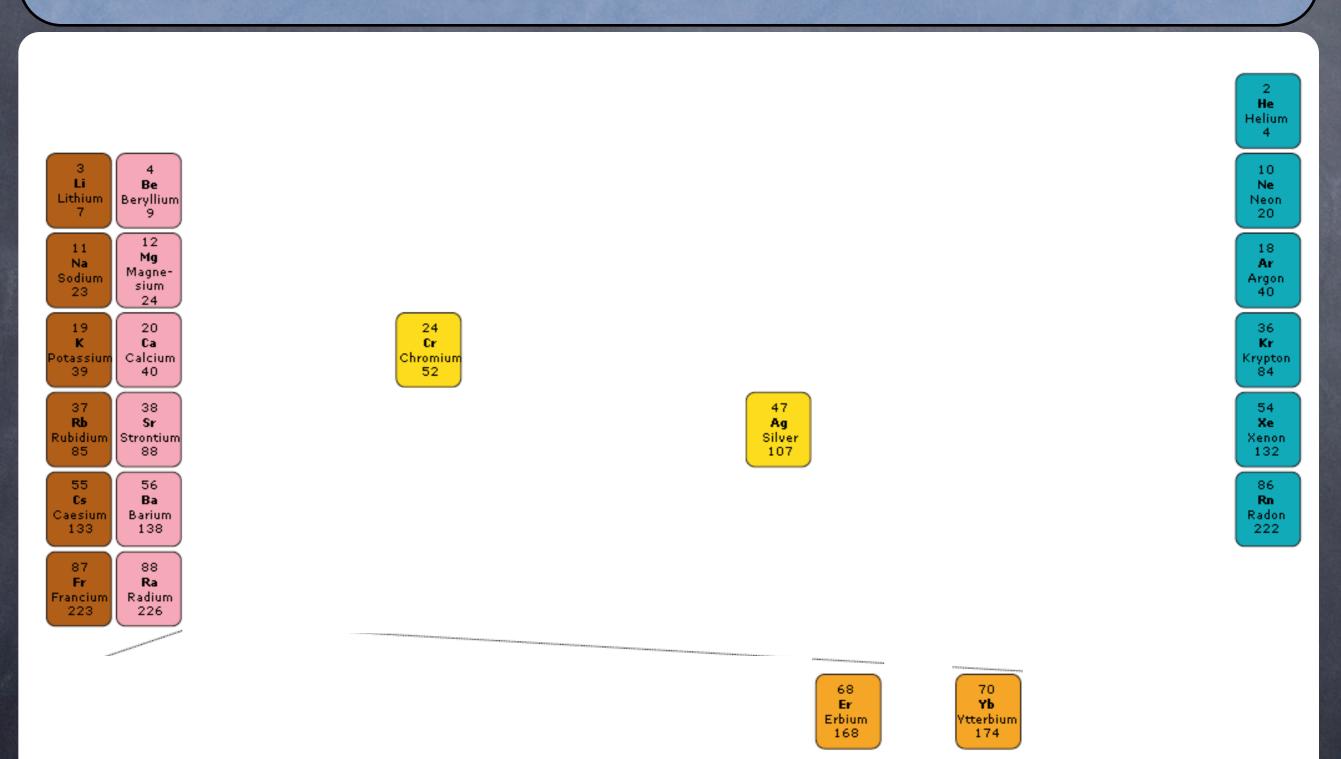
ANATOMY OF AN EXPERIMENT

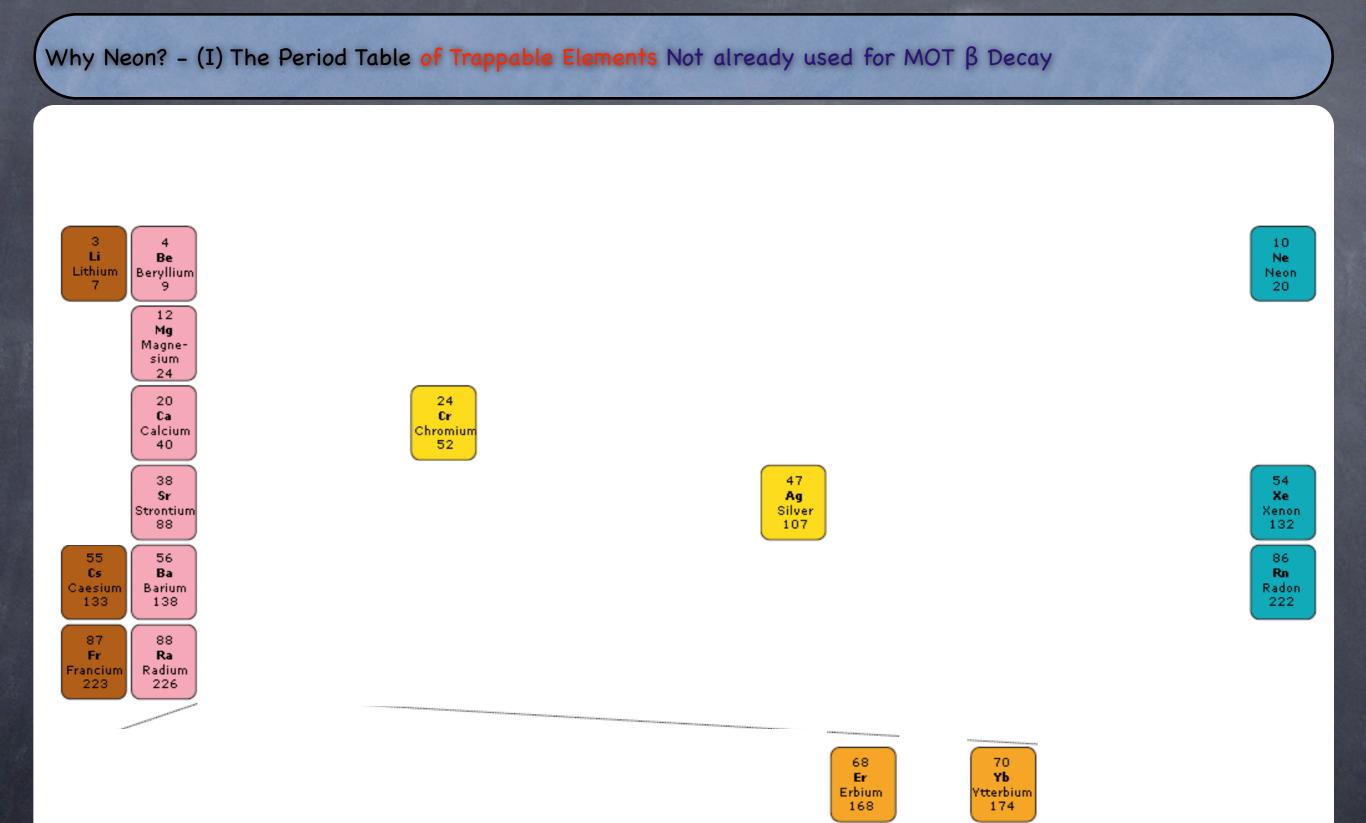
Produce Radioactive Atoms

(Produce, Transport, Neutralize)

(MOT, Dipole, Ion, Electrostatic)

Wait...

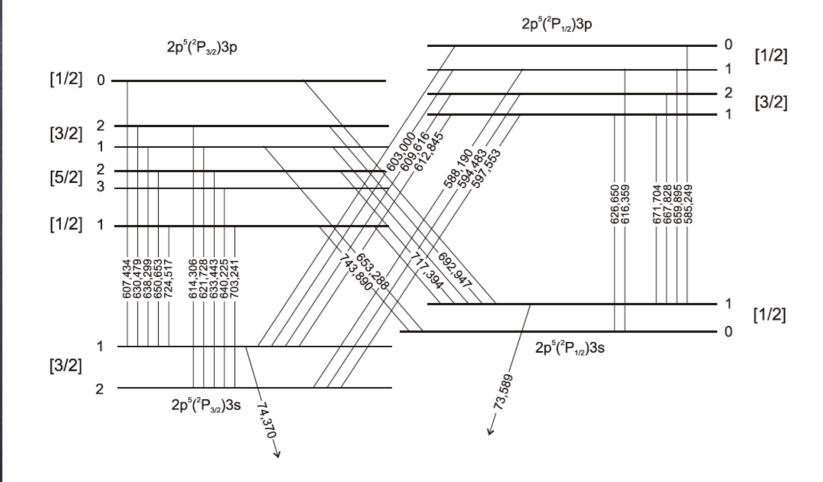

Detect decay products (B, Ion) (Scintillators, MCPs,...)


Analyze and compare to SM

Why Neon? - (I) The Period Table

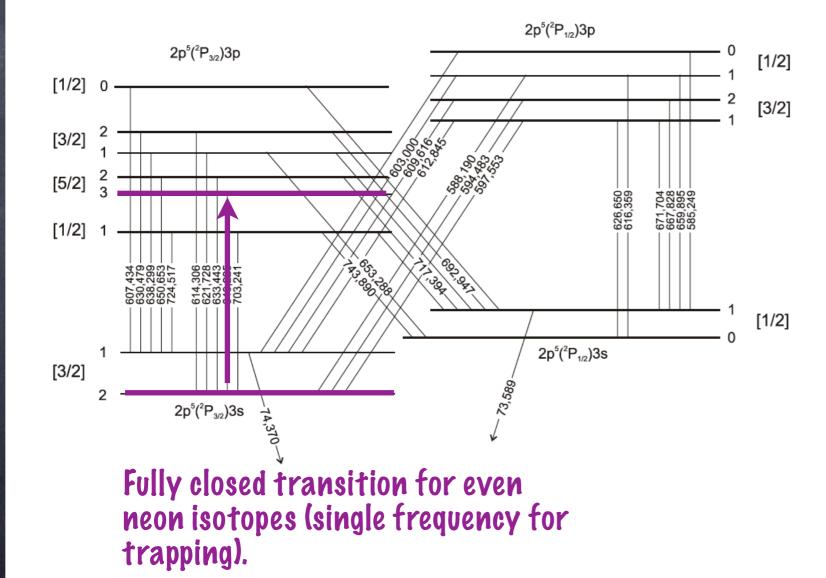
1 H Hydrogen 1																	2 He Helium 4	
3 Li Lithium 7	4 Be Beryllium 9											5 B Boron 11	6 C Carbon 12	7 N Nitrogen 14	8 0 0xygen 16	9 F Fluorine 19	10 Ne Neon 20	
11 Na Sodium 23	12 Mg Magne- sium 24											13 Al Aluminum 27	14 Si Silicon 28	15 P Phosp- horus 31	16 S Sulphur 32	17 Cl Chlorine 35	18 Ar Argon 40	
19 K Potassium 39	20 Ca Calcium 40	21 Sc Scandium 45	22 Ti Titanium 48	23 ¥ Vanadium 51	24 Cr Chromium 52	25 Mn Mang- anese 55	26 Fe Iron 56	27 Co Cobalt 59	28 Ni Nickel 58	29 Cu Copper 63	30 Zn 2inc 64	31 Ga Gallium 69	32 Ge Germ- anium 74	33 As Arsenic 75	34 Se Selenium 80	35 Br Bromine 79	36 Kr Krypton 84	
37 Rb Rubidium 85	38 Sr Strontium 88	39 Y Yttrium 89	40 Zr Zirconium 90	41 Nb Niobium 93	42 Mo Molyb- denum 98	43 Tc Techn- etium 97	44 Ru Ruthenium 102	45 Rh Rhodium 103	46 Pd Palladium 106	47 Ag Silver 107	48 Cd Cadmium 114	49 In Indium 115	50 Sn Tin 120	51 Sb Antimony 121	52 Te Tellurium 130	53 I Iodine 127	54 Xe Xenon 132	
55 Cs Caesium 133	56 Ba Barium 138	57-71	72 Hf Hafnium 180	73 Ta Tantalum 181	74 W Tungsten 184	75 Re Rhenium 187	76 Os Osmium 192	77 Ir Iridium 193	78 Pt Platinum 195	79 Au Gold 197	80 Hg Mercury 202	81 Ti Thallium 205	82 Pb Lead 208	83 Bi Bismuth 209	84 Po Polonium 209	85 At Astatine 210	86 Rn Radon 222	
87 Fr Francium 223	88 Ra Radium 226	89-103	104 Unq Unnilq- uadium 260	105 Unp Unnilp- entium 262	106 Unh Unnilh- exium 263	107 Uns Unnils- eptium 262	108 Uno Unnilo- ctium 265	109 Une Unnile- nnium 266										
57 La Lanth- anum 139	58 Ce Cerium 140	59 Pr Praseo- dymium 141	60 Nd Neody- mium 142	61 Pm Prome- thium 145	62 Sm Samarium 152	63 Eu Europium 153	64 Gd Gado- linium 158	65 Tb Terbium 159	66 Dy Dysp- rosium 164	67 Ho Holmium 165	68 Er Erbium 168	69 Tm Thulium 169	70 Yb Vtterbium 174	71 Lu Lutetium 175				
89 Ac Actinium 227	90 Th Thorium 232	91 Pa Protac- tinium 231	92 U Uranium 238	93 Np Neptunium 237	94 Pu Plutonium 244	95 Am Americium 243	96 Cm Curium 247	97 Bk Berkelium 247	98 Cf Califor- nium 251	99 Es Einste- inium 254	100 Fm Fermium 257	101 Md Mende- levium 258	102 No Nobelium 255	103 Lr Lawre- ncium 256				

Why Neon? – (I) The Period Table of Trappable Elements


Easier to produce Trap setup exists in Israel (as does design for production of ⁸Li) Easy wavelengths Harder to trap (messy level scheme)

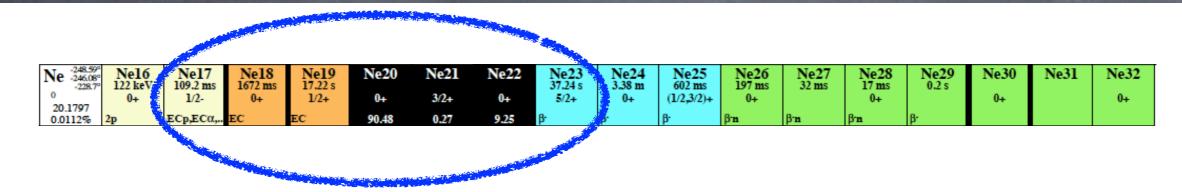
Easy to trap Interesting physics other the beta decay Needs to be in metastable state Problematic WL for lasers Harder to produce

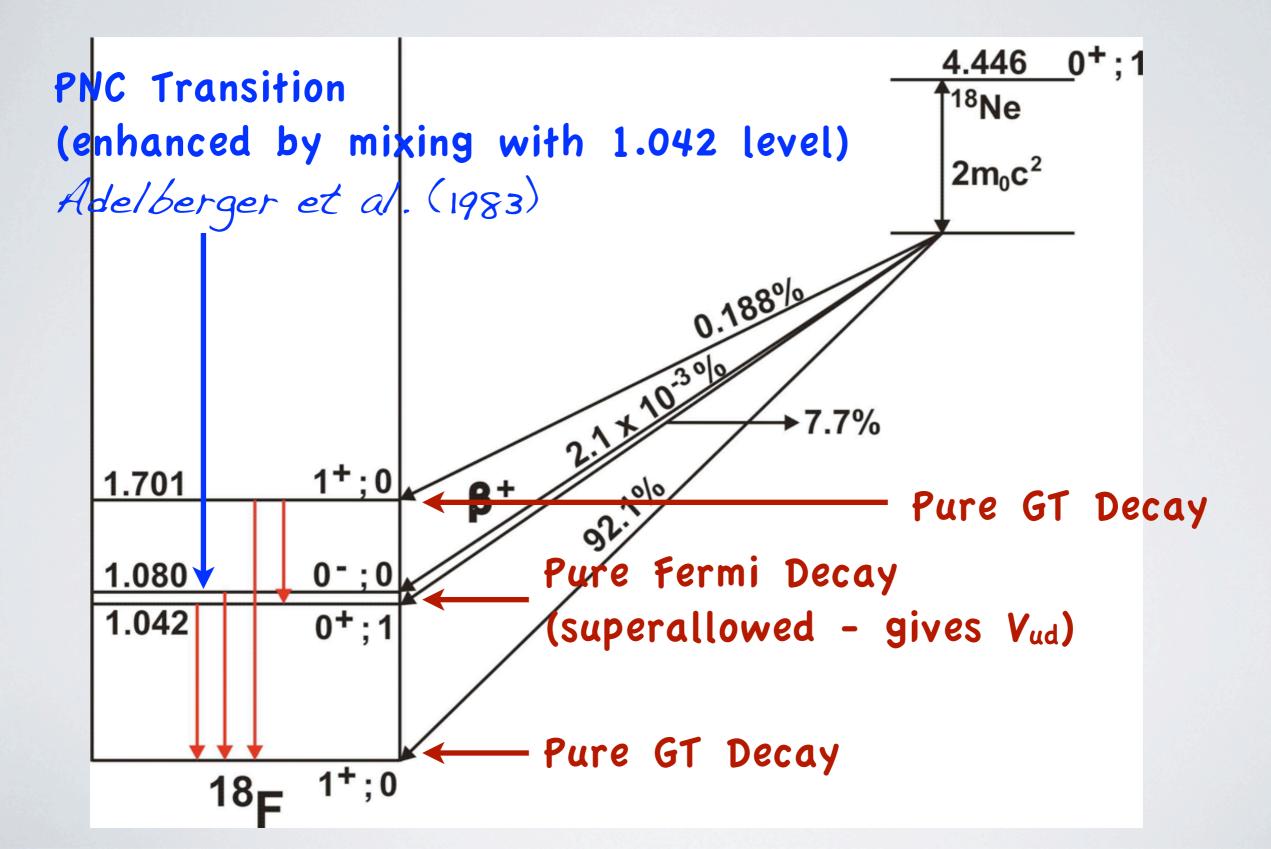
10


Ne

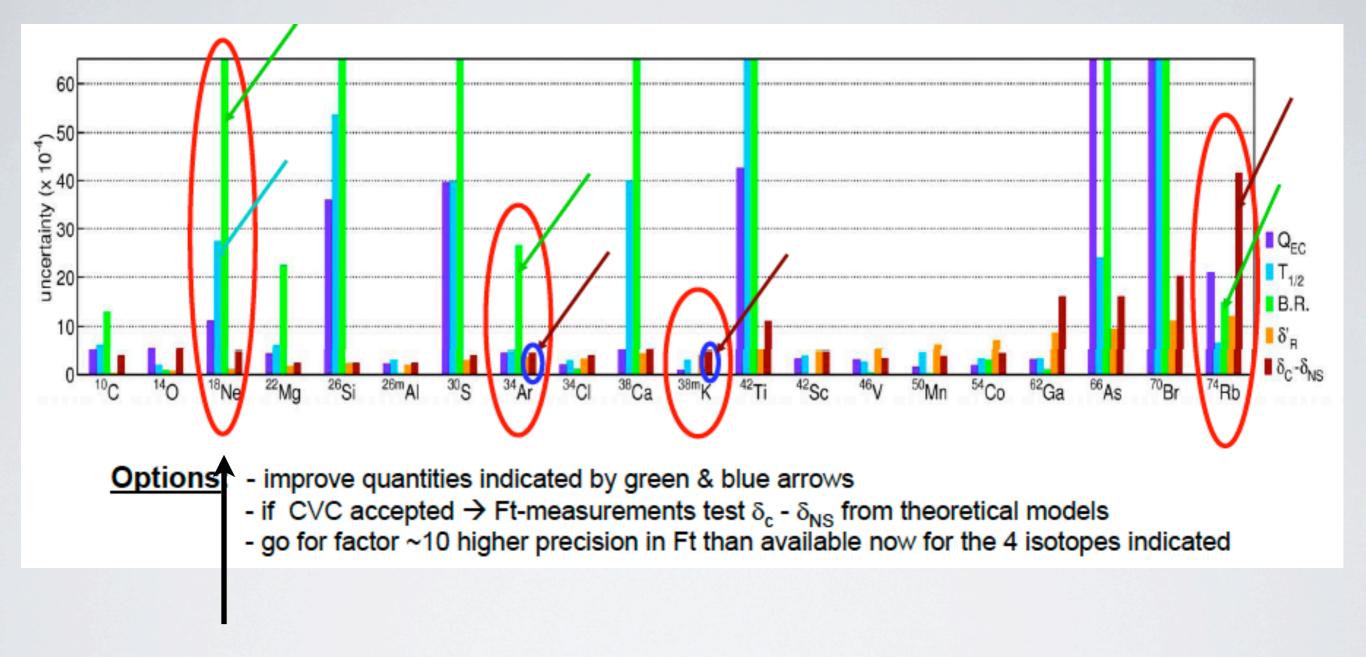
Neon

10 Ne Neon 20

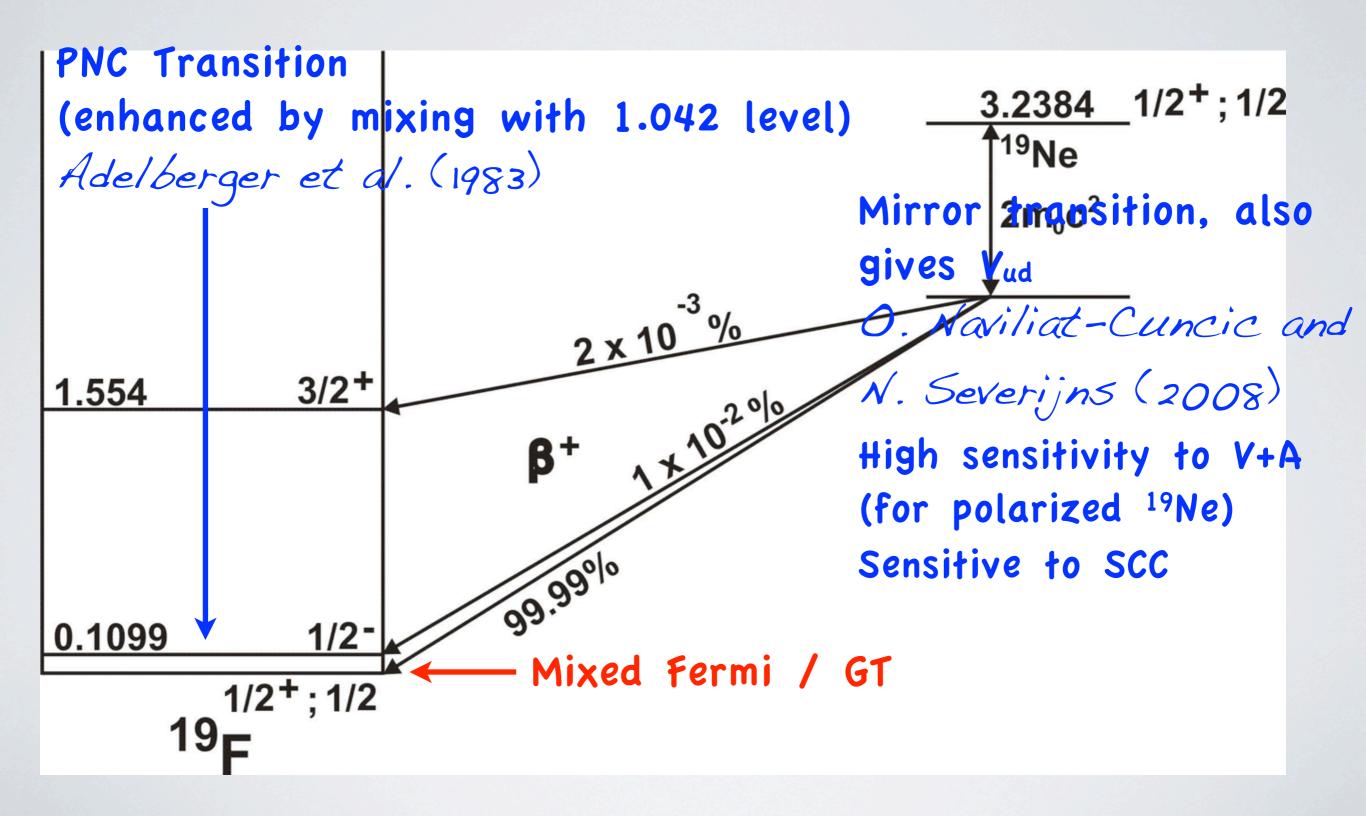

Easy to trap Interesting physics other the beta decay Needs to be in metastable state Problematic WL for lasers Harder to produce


10 Ne Neon 20

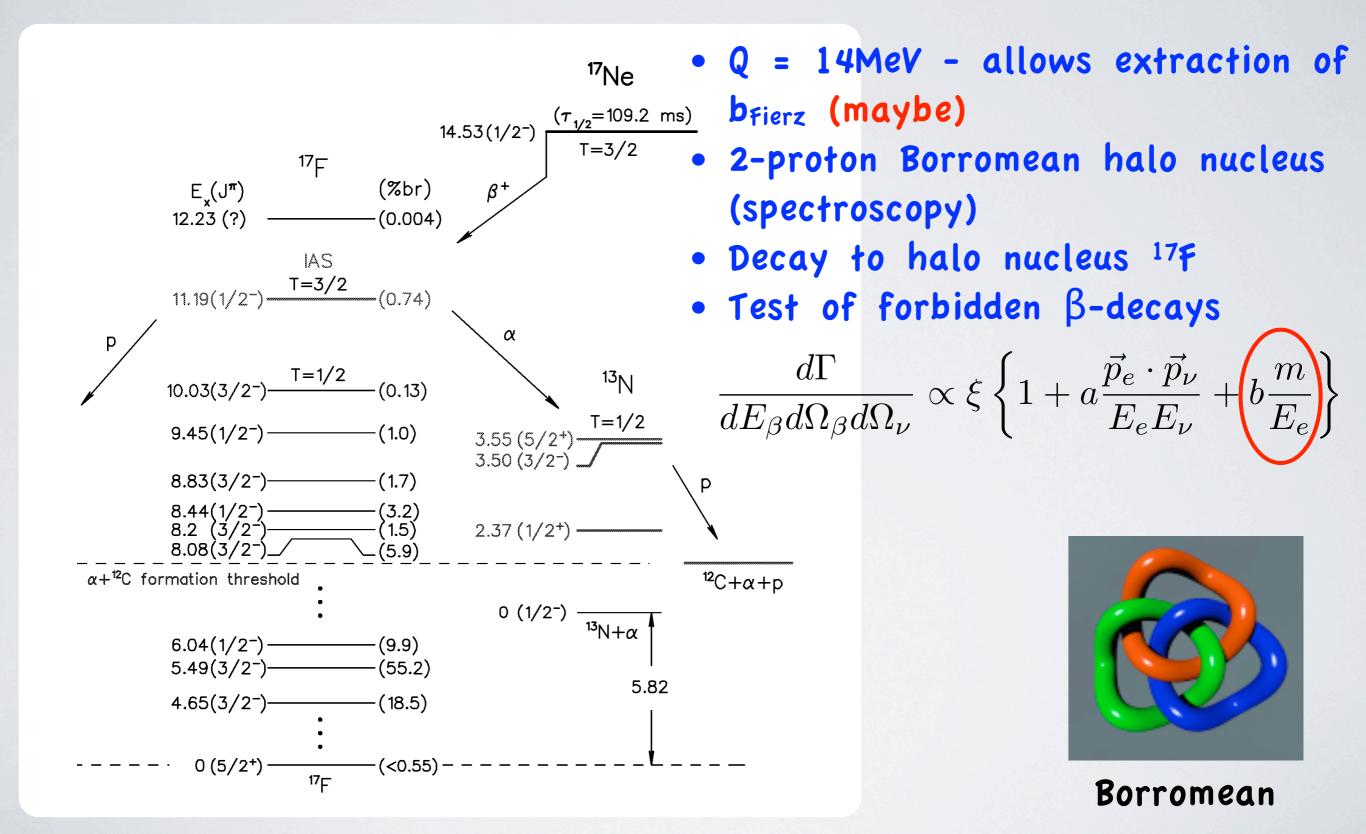
Easy to trap Interesting physics other the beta decay Needs to be in metastable state Problematic WL for lasers Harder to produce

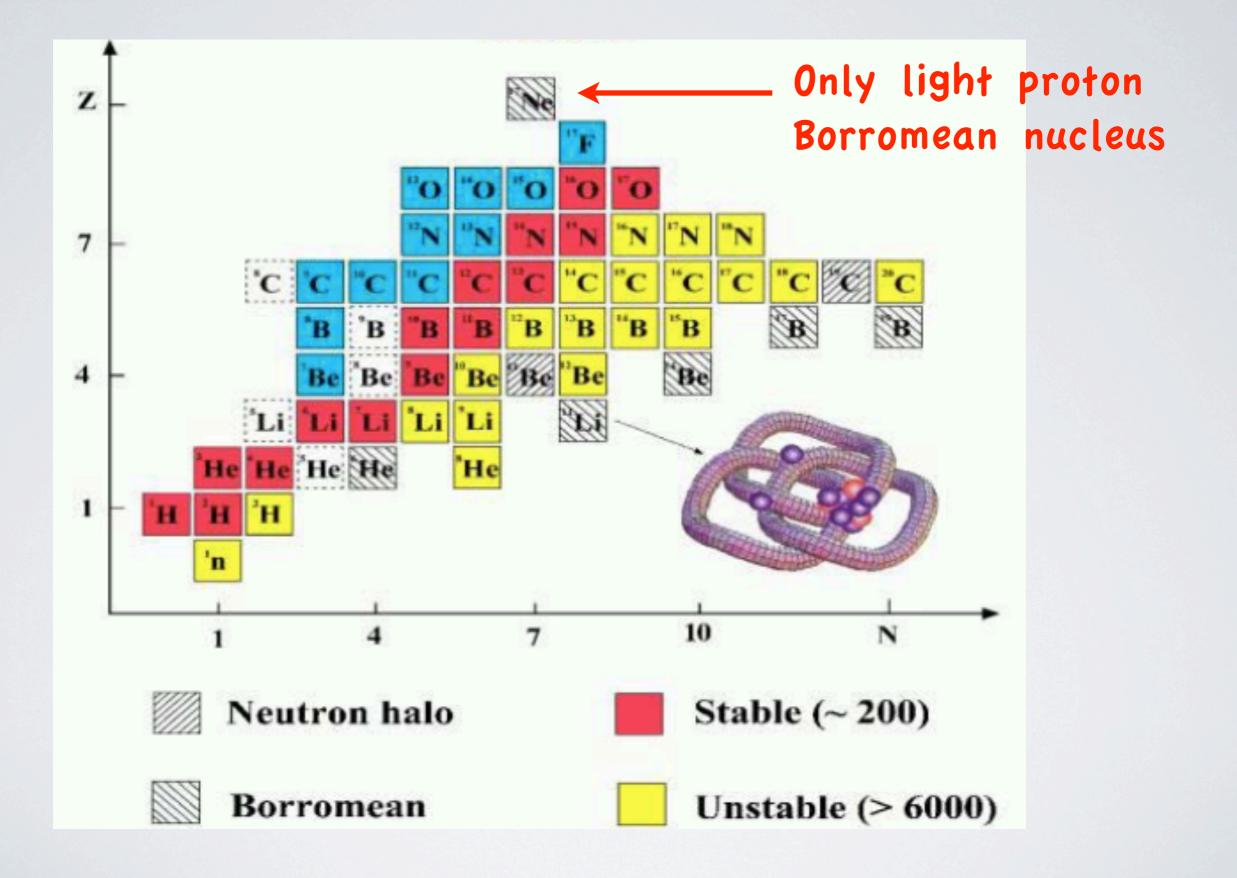

Ne -248. -246.0 -228	8° Nel6 8° 122 keV	Ne17 109.2 ms	Ne18 1672 ms	Ne19 17.22 s	Ne20	Ne21	Ne22	Ne23 37.24 s	Ne24 3.38 m	Ne25 602 ms	Ne26 197 ms	Ne27 32 ms	Ne28 17 ms	Ne29 0.2 s	Ne30	Ne31	Ne32
0	0+	1/2-	0+	1/2+	0+	3/2+	0+	5/2+	0+	(1/2.3/2)+	0+		0+		0+		0+
20.1797										(/·							
0.0112%	2p	ECp,ECα,	EC	EC	90.48	0.27	9.25	β-	β-	β·	βn	βm	βm	β·			

Why ¹⁸Ne?

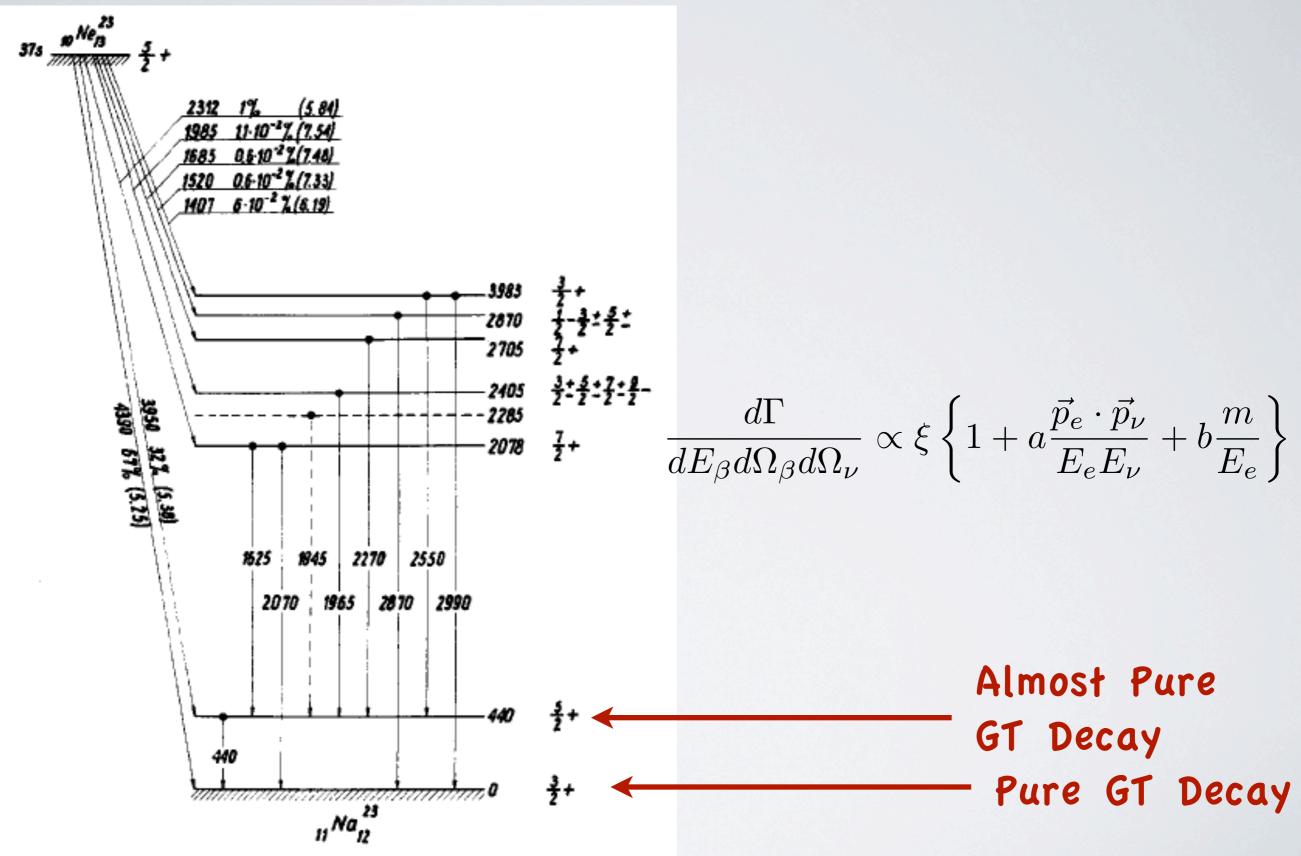


Vud Uncertainties for superallowed decays

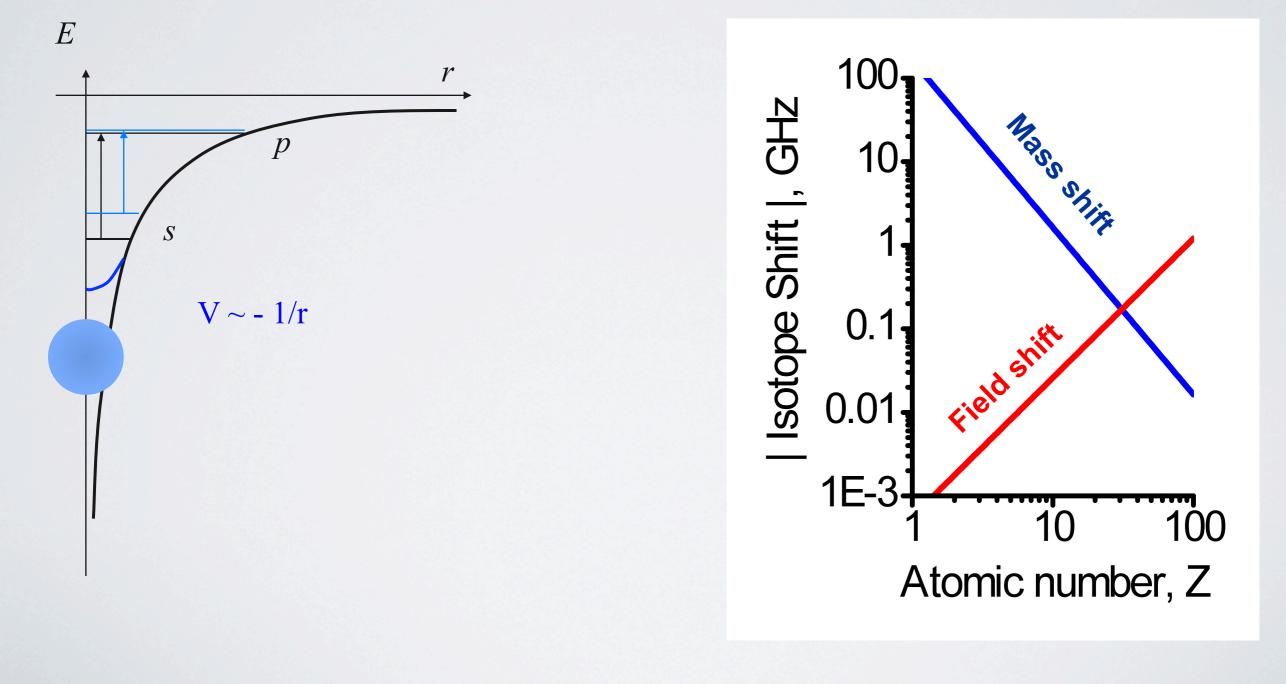


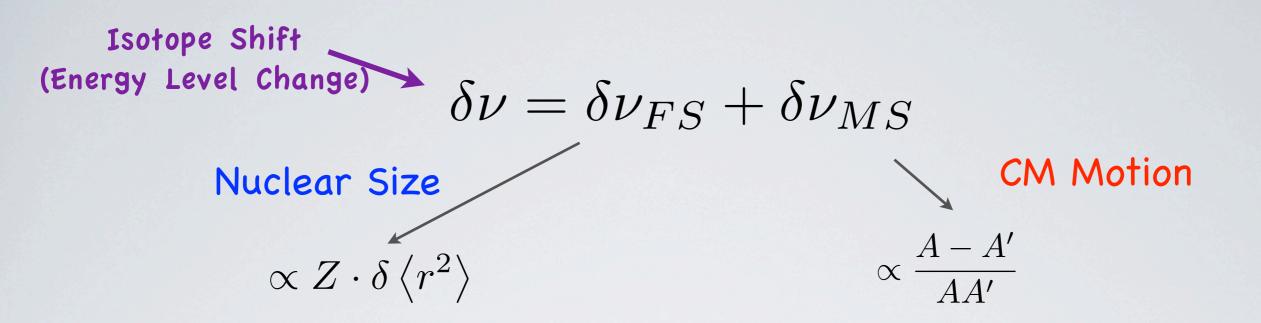

N. Severijns, presentation BriX workshop 2008, SCK-CEN, Mol, Belgium, 2008.

Why ¹⁹Ne?



Why ¹⁷Ne?




Why ²³Ne?

NUCLEAR STRUCTURE TESTS WITH TRAPPED NEON ISOTOPES ISOTOPE SHIFTS

$$\delta\nu_{FS} = -\frac{2\pi}{3} Ze^2 \cdot \Delta |\psi(0)|^2 \cdot \delta \langle r^2 \rangle^{AA'}$$

Neon vs. Helium (Mueller et al.) Mass Shift

Isotope	(A'-A ₂₀)/(A ₂₀ A')
¹⁷ Ne	-0.0088
¹⁸ Ne	-0.0055
¹⁹ Ne	-0.0026
²¹ Ne	0.0023
²² Ne	0.0045
²³ Ne	0.0065

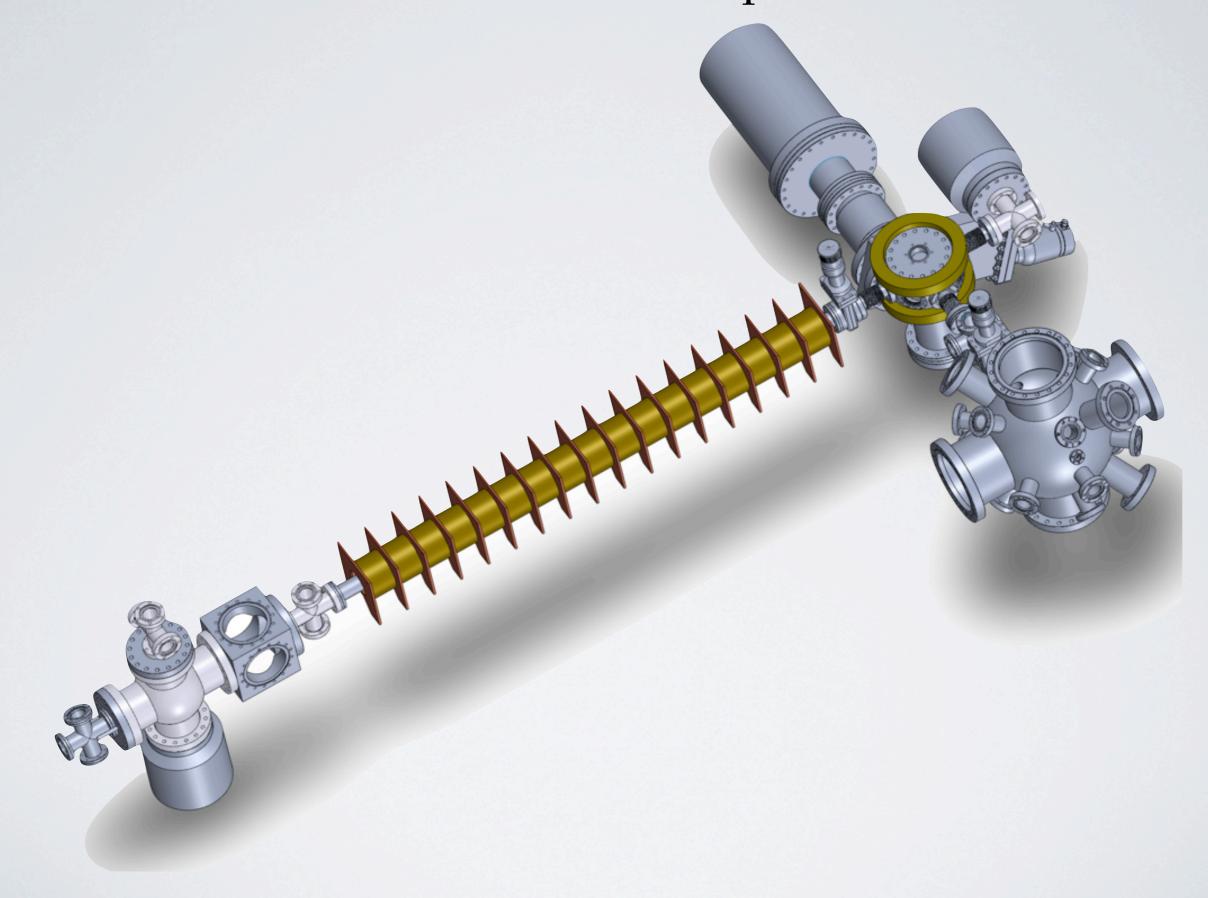
Isotope	(A'-A ₂₀)/(A ₂₀ A')
⁶ He	0.0833
⁸ He	0.125

- Sign change in Mass Shift.
- Effect ~10 times smaller, better control on change in r^2 .
- Harder to calculate for A>12.
- But more cases (and 3 stable).

It's not all fun and games

It's not all fun and games

- Neon trapping only in the excited metastable Ne^{*} state.
- RF discharge/electron beam excitation typically gives 10⁻⁵ 10⁻⁶ efficiency.
- Neon trapping uses difficult wavelength (640nm).


It's not all fun and games

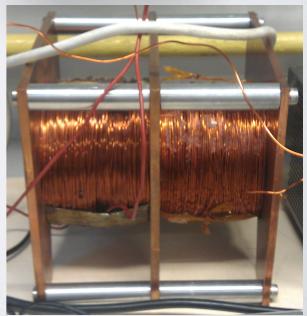
- Neon trapping only in the excited metastable Ne^{*} state.
- RF discharge/electron beam excitation typically gives 10⁻⁵ 10⁻⁶ efficiency.
- Neon trapping uses difficult wavelength (640nm).

But....

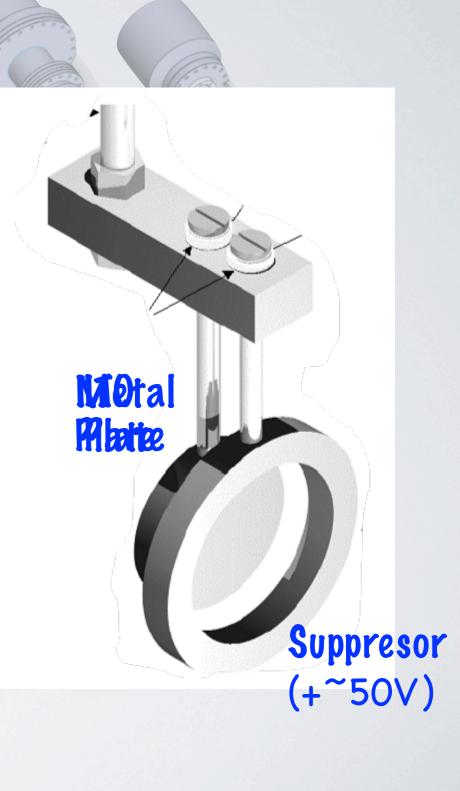
- Even numbers isotopes have no hyperfine splitting (single laser trapping) + Simple polarizing scheme for most odd isotopes (I=1/2).
- Destructive probing of metastable beam is easy.
- Transport of noble gas from production target relatively simple (diffusion).
- Many isotopes to probe.
- Many combinations of coefficients -> many constraints on phase space.
- TOF calibration using Penning/Associative $Ne^* + Ne^* \rightarrow Ne + Ne^+ + e^$ ionization $Ne^* + Ne^* \rightarrow Ne_2^+ + e^-$

Some Technical Aspects

Some Technical Aspects - I


Multi-Coil Zeeman Slower

Computer control of field shape -On the fly change between isotopes Genetic algorithm optimization for velocity/flux


Some Technical Aspects - II

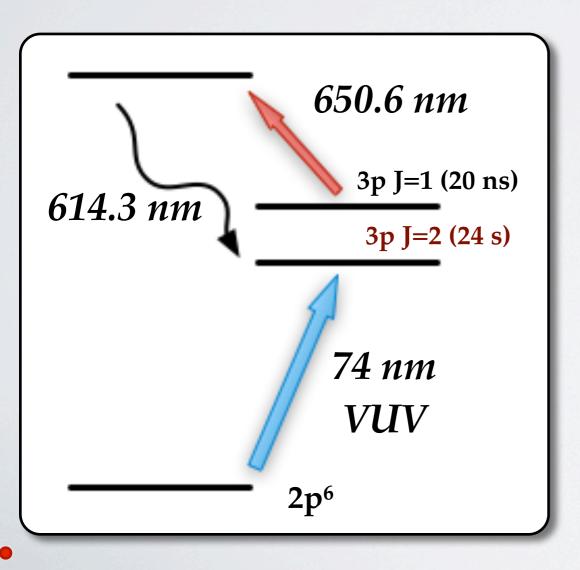
Double Trap setup

Push beam + atomic funnel (John Behr et al type setup)

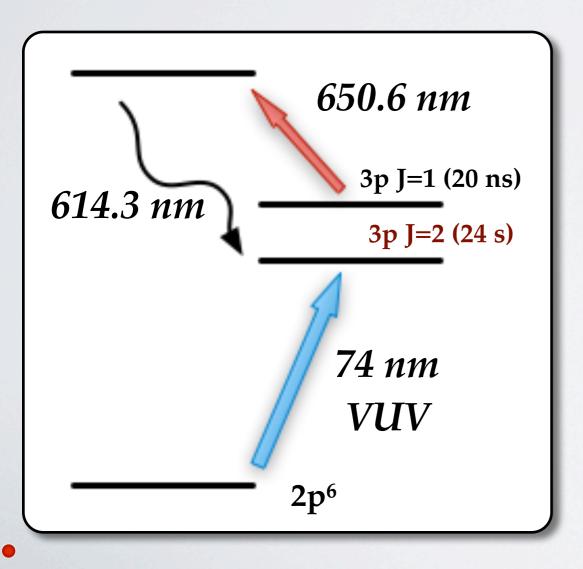
Some Technical Aspects - III

"Faraday Cup" for Ne* atoms Ne* atoms liberate electrons from metal plate -> Current flow

Some Technical Aspects - III

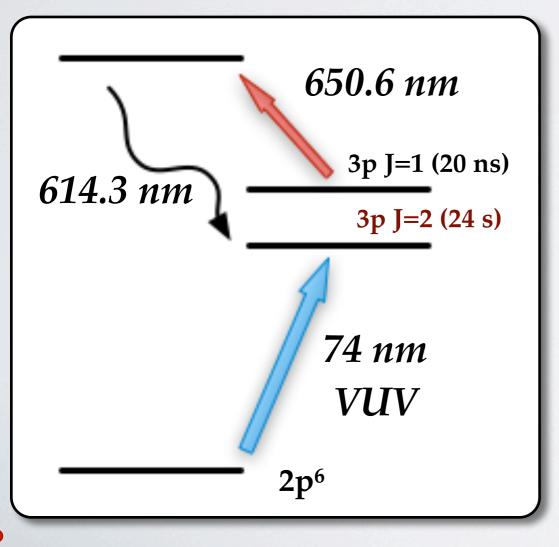

"Faraday Cup" for Ne* atoms Ne* atoms liberate electrons from metal plate -> Current flow

Replace metal plate w/ ITO to optically probe/slow Ne* (Transparent FC).



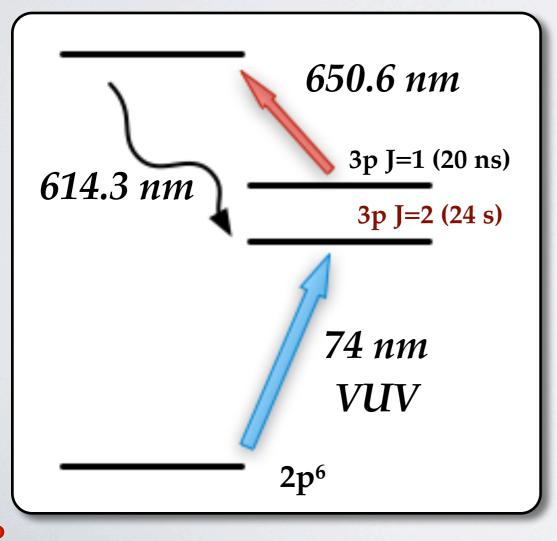
Suppresor

(+~50V)

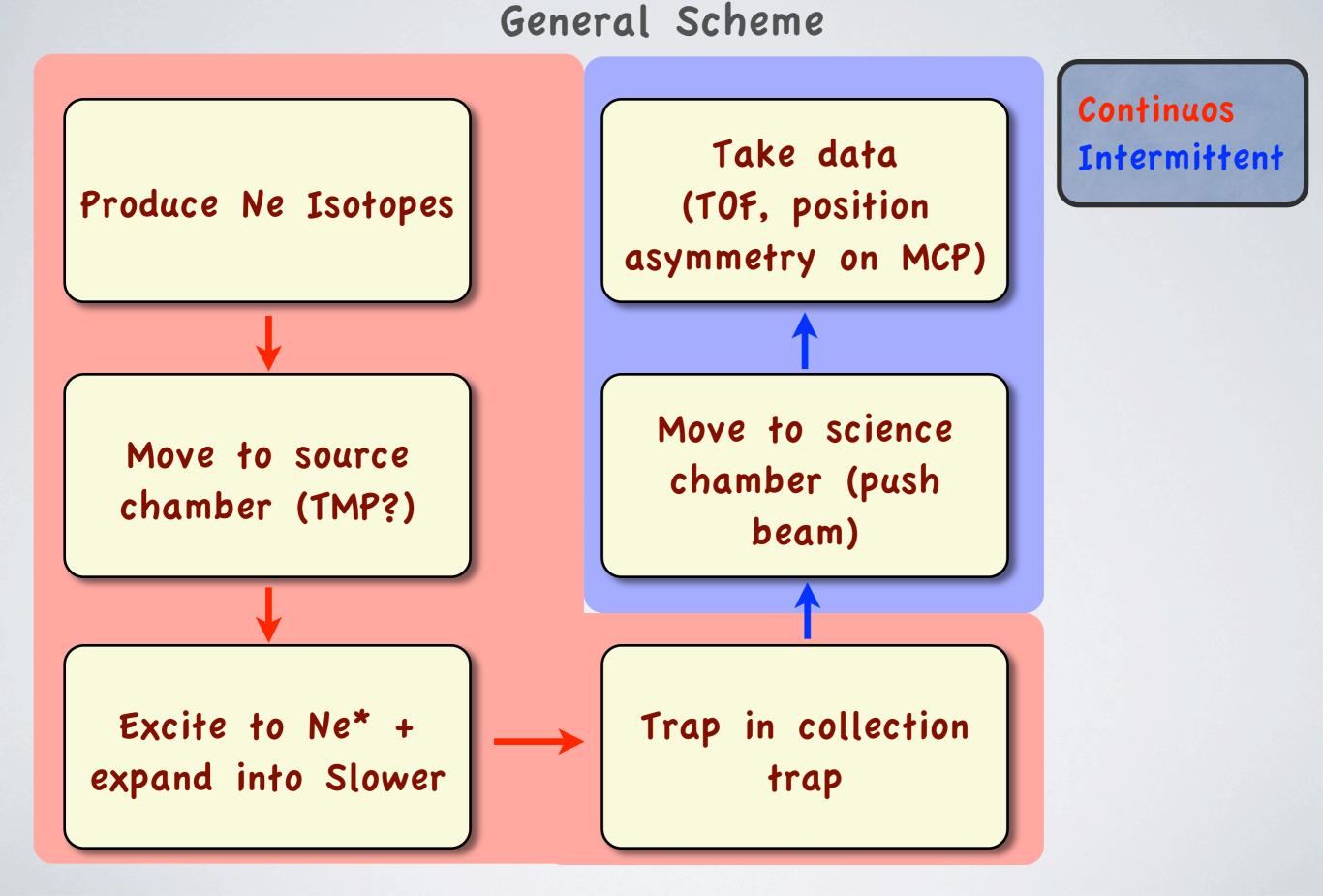


- Neon trapping only in the excited metastable Ne^{*} state.
- RF discharge/electron beam excitation typically gives 10⁻⁵ 10⁻⁶ efficiency.

- Neon trapping only in the excited metastable Ne^{*} state.
- RF discharge/electron beam excitation typically gives 10⁻⁵ 10⁻⁶ efficiency.

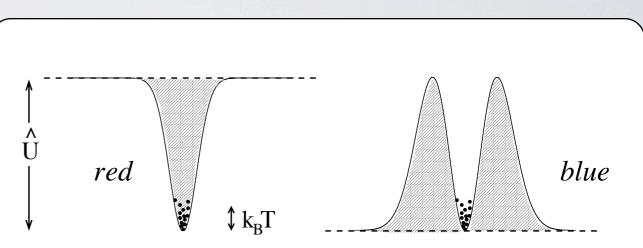

Possible solution (based in work at ANL for Kr/Ar) All optical excitation

2 photon excitation and spontaneous decay into metastable (long lived) state. ¹⁸Ne has same level structure as stable 20 Ne, some complications with 19 Ne. Trapping on J=2 >> J'=3 transition at 640nm.


Predicted improved of 2-3 orders of magnitude in efficiency.

Possible solution (based in work at ANL for Kr/Ar) All optical excitation

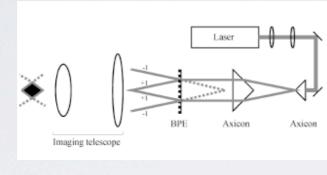
2 photon excitation and spontaneous decay into metastable (long lived) state. ¹⁸Ne has same level structure as stable 20 Ne, some complications with 19 Ne. Trapping on J=2 > J=3 transition at 640nm.

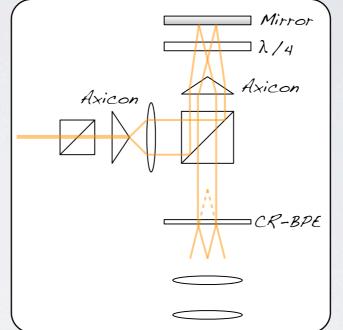

Measurement Scheme

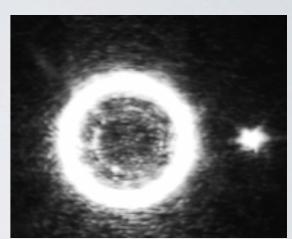
A Brief Aside Optical traps

• Once cooled and trapped by the MOT, atoms can be trapped by the purely dipole force.

Interaction of laser E field and induced dipole moment: $\tilde{p} = \alpha E$ $U_{dip} = -\frac{1}{2} \langle \mathbf{pE} \rangle$ $U_{dip}(\vec{r}) = \frac{3\pi c^2}{2w_0^3} \frac{\Gamma}{\Delta} I(\vec{r})$ $\gamma_{sc}(\vec{r}) = \frac{3\pi c^2}{2\hbar w_0^3} \left(\frac{\Gamma}{\Delta}\right)^2 I(\vec{r})$ $= w_{laser} - w_0$

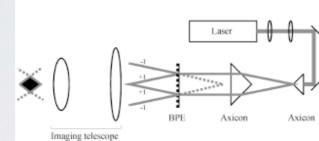


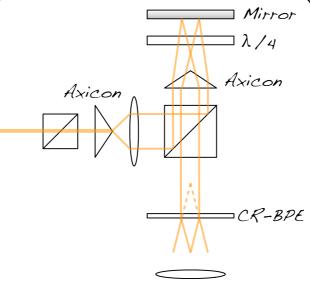

Red detuned traps are attractive Blue detuned traps are repulsive

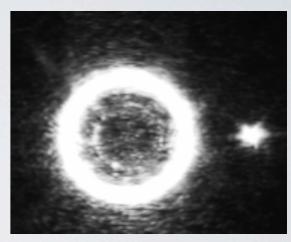

 Currently testing two optical traps (dark cavities surrounded by blue detuned light). Based on designs by Davidson *et al.* (slightly modified).

Currently testing two optical traps (dark cavities surrounded by blue detuned light). Based on designs by Davidson *et al.* (slightly modified).

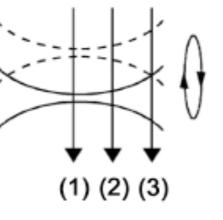
Single beam "axicon" trap ★

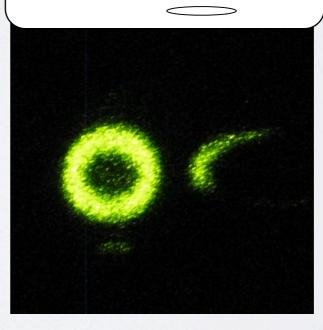


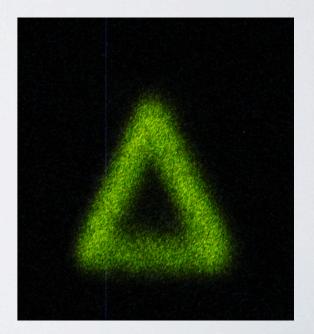




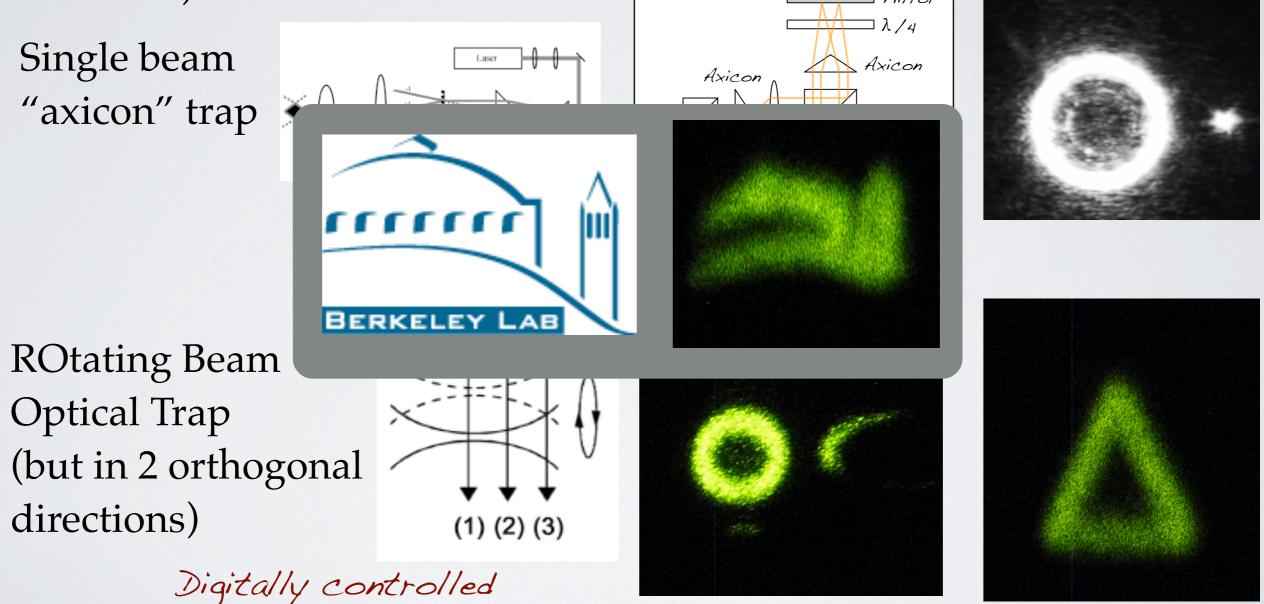
Currently testing two optical traps (dark cavities surrounded by blue detuned light). Based on designs by Davidson *et al.* (slightly modified).

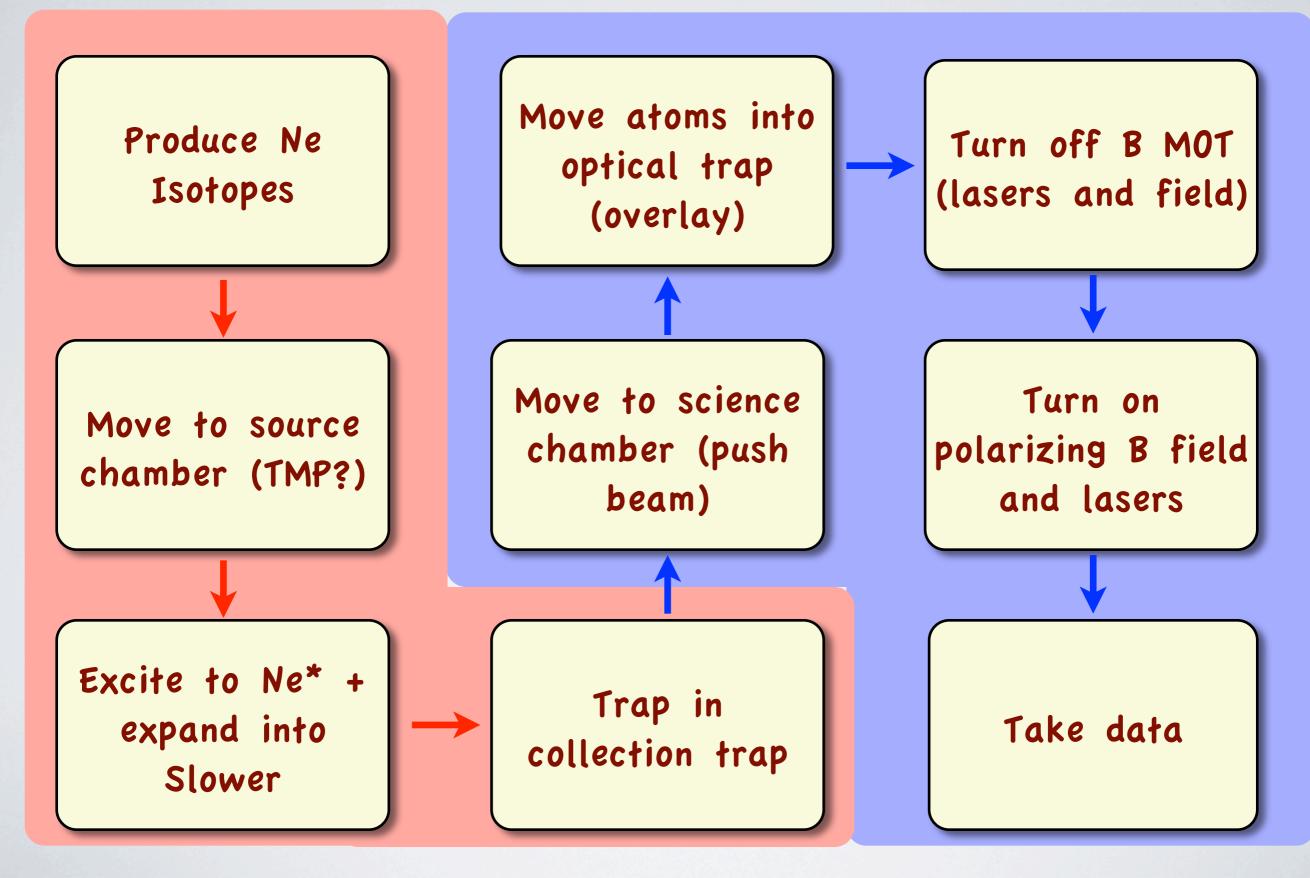

Single beam "axicon" trap ★(





ROtating Beam Optical Trap (but in 2 orthogonal directions)





Digitally controlled

Currently testing two optical traps (dark cavities surrounded by blue detuned light). Based on designs by Davidson *et al.* (slightly modified).

Polarization Measurement General Scheme

Some Technical Aspects - VI

Science Chamber

Optical access for MOT, Imaging, & Park traps. MOT/Polarization magnets internal to chamber (fast switch off/on)

PROSPECTS FOR PRODUCTION IN ISRAEL

17Ne:

 ${}^{16}\text{O} + {}^{3}\text{He} \rightarrow {}^{17}\text{Ne} + 2n - 26.7 \text{ MeV Thershold}$ ${}^{19}\text{F} + p \rightarrow {}^{17}\text{Ne} + 3n - 36.6 \text{ MeV Threshold}$ (LiF Target) ${}^{20}\text{Ne} + {}^{3}\text{He} \rightarrow {}^{17}\text{Ne} + {}^{6}\text{He} - 27 \text{ MeV Threshold}$

¹⁸Ne: Explored as a possible source for β beams ¹⁹F + p \rightarrow ¹⁸Ne + 2n

• 13 MeV Protons of LiF target, $3x10^{-5}/p$ (Takayama (2009)) 160 + ³He \rightarrow ¹⁸Ne + n - 3.2 MeV threshold

²⁰Ne + p \rightarrow ¹⁸Ne + t - 20 MeV threshold

¹⁹Ne:

²⁰Ne + n \rightarrow ¹⁹Ne + 2n - 16.8 MeV threshold ²⁰Ne + p \rightarrow ¹⁹Ne + d - 15 MeV Threshold ¹⁹F + p \rightarrow ¹⁹Ne + n

• 4 MeV Threshold

• (10⁻³/p for thick LiF, Kitwanga et. al (1990)). $^{19}F + ^{3}He \rightarrow ^{19}Ne + t - 3.2$ MeV Threshold

23Ne:

²³Na + n \rightarrow ²³Ne + p - 3.7 MeV threshold (neutron production target).

CAN THIS BE DONE IN ISRAEL?

SARAF

- New, (very) high current p/d accelerator (5mA/up to 40MeV) under construction at SOREQ.
- Neutron production also possible with Liquid-Li (for eg., but under construction). Talk by M. Hass.

Weizmann Institue

- * Neutron generator being purchased.
- Some production schemes may also be possible with the VDG accelerator.

PROSPECTS FOR PRODUCTION IN ISRAEL

17Ne:

 ${}^{16}\text{O} + {}^{3}\text{He} \rightarrow {}^{17}\text{Ne} + 2n - 26.7 \text{ MeV Thershold}$ ${}^{19}\text{F} + p \rightarrow {}^{17}\text{Ne} + 3n - 36.6 \text{ MeV Threshold}$ (LiF Target) ${}^{20}\text{Ne} + {}^{3}\text{He} \rightarrow {}^{17}\text{Ne} + {}^{6}\text{He} - 27 \text{ MeV Threshold}$

¹⁸Ne: Explored as a possible source for β beams

 $^{19}F + p \rightarrow ^{18}Ne + 2n$

13 MeV Protons of LiF target, 3x10-5/p (Takayama (2009))

²⁰Ne + p \rightarrow ¹⁸Ne + t - 20 MeV threshold ¹⁶O + ³He \rightarrow ¹⁸Ne + n - 3.2 MeV threshold

¹⁹Ne:

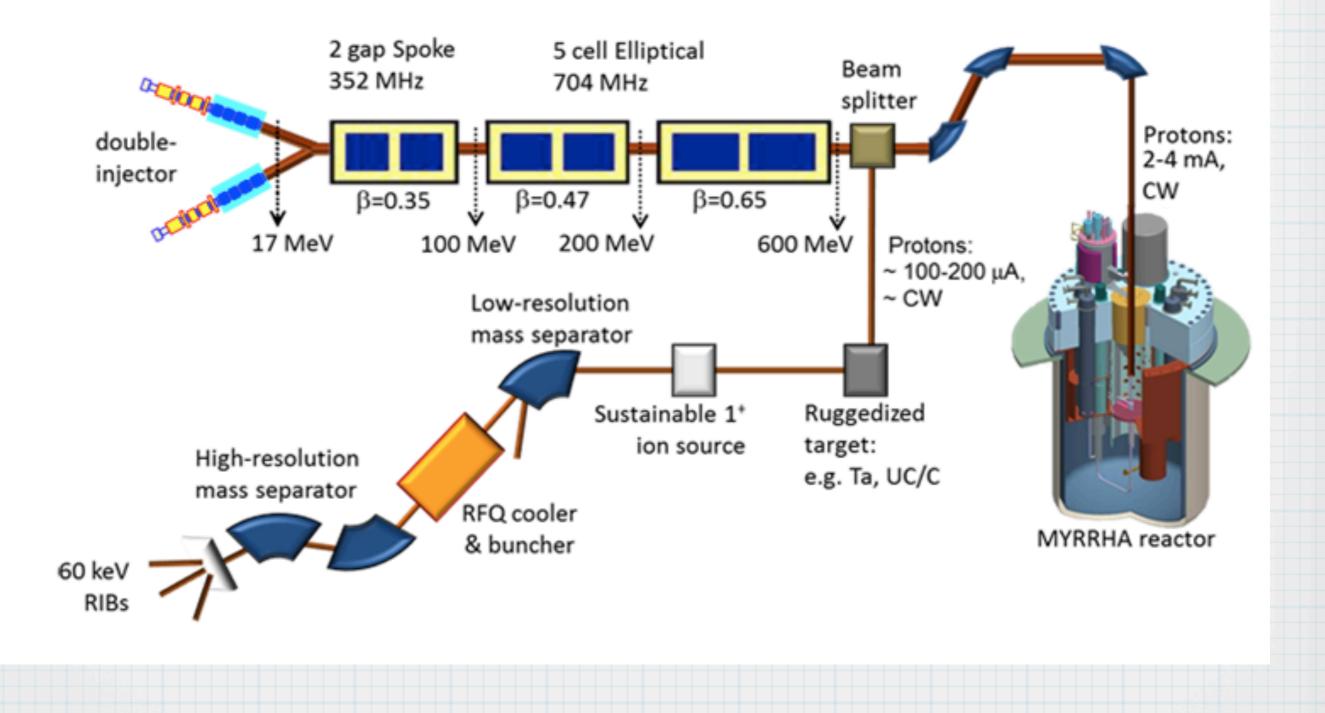
²⁰Ne + n \rightarrow ¹⁹Ne + 2n - 16.8 MeV threshold ²⁰Ne + p \rightarrow ¹⁹Ne + d - 15 MeV Threshold ¹⁹F + p \rightarrow ¹⁹Ne + n

- 4 MeV Threshold
- (10-3/p for thick Lif, Kitwanga et. al (1990)).

 $^{19}F + {}^{3}He \rightarrow {}^{19}Ne + t - 3.2$ MeV Threshold

PROSPECTS FOR PRODUCTION IN ISRAEL

¹⁷Ne: ¹⁶O + ³He \rightarrow ¹⁷Ne + 2n - 26.7 MeV Thershold ¹⁹F + p \rightarrow ¹⁷Ne + ³n - 36.6 MeV Threshold (LiF Target) ²⁰Ne + ³He \rightarrow ¹⁷Ne + ⁶He - 27 MeV Threshold ¹⁸Ne: Explored as a possible source for β beams ¹⁹F + p \rightarrow ¹⁸Ne + 2n • 13 MeV Protons of LiF target, 3×10^{-5} /p (Takayama (2009)) ²⁰Ne + p \rightarrow ¹⁸Ne + t - 20 MeV threshold ¹⁶O + ³He \rightarrow ¹⁸Ne + n - 3.2 MeV threshold


19Ne:

 ${}^{20}\text{Ne} + n \rightarrow {}^{19}\text{Ne} + 2n - 16.8 \text{ MeV threshold}$ ${}^{20}\text{Ne} + p \rightarrow {}^{19}\text{Ne} + d - 15 \text{ MeV Threshold}$ ${}^{19}\text{F} + p \rightarrow {}^{19}\text{Ne} + n$

- 4 MeV Threshold
- (10⁻³/p for thick Lif, Kitwanga et. al (1990)).

 $^{19}F + {}^{3}He \rightarrow {}^{19}Ne + t - 3.2 MeV Threshold$

POSSIBLE PRODUCTION SCHEMES @ MYRRHA W/ PROTONS (NON-SPALLATION)

17Ne:

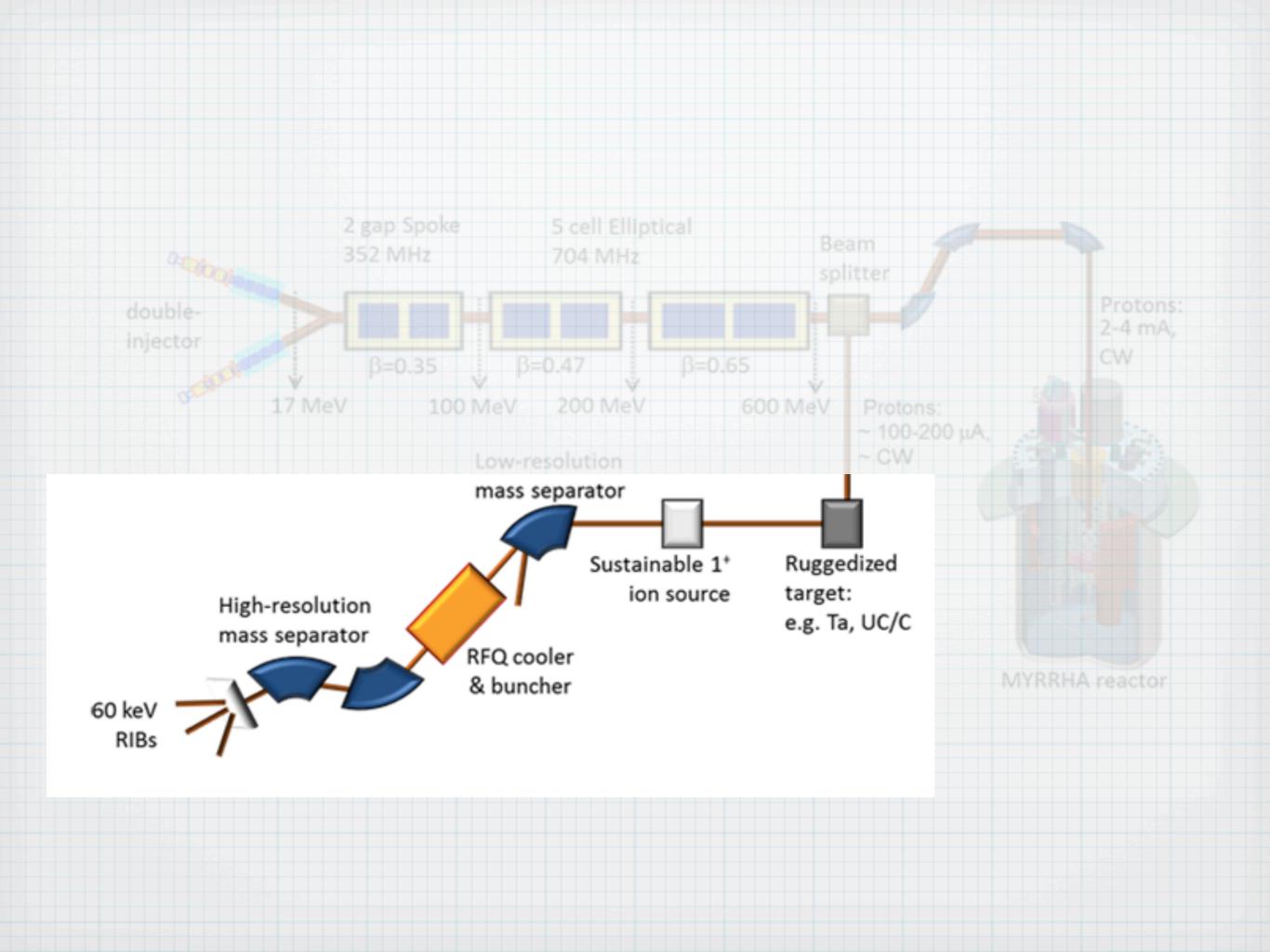
 $^{19}F + p \rightarrow ^{17}Ne + 3n - 36.6$ MeV Threshold (LiF Target)

$^{18}\text{Ne:}$ Explored as a possible source for β beams

 $^{19}F + p \rightarrow ^{18}Ne + 2n$

13 MeV Protons of LiF target, 3x10⁻⁵/p (Takayama (2009))

²⁰Ne + $p \rightarrow {}^{18}$ Ne + t - 20 MeV threshold


¹⁹Ne:

²⁰Ne + $p \rightarrow {}^{19}$ Ne + d - 15 MeV Threshold ¹⁹F + $p \rightarrow {}^{19}$ Ne + n

- 4 MeV Threshold
- (10-3/p for thick Lif, Kitwanga et. al (1990)).

23Ne:

 23 Na + n \rightarrow 23 Ne + p - 3.7 MeV threshold (neutron production target? - Talk by M. Hass directly following).

MYRRHA W/ CARBIDE TARGET

On-line data							Extrapolation to 100 µA target
Facility	Target and ion source	Ion	Mass no. (A)	Half-life	Beam intensity (µA)	Measured yield (ions/s)	Estimated yield (ions/s)
TRIUMF	SiC/C FEBIAD	Ne	17	109 ms	75	1.7E+05	2.3E+05
			18	1.672 s		7.9E+06	1.1E+07
			19	17.34 s		6.9E+07	9.2E+07
			23	37.24 s		4.2E+07	5.6E+07
			24	3.38 min		1.5E+06	2.0E+06
			25	602 ms		3.9E+02	5.2E+02

Other things to do with neon

- Neon EIT (Already have grant for developing this).
- Atomic beam lithography.
- Autoresonance in Ne* MOT.

- * Neon is a interesting candidate for beyond SM search (but this of course was known long ago).
- # HUJI has an active program which in aimed at achieving accurate measurements for Ne isotope.
- Productions schemes are possible in Israel (at least some of them are) and are also certainly possible @ MYRRHA.
- * We would welcome the opportunity to run @ MYRRHA in a few years.