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OUTLINE

• Nucleon Structure 101.

• Measuring the nucleon Form Factors.

• Experimental Results.

• Impacts.



NUCLEON STRUCTURE
• Nucleons are spin-1/2 particles.

• But measured magnetic moment is 
µp ⇠ 2.793µN

µn ⇠ �1.91µN

• Nucleons are not pointlike (also known from Deep 
Inelastic Scattering).

• Complex internal structure generated by interactions 
between pointlike (dressed?) constituents (quarks/
partons).

• Even more complex behavior comes from virtual 
constituents (“sea” quarks, gluons).
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IN THE BREIT FRAME....
It can be shown that...

J 0 = iev̄(p0)

(F1 + F2) �0 � EpB

m
F2

�
v(p)

~J = ie (F1 + F2) v̄(p0)~�v(p)

J 0 = ie2m�0†� (F1 � ⌧F2) = ie2m�0†�GE

~J = �e�0† (~� ⇥ ~qB)� (F1 + F2) = �e�0† (~� ⇥ ~qB) �GM

The Hadronic Current

Explicitly

Sachs Form Factors related to electric and magnetic part 
of the interaction - in the Breit Frame.



THE NAIVE INTERPRETATION
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As wrong as you can be while still being somewhat 
right...



Experimentally found to approximately  
follow (to about 10%) the dipole form:

Dipole form in Q space → exponential in r 
space.

We know the limiting values at Q2=0.

But... We know that there are deviations 
from dipole (very pronounced at high Q2).
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FF are a basic property of the nucleon, related to the complex 
internal structure.

Completely describe the EM structure of the nucleon ground 
state.

Comparing GE and GM → difference between spatial distributions 
of charge and magnetization.

Input to other calculations (more later).

Different theories constrained by different Q2 regions.

An important place to look for quark/gluon → hadron/meson 
picture transition.

EM structure expected to change in the nuclear medium.

Why We Care
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Rosenbluth Separation

• Measure the reduced cross section at several values of ! 
(angle/beam energy combination) while keeping Q2 fixed.

• Linear fit to get intercept and slope.

�R = (d�/d�)/(d�/d�)Mott = ⇥G2
M + ⇤G2

E

• But... GM suppressed for low Q2 
(and GE for high).

• Also normalization issues/
acceptance issues/etc. make it 
hard to get high precision.

Measurement Techniques



Recoil Polarization
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• Direct measurement of form 

factor ratios by measuring the ratio 

of the transferred polarization P
t 

and P
l .

Advantages: 
• only one measurement is needed for 

each Q2.• much better precision than a cross 

section measurement.

• two-photon exchange effect small.

4

GHP 04/30/2009
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• A single measurement gives ratio of form factors.
• Interference of “small” and “large” terms allow 
measurement at practically all values of Q2.

Measurement Techniques



Beam-Target Asymmetry
Polarized Cross Section: σ=Σ+hΔ∆

A =
�+ � ��
�+ + ��

A = fPbPt

AT� ⌅⇤ ⇥
a cos��G2

M +

ALT� ⌅⇤ ⇥
b sin�� cos⇥�GEGM

cG2
M + dG2

E

Measure asymmetry at two different target settings, say θ*=0, 90.
Ratio of asymmetries gives ratio of form factors.
Functionally identical to recoil polarimetry measurements.

Measurement Techniques



The high Q2 discrepancy

• At high Q2 Rosenbluth and polarization measurements 
for the proton are in violent disagreement.

• Almost certainly explained by multi-" effects.
• But what about low Q2?



The high Q2 discrepancy

• At high Q2 Rosenbluth and polarization measurements 
for the proton are in violent disagreement.

• Almost certainly explained by multi-" effects.
• But what about low Q2?

“As G
E=F1 - # F2., it is a priori quite likely that 

G
E becomes negative for large values of k 2” - 

N. Dombey, Rev. Mod. Phys. 41, 1 (1969). - 

Not supported by new results.



Why Low Q2?

• Deviations from dipole form evident.

• Probe static properties (Q2 → 0) and peripheral structure.

• Small Q2 does not allow for 
pQCD, many competing EFTs.

• Hitting the $ mass region.

• Potentially impacts many high 
precision measurements (nucleon 
GPDs, parity violation, Zemach 
radius,...).



Low Q2 Notable Results

Friedrich & Walcher analysis
Eur. Phys. J. A17, 607 (2003)

•Bump/dip (+2 dipoles) 
structure in all 4 form factors.

•Possibly interpreted as effects 
of a virtual meson cloud.
BLAST @ MIT Bates - proton
C.B. Crawford et al., Phys. Rev. Lett. 98, 
052301 (2007)

•Beam target asymmetry 
measurement using polarized H 
internal gas target.

• (Barely) consistent with unity and 
the F&W analysis.



The JLab low Q2 program
Proton FFs

• LEDEX - Single arm proton measurement

• Recoil polarization measurement of the FF ratio.

• Calibration run from "D measurement.

• 8 Q2 data points (0.25 - 0.5 GeV2) with ~ 1.5% uncertainty on best data points.

• Led to the proposal of:



The JLab low Q2 program
Proton FFs

• LEDEX - Single arm proton measurement

• Recoil polarization measurement of the FF ratio.

• Calibration run from "D measurement.

• 8 Q2 data points (0.25 - 0.5 GeV2) with ~ 1.5% uncertainty on best data points.

• Led to the proposal of:

• E08-007 - Two arm experiment (proton + tagged electron for bck suppression)

• A dedicated 2 part experiment to map the proton FF ratio at low Q2.

• First part used recoil polarization to achieve:

• ~ 1% uncertainty (best ever achieved) at Q2~ 0.3 - 0.7 GeV2.

• Second part will use beam target asymmetry (more later).
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A Sense of Scale
World Polarization Data



A Sense of Scale

Deviation from unity confirmed
No evidence of structure
Relativistic effects important even at low Q2

E08007 - Part I
(and E03-104)



A Sense of Scale

Deviation from unity confirmed
No evidence of structure
Relativistic effects important even at low Q2

E08007 - Part I
(and E03-104)

Low & High Q2 

Extrapolations inconsistent.



Mainz A1 Measurement
High precision low Q2



What we’ve learned - Recent Fits

•Plots compare (2007) AMT 
fit to fit using newest data.

•New fits reduce GE by ~ 
2%.

•Slope as Q2 → 0 changed 
(impacts radii).



Extracting the individual FFs

High precision cross section and FFR 
combined → High precision individual form 
factors.
Deviation from unity (at least for Q2 ~ 
0.39 GeV2) caused by GE.

G. Ron et al., Phys. Rev. Lett. 99, 202002 (2007)

Will eventually combine with high 
precision Mainz XS database.



What we’ve learned
Charge Densities

• Sachs FFs cannot be related to charge/
magnetization densities:

• Relativistic effects (Lorentz contraction).

• Initial/Final states not identical (cannot be 
interpreted as density).

• Can be shown that F1 & F2 are 2D transforms of 
charge and magnetization densities.

• Low Q2 expansion gives:

• And fit to data gives:

G. Miller, Phys. Rev. Lett. 99, 112001 (2007)
G. Miller, E. Piasetzky & G. Ron, Phys. Rev. Lett. 101, 082002 (2008)
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Actually needs to be modified.
But overall conclusion stays.



The Proton Radius
A multitude of extractions

• Low Q2 Expansion of 
GE : 

• Lattice QCD in the 
Chiral limit.

• Hydrogen Lamb shift.

• Muonic Hydrogen 
Lamb shift.

GP
E(Q2) ⇠ 1 = 1�

q2
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The Proton Radius
A multitude of extractions

• Low Q2 Expansion of 
GE : 

• Lattice QCD in the 
Chiral limit.

• Hydrogen Lamb shift.

• Muonic Hydrogen 
Lamb shift.

GP
E(Q2) ⇠ 1 = 1�

q2
⌦
r2

↵

6
+ · · ·

• Sensitive to functional form 
chosen for GE. Also, data at 
Q2 ~ 0 scarce (non existent).

• Sensitive to different 
theoretical corrections.

• Sensitive to lattice size and 
small perturbations in 
parameters.



The Proton Radius Puzzle

# Extraction <rE>2 [fm]

1 Sick 0.895±0.018

2 CODATA 0.8768±0.0069

3 Mainz 0.879±0.008

4 This 
Work 0.870±0.010

5 Combined 
2-4 0.8764±0.0047

6 Muonic 
Hydrogen 0.842±0.001
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The Proton Radius Puzzle
My Caveats

My wishlist
• E08007-II to measure very low Q2 form factors.
• Possible other experiments at low Q2 (Proton scattering off 

atomic hydrogen? %p scattering experiment?).
• Another theoretical look at the derivation from muonic 

Lamb shift.
• Comparison of (as yet unreleased) Zemach radius data from 

PSI.

• Sachs form factors not measured at Q2 = 0.
• Can we even extrapolate Sachs form factors to Q2 and claim that we get the 

radius? Extrapolation from relativistic to non-relativistic region.
• Mainz data extracted with no 2-photon corrections (and get a strange magnetic 

radius).
• Electron scattering results agree well with CODATA (Lamb shift) - seems to 

indicate electron/muon discrepancy.



The Zemach Radius

• Hyperfine splitting of the hydrogen ground state:

• Zemach radius (effect of proton internal structure on energy level shift):

rZ = � 4
⇥
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0

dQ

Q2

�
GE(Q2)

GM (Q2)
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� 1
⇥

• Sensitivity to details in the FFs is 
completely contained in the Q2 < 1 GeV2 
region.

• Leading theoretical uncertainty in one of 
the most precisely measured 
experimental quantities (test of QED).
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0.808 1.049 -40.22
0.851 1.025 -39.29
0.868 1.075 -41.22
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• Hyperfine splitting of the hydrogen ground state:

• Zemach radius (effect of proton internal structure on energy level shift):
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• Sensitivity to details in the FFs is 
completely contained in the Q2 < 1 GeV2 
region.

• Leading theoretical uncertainty in one of 
the most precisely measured 
experimental quantities (test of QED).
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�
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0.879 1.091 -41.85
0.878 1.069 -40.99
0.808 1.049 -40.22
0.851 1.025 -39.29
0.868 1.075 -41.22

Note that using different parametrizations 
results in deviations larger than quoted 

uncertainty!



PV Experiments

• Parity violation experiments 
aim to measure the strange 
quark content of the nucleon by 
detecting interference between 
elastic EM scattering and 
neutral weak ep scattering.

• Determination of strange quark 
form factors relies on 
knowledge of EMFF.

• Shifts of ~ 0.5& “easy”.

Q2 ΔA/σ ΔA/A
0.38
0.56
1.0

0.50
0.231
0.65

0.42 1.6% G0 FWD
0.50 1.6% G0 FWD
0.30 0.8% G0 FWD
0.50 1.7% HappexII 
0.12 0.2% G0 BCK
0.14 0.3% G0 BCK

APV =

⇤
�

GF M2
p Q2

⇤�
⇥

2

⌅ ⇤
�
1� 4 sin2 ⇥W

⇥
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E (Gn�
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E) + ⌅Gp�
E (Gn�
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M )

⇧ (Gp�
E )2 + ⌅ (Gp�

M )2

⌅
�AA



Isovector / Isoscalar Separation
Reminder: IV=p-n, IS=p+n

Important for Lattice QCD (Isovector)

Plot shows the fractional change in the isovector form factors when 
using J. Arrington’s new vs. old parametrizations (for the proton).



E08007 - Part II
• High precision (< 1%) survey of the FF ratio at 

Q2=0.01 - 0.16 GeV2.

• Beam-target asymmetry measurement by 
electron scattering from polarized NH3 target.

• Electrons detected in two matched 
spectrometers.

• Ratio of asymmetries cancels systematic 
errors → only one target setting to get FF 
ratio.

• Designed to overlap E08007-I and Bates 
BLAST- but magnet issues kill that.

• Scheduled for Dec 2011/Jan 2012 (but delayed 
till Feb 2012!)
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• High precision (< 1%) survey of the FF ratio at 

Q2=0.01 - 0.16 GeV2.

• Beam-target asymmetry measurement by 
electron scattering from polarized NH3 target.

• Electrons detected in two matched 
spectrometers.

• Ratio of asymmetries cancels systematic 
errors → only one target setting to get FF 
ratio.

• Designed to overlap E08007-I and Bates 
BLAST- but magnet issues kill that.

• Scheduled for Dec 2011/Jan 2012 (but delayed 
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Comparison to other Experiments
Coverage

Mainz (Cross Sections)

BATES

LEDEX

E08007 - I

E08007 - II

Polarization

Complements MAINZ
Overlaps LEDEX, E08007-I - Different technique (systematics)

Mainz (Cross Sections)

BATES

LEDEX

E08007 - I

Polarization

E08007 - II

Complements MAINZ
Does NOT Overlap LEDEX, E08007-I



Comparison to other Experiments
Coverage
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E08007 - Part II
Projected uncertainties
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Zemach Radius

Significant contribution to 
integral above Q2=1 GeV2 
and below Q2=0.01 GeV2

Negligible contribution 
to uncertainty above 
Q2=1 GeV2
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• 1/Q2 term suppresses high Q2

• [1-GE(Q2)GM(Q2) /µp] suppresses lowest 
Q2.

• As GE, GM become small, [1-
GE(Q2)GM(Q2) /µp]➙1, and the form 
factor uncertainty has almost no 
impact on Zemach moment
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E08007 Coverage

10-2 10-1 100

Q2 @GeV2D

Mainz (Cross Sections)

BATESPolarization

E08007 - II

LEDEX

E08007 - I

Ê
Ê
Ê Ê Ê Ê

Ê Ê

Û
Û Û

Û Û
‡

Ï
Ï

Ï

Ï Ï
Ï
Ï

Ï

X

X

X
X X X

X

X

X

X

X

X

X

X

X

X

Ê Ê Ê Ê Ê Ê Ê Ê

Mp2 4Mp2

10-2 10-1 100
0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

Q2 @GeV2D

m P
G
E
êG M

10-6 10-5 10-4 10-3 10-2 10-1 100
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

Q @GeVD

Q
◊In
te
gr
an
d

10-2 10-1 100
0

2

4

6

8

10

12

Log10Q
2

l
@fmD

10.1 fm

3.03 fm
2.25 fm

1.47 fm

E08007 - II

E08007 - I



Summary
• Form factors are physical, model-independent, observable of the nucleon.

• Many discoveries over the years have changed our understanding of one 
of the basic constituents of matter and still new issues keep popping up.

• While high energy (and Q2) are, of course, important, there is great 
significance to performing low Q2 measurements (only real way to 
discriminate between EFTs).

• Very high precision measurements are now possible and required for high 
precision experiments.

• It seems that there is no evidence (at least in the FF ratio) for narrow 
structures.

• One more high precision, low Q2 experiment before the 12 GeV upgrade. 
Limited number of candidate facilities for more low Q2 experiments.



And Finally
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Backup



• Scatter recoil nucleons off 
a nucleus (carbon/
hydrogen/...).

• Spin-Orbit coupling causes 
angular dependence on 
spin.

How to measure the polarization
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Systematic uncertainties cancel out 
(to ~0.5%)!
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