
Multi-Photon Entanglement
Quantum Non-Locality

And One Way Computing
H.S. Eisenberg’s QUANTUM OPTICS group seminar 2008

Part of the slide are adaptations taken from talks by: Andreas Reinhard; Kevin Resch; 
Dan Browne; Sean Clark (no  slide was bluntly stolen it is states explicitly)
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1. Any specific result obtained in any individual or in any two-
photon joint measurement is maximally random

2. given any two results of measurements on any two photons, 
we can predict with certainty the result of the corresponding 
measurement performed on the third photon 

Same can be done for H’/V’

In  every one of the three yyx, yxy and xyy
experiments, Third photon measurement 

(circular and linear polarization) is predicted 
with certainty



local realism
Assume we did the measurement and found perfect correlations

Each photon carries elements of reality for both x and y

Elements of reality
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But what if we decide to measure xxx?
local realism
- x is independent the measurement performed on the other photon.

1+=iiYY- And since always:

)()()( 321321321321 XYYYXYYYXXXX ⋅⋅=
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321 ''' VHH
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321 ''' HHV

1321 −=XXX

Odd number of V’s

The possible results:



Quantum Mechanics?
321 ''' VVV

321 ''' VHH

321 ''' HVH

321 ''' HHV

local realismQuantum Mechanics

One 
measurement 
decides who 

is right 



10 years later:

A 4 photon GHZ state



If we insist on having only three photons…
'H'V

'H

'V



verification of multi-photon entanglementObservation of the HVVH & VHHV components

200:1 
ratio



Verification of actual entanglement by performing
polarization test at a V’/H’ basis
8 out of 16 combinations are possible all with even number of H’

HHHV is suppressed with a visibility of 0.79±0.06



Experimental Test of Quantum Non-Locality

First: perform yyx, yxy, and xyy experiments

Second : perform xxx experiments:

Q-M is ‘right’ 85% of the time

But… Are we sure that this means Q-M is right???

If our visibility is 74% P(xxx = +1) = 0.87 ± 0.04

Q-M

Were does 
this prediction 
come from



To address this argument, a number of inequalities for N-particle GHZ
states have been derived. For instance, Mermin’s inequality for a 
threeparticle GHZ state reads as follows: |σxσyσy + σyσxσy + σyσyσx −
σxσxσx| ≤ 2 , where symbol · denotes the expectation value of a specific 
physical quantity. The necessary visibility to violate this inequality is 
50%. The visibility observed in our GHZ experiment is 71±4% and 
obviously surpasses the 50% limitation. Substituting our results
measured in the yyx, yxy and xyy experiments into the left-hand side of, 
we obtain the following constraint: σxσxσx ≤ −0.1 , by which a local 
realist can thus predict that in an xxx experiment the probability 
fraction for the outcomes yielding a +1 product, denoted by P(xxx = 
+1), should be no larger than 0.45±0.03 (also refer to the first bar in 
…..

Bla Bla Bla…



only if both incoming photons 
have the same polarization they 
can go to different outputs. 
Thus, a coincidence detection of 
all six outputs corresponds to 
the state 

6 photon GHZ
Start by preparing 3 EPRs’



Entanglement witness =  An observable that has a 
positive expectation value on all biseparable states

Characterization

For the six-photon GHZ state:

Re-writing the state:

Are measurament on the x-y plane



seven measurement settings are required



W-STATES
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321321 VVVHHH +=ψGHZ state:

W state:

Which one is better?

GHZ  violates Mermin (Bell?) inequalities more (what does that 
mean?)

W-States are less fragile then GHZ states



TH = 2TV
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VHkji ijkHHHHHH CCP
CHHH is the number of recorded HHH events

incoherent mixture
)(3/1 VHHVHHHVHHVHHHVHHVM ++=ρ

equally weighted mixture of biseparable states

abcacbbcaB ρρρρρρρ ⊗+⊗+⊗= 3/13/13/1

ρbc = bell state between modes b and cHHa =ρ



equally weighted mixture of biseparable states

1/4 1/4

1/12 1/12 1/12

incoherent mixture

W-State
3/8

)(3/1 VHHVHHHVHHVHHHVHHVM ++=ρ
incoherent mixture

L/R Basis

equally weighted mixture of biseparable states

abcacbbcaB ρρρρρρρ ⊗+⊗+⊗= 3/13/13/1



Characterizing the Entanglement

j=a,b,ckj=±1
correlation function

Measurement Basis

Pkakbkc(φa; φb; φc) is the probability for a threefold coincidence with the results ka, kb, and kc for 
the specific setting of phases φj.



correlation function

For a W-state

φb= φc=0



φb= φc=0

Note that EGHZ(φa,φb,0)=0 While |Ew (φa,π/2, π/2)|<2/3



Robustness of the entanglement

Correlation between a and b, depending on the 
measurement result of the photon in mode c

H

V



Quantum State Tomography
A separable stateA test of the Peres-Horodecki criterion

λΗ = -0.5 λV = -0.5
λΗ

exp = -0.348±0.019 λV
exp = -0.113±0.062

H V



W-States in multiqubit systems
The totally symmetric state including N-1 zeros and 1 ones

Example: N=4:

reduced density operators ρkm:

No experimental W-state > 3 yet



Measures of entanglement using the density matrix

Fidelity -a measure of state overlap: 



Tangle - The concurrence and tangle are measures of the non-classical
properties of a quantum state

Concurrence: For a non-Hermitian matrix

For r1<r2<r3<r4 eigenvalues of R

Concurrence:

Tangle:

For a product state: T=0

For a Bell state: T=1



Entropy and the Linear Entropy - The Von Neuman entropy quantifies the 
degree of mixture in a quantum state

eigenvalues of ρ

The linear entropy for a two-qubit system:

eigenvalues of ρ
For a pure state: ρ2 = ρ Tr[ρ] =1

SL = 0 for a pure state
SL = 1 for a completely mixed state



Cluster states andCluster states and
OneOne--way quantum computationway quantum computation

“1”
Slide adopted from Kevin Resch (Waterloo U)



Cluster States
Examples

In two qubits: Bell State
In three qubits: GHZ state

In general, “Cluster States” have no simple state 
vector representation (no. of terms increases 
exponentially in no. of qubits).

Stabiliser formalism provides an easy and 
compact description.



Stabiliser Formalism

Operator O is stabiliser of state |ψ> if:

ψψ =O

Specifying multiple stabilisers can define a 
sub-space, or even a specific state.



Cluster states are pure quantum states of two level systems ~qubits! 
located on a cluster C.

This cluster is a connected subset of a simple cubic lattice Zd in d>1

The cluster states |φ{k}>c obey the set of eigenvalue equations:

with the correlation operators:

Cluster States



Stabilizers for the Cluster State
A cluster state on a given qubit array A is 
defined by the following stabilisers.

Aa ∈∀

}1,0{∈ak

where ngbr(a) represents all nearest neighbours of qubit a.

The state is completely defined by the stabilizer 
eigenvalue equations, all of its properties can be 
calculated in terms of the stabilisers.

For  κa=0, we have a special case



For:
An Ising Hamiltonian will transform 
a latice (1,2,3D) into a cluster state
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Example Cluster States
• For one dim cluster with two qubits

• For one dim cluster with three qubits

• For one dim cluster with four qubits

1 (|00> + |01> + |10> - |11>)
2

1 (|000> + |001> + |010> - |011> + |100> + |101> - |110> + |111>)
2 2

1 (|0000> + |0001> + |0010> - |0011> + |0100> + |0101> - |0110> + |0111> 
4
    + |1000> + |1001> + |1010> - |1011> - |1100> - |1101> + |1110> - |1111>)



Generating a Cluster State
• First produce the product state

• Then apply the entangling operator 

Where       is the set of positive shifts by one place in one 
dimension (i.e. for d = 3                                       )
And 

The resultant state can be shown to satisfy eigenvalue equations

| |C a C a∈+ > = ⊗ + >

( )

, | d

C ab

a b C b a

S S
γ∈ − ∈

= ∏
dγ

3 {(1,0,0) , (0,1,0) , (0,0,1) }T T Tγ =

( ) ( ) ( ) ( )1 (1 )
2

ab a b a b
z z z zS σ σ σ σ= + + + ⊗



How much entangelment is in there?
• Two measures of entanglement useful in 

characterizing  the properties of a cluster state can be 
defined on the states of n qubits:
– A state is maximally connected if any pair of qubits can 

be projected, with certainty into a pure Bell state by local 
measurements on a subset of the other qubits

– The persistency of entanglement is the minimum 
number of local measurements such that, for all 
measurement outcomes, the state is completely 
disentangled

• A cluster state of n qubits is maximally connected and has

max{ | / 2}eP p p n= ≤



Logical and cluster qubits
• A distinction is made between cluster qubits as 

shown in the diagram and logical qubits which 
correspond to qubits in a register in a quantum 
network computation

• The logical qubits can be thought to “flow” during 
the computation from input clusters qubits 1, 15 to 
output cluster qubits 7, 21

A Controlled Not Cluster



•Prepare cluster state
Measure the state of qubit j in an chosen basis

• Consecutive measurements on qubits 1, 2, 3 disentangle the
state and completely determine the state of qubit 4.

• The state of „output" qubit 4 is
dependant on the chosen bases.

• Classical feedforward makes
a OWQC deterministic

Operations on qubits

( ) { } ( )1+ ,     where  0 1
2

i
j j j j j j

B e αα α α α= − ± = ±



Realization of a CNOT gate
• Prepare the state:

• Entangle the 15 qubits of the cluster C15 via the unitary
operation S(C15)

• Measure all qubits of C15 except for the outputs (7, 15) as 
in the following sketch

Measure in σx basis

Measure in σy basis



Dependent on the measurement results we get the 
following gate:

With the byproduct having the form:

Measurement si
on qubit i



Realization of a 4 qubit CNOT gate
• Prepare the state |ψ>c4 :

• Entangle the 4 qubits of the cluster C4 via the unitary
operation S(C4)

• Measure σx of  qubits 1and 2

• You get the following quantum state:

byproduct

• You don’t keep the control:



General one qubit SU(2) rotation

Euler Representation

Measurement basis:



• Prepare the state:

• Entangle the 5 qubits of the cluster C5 via the unitary
operation S(C5)

Measure qubits 1–4 in the following order and basis:
measure qubit 1 

measure qubit 2 in 

measure qubit 3 in 

measure qubit 4 in

±ξ ±η ±ζ

General one qubit SU(2) rotation



Dependent on the measurement results we get the 
following gate:

With the byproduct having the form:

Measurement si
on qubit i

General one qubit SU(2) rotation



Qustion: What do we do with the byproduct UΣ?
Answer: propagate it forward using classical 
communication and re-interpret the final answer 
at according to the measurement results.

Generaly:

We use the following propagation relations:

for CNOT gates:
for Hadamard and p/2 phase gates

and for arbitrary rotation



As a result:

The byproduct is propagated 
to the end state



6 photon 
Cluster State

If one is to apply a 
Hadamard to photon 4



Lets’ do it in two steps
1: Combine 3 and 2

2: Combine 5 and 4

6 photon 
Cluster State



For the six-photon Cluster state a different witness is used:



Scheme to construct various six-photon ‘graph’ states



SU(2) rotation & gates (Zeilinger)
• A general SU(2) rotation and 2-qubit gates

• CPhase operations + single qubit
rotations = universal quantum computer!



Doing the experiment (Doing the experiment (Zielinger of courseZielinger of course))

||ψψ> > = |HHHH>+|HHVV>|HHHH>+|HHVV>
+|VVHH>+|VVHH>--|VVVV>|VVVV>



Quantum state tomography Reconstructed 
density matrix
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Rotation
•Disentangle qubit 1 from qubits 2, 3, 4

•and project the state on                   => post selection
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Single-qubit rotations

2 0.86 0.03
    0.85 0.044 2

0.83 0.030

F

π

π πα β

⎧
±⎧⎪

⎪ ⎪= = = ±⎨ ⎨
⎪ ⎪ ±⎩⎪⎩



Two-qubit gates




	Logical and cluster qubits

