Multi-Photon Entanglement Quantum Non-Locality And One Way Computing

H.S. Eisenberg's QUANTUM OPTICS group seminar 2008

Part of the slide are adaptations taken from talks by: Andreas Reinhard; Kevin Resch;
Dan Browne; Sean Clark (no slide was bluntly stolen it is states explicitly)

GHZ-A new state (of mind)

Going beyond Bell's Theorem
1989
Daniel M. Greenberger ${ }^{1}$, Michael A. Horne ${ }^{2}$, and Anton Zeilinger ${ }^{3}$. ${ }^{1}$ City College of the City University of New York, New York, New York
${ }^{2}$ Stonehill College. North Easton, Massachusetts
${ }^{3}$ Atominstitut der Oesterreichischen Universitaeten, Wien, Austria
GHZ state: $\left.\quad|\psi\rangle=\frac{1}{\sqrt{2}}\left(\left|H_{3}\right\rangle\left|H_{2}\right\rangle\left|H_{3}\right\rangle+\left|V_{3}\right\rangle\left|V_{2}\right\rangle V_{3}\right\rangle\right)$

$$
\begin{array}{ll}
\left|H^{\prime}\right\rangle=\frac{1}{\sqrt{2}}(|H\rangle+|V\rangle), & \left|V^{\prime}\right\rangle=\frac{1}{\sqrt{2}}(|H\rangle-|V\rangle) \\
|R\rangle=\frac{1}{\sqrt{2}}(|H\rangle+\mathrm{i}|V\rangle), & |L\rangle=\frac{1}{\sqrt{2}}(|H\rangle-\mathrm{i}|V\rangle)
\end{array}
$$

$$
|H\rangle=\binom{1}{0} \quad|V\rangle=\binom{0}{1} \quad \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

x measurement: $\left|H^{\prime}\right\rangle \quad\left|V^{\prime}\right\rangle$

$$
\sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

y measurement: $\quad|R\rangle \quad|L\rangle$

$$
\sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)
$$

$$
\begin{aligned}
|\Psi\rangle= & \frac{1}{2}\left(|R\rangle_{1}|L\rangle_{2}\left|H^{\prime}\right\rangle_{3}+|L\rangle_{1}|R\rangle_{2}\left|H^{\prime}\right\rangle_{3}\right. \\
& \left.+|R\rangle_{1}|R\rangle_{2}\left|V^{\prime}\right\rangle_{3}+|L\rangle_{1}|L\rangle_{2}\left|V^{\prime}\right\rangle_{3}\right)
\end{aligned}
$$

1. Any specific result obtained in any individual or in any twophoton joint measurement is maximally random
2. given any two results of measurements on any two photons, we can predict with certainty the result of the corresponding measurement performed on the third photon

Same can be done for $H^{\prime} / \mathrm{V}^{\prime}$
In every one of the three $y y x, y x y$ and $x y y$
experiments, Third photon measurement (circular and linear polarization) is predicted with certainty

local realism

Assume we did the measurement and found perfect correlations
Each photon carries elements of reality for both x and y

Elements of reality

$X_{i} \in\{(-1,1)\}$ for H^{\prime} / V^{\prime} polarization
$Y_{i} \in\{(-1,1)\} \quad$ for $\quad R^{\prime} / L^{\prime} \quad$ polarization

$$
\begin{aligned}
& X_{1} Y_{2} Y_{3}=-1 \\
& Y_{1} Y_{2} X_{3}=-1 \\
& Y_{1} X_{2} Y_{3}=-1
\end{aligned}
$$

But what if we decide to measure $x x x$?

local realism

- X is independent the measurement performed on the other photon.
- And since always: $\quad Y_{i} Y_{i}=+1$

$$
\begin{aligned}
& X_{1} X_{2} X_{3}=\left(X_{1} Y_{2} Y_{3}\right) \cdot\left(Y_{1} X_{2} Y_{3}\right) \cdot\left(Y_{1} Y_{2} X_{3}\right) \\
& X_{1} X_{2} X_{3}=-1 \\
& \text { Odd number of } V^{\prime} \mathrm{S} \\
& \text { The possible results: } \\
& V_{1}^{\prime} V^{\prime}{ }_{2} V^{\prime}{ }_{3} \\
& H_{1}^{\prime} H^{\prime} V_{2}{ }_{3} \\
& H_{1}^{\prime} V^{\prime}{ }_{2} H^{\prime}{ }_{3} \\
& V_{1}^{\prime} H^{\prime}{ }_{2} H^{\prime}{ }_{3}
\end{aligned}
$$

Quantum Mechanics?

$$
\begin{aligned}
|\Psi\rangle= & \frac{1}{2}\left(\left|H^{\prime}\right\rangle_{1}\left|H^{\prime}\right\rangle_{2}\left|H^{\prime}\right\rangle_{3}+\left|H^{\prime}\right\rangle_{1}\left|V^{\prime}\right\rangle_{2}\left|V^{\prime}\right\rangle_{3}\right. \\
& \left.+\left|V^{\prime}\right\rangle_{1}\left|H^{\prime}\right\rangle_{2}\left|V^{\prime}\right\rangle_{3}+\left|V^{\prime}\right\rangle_{1}\left|V^{\prime}\right\rangle_{2}\left|H^{\prime}\right\rangle_{3}\right)
\end{aligned}
$$

local realism $V_{1}^{\prime} V^{\prime}{ }_{2} V^{\prime}{ }_{3}$ $H^{\prime} H_{1}^{\prime}{ }_{2} V^{\prime}{ }_{3}$ $H_{1} V^{\prime}{ }_{2} H^{\prime}{ }_{3}$ $V_{1}^{\prime} H^{\prime}{ }_{2} H^{\prime}{ }_{3}$

One

* 9 © \dagger (\%) C. ?

measurement

 decides who

10 years later:

Observation of Three-Photon Greenberger-Horne-Zeilinger Entanglement

Dik Bouwmeester, Jian-Wei Pan, Matthew Daniell, Harald Weinfurter, and Anton Zeilinger Institut für Experimentalphysik, Universität Innsbruck, Technikerstrasse 25, A-602O Innsbruck, Austria (Received 6 October 1998)

$$
\begin{aligned}
&\left|\Psi^{i}\right\rangle_{1234}= \frac{1}{\sqrt{2}}\left(|H\rangle_{1}|V\rangle_{2}-|V\rangle_{1}|H\rangle_{2}\right) \\
& \otimes \frac{1}{\sqrt{2}}\left(|H\rangle_{3}|V\rangle_{4}-|V\rangle_{3}|H\rangle_{4}\right)
\end{aligned}
$$

A 4 photon GHZ state

$$
\left|\Psi^{f}\right\rangle_{1^{\prime} 3^{\prime} 4}=\frac{1}{\sqrt{2}}\left(|H\rangle_{1}|V\rangle_{2^{\prime}}|V\rangle_{3^{\prime}}|H\rangle_{4}+|V\rangle_{1}|H\rangle_{2^{\prime}}|H\rangle_{3^{\prime}}|V\rangle_{4}\right)
$$

$\left|H^{\prime}\right\rangle \Longrightarrow|\Psi\rangle_{13^{\prime} 4}=\frac{1}{\sqrt{2}}\left(|H\rangle_{1}|V\rangle_{3^{\prime}}|H\rangle_{4}+|V\rangle_{1}|H\rangle_{3^{\prime}}|V\rangle_{4}\right)$
$\left|V^{\prime}\right\rangle \Rightarrow|\Psi\rangle_{13^{\prime} 4}=\frac{1}{\sqrt{2}}\left(|H\rangle_{1}|V\rangle_{3^{\prime}}|H\rangle_{4}-|V\rangle_{1}|H\rangle_{3^{\prime}}|V\rangle_{4}\right)$

Verification of actual entanglement by performing polarization test at a V^{\prime} / H^{\prime} basis
8 out of 16 combinations are possible all with even number of H^{\prime}

HHHV is suppressed with a visibility of 0.79 ± 0.06

Experimental Test of Quantum Non-Locality

First: perform $y y x, y x y$, and $x y y$ experiments Second : perform xxx experiments:

Q-M is 'right' 85% of the time

But... Are we sure that this means Q-M is right???

If our visibility is 74%

$$
\mathrm{P}(\mathrm{xxx}=+1)=0.87 \pm 0.04
$$

Were does this prediction come from

xxx local realistic prediction

xxx experiment

To address this argument, a number of inequalities for N -particle GHZ states have been derived. For instance, Mermin's inequality for a threeparticle $G H Z$ state reads as follows: $\mid \sigma_{x} \sigma_{y} \sigma_{y}+\sigma_{y} \sigma_{x} \sigma_{y}+\sigma_{y} \sigma_{y} \sigma_{x}-$ $\sigma_{x} \sigma_{x} \sigma_{x} \mid \leq 2$, where symbol \cdot denotes the expectation value of a specific physical quantity. The necessary visibility to violate this inequality is 50%. The visibility observed in our $G H Z$ experiment is $71 \pm 4 \%$ and obviously surpasses the 50% limitation. Substituting our results measured in the $y y x, y x y$ and $x y y$ experiments into the left-hand side of, we obtain the following constraint: $\sigma_{x} \sigma_{x} \sigma_{x} \leq-0.1$, by which a local realist can thus predict that in an $x x x$ experiment the probability fraction for the outcomes yielding a +1 product, denoted by $P(x x x=$ +1), should be no larger than 0.45 ± 0.03 (also refer to the first bar in

6 photon GHZ

Start by preparing 3 EPRs'

 only if both incoming photons have the same polarization they can go to different outputs. Thus, a coincidence detection of all six outputs corresponds to the state$$
\left|\Phi^{+}\right\rangle_{i j}=\frac{1}{\sqrt{2}}\left(|H\rangle_{i}|H\rangle_{j}+|V\rangle_{i}|V\rangle_{j}\right),
$$

$$
\begin{aligned}
\left|G_{6}\right\rangle= & \frac{1}{\sqrt{2}}\left(|H\rangle_{1}|H\rangle_{2}|H\rangle_{3}|H\rangle_{4}|H\rangle_{5}|H\rangle_{6}\right. \\
& \left.+|V\rangle_{1}|V\rangle_{2}|V\rangle_{3}|V\rangle_{4}|V\rangle_{5}|V\rangle_{6}\right)
\end{aligned}
$$

Characterization

Entanglement witness $=$ An observable that has a positive expectation value on all biseparable states

For the six-photon GHZ state: Re-writing the state:

$$
W_{\mathrm{G}}=\frac{I}{2}-\left|G_{6}\right\rangle\left\langle G_{6}\right|
$$

$$
\left|G_{\sigma}\right\rangle\left\langle G_{6}\right|=\frac{1}{2}\left[(|H\rangle\langle H|)^{\otimes 6}+(|V\rangle\langle V|)^{\otimes 6}\right]+\frac{1}{12} \sum_{n=-2}^{3}(-1)^{n} M_{(n)}^{\otimes 6},
$$

$M_{(n)}=\cos (n \pi / 6) \sigma_{x}+\sin (n \pi / 6) \sigma_{y}$ Are measurament on the $x-y$ plane

seven measurement settings are required

W-STATES

GHZ state: $\left.|\psi\rangle=\frac{1}{\sqrt{2}}\left(\left|H_{1}\right\rangle\left|H_{2}\right\rangle\left|H_{3}\right\rangle+\left|V_{1}\right\rangle\left|V_{2}\right\rangle V_{3}\right\rangle\right)$
W state:

$$
|W\rangle=\frac{1}{\sqrt{3}}\left(|H H V\rangle_{a b c}+|H V H\rangle_{a b c}+|V H H\rangle_{a b c}\right)
$$

Which one is better?

- GHZ violates Mermin (Bell?) inequalities more (what does that mean?)
- W-States are less fragile then GHZ states

Experimental Realization of a Three-Qubit Entangled \boldsymbol{W} State

Manfred Eibl, ${ }^{1,2}$ Nikolai Kiesel, ${ }^{1,2}$ Mohamed Bourennane, ${ }^{1,2}$ Christian Kurtsiefer, ${ }^{2,3}$ and Harald Weinfurter ${ }^{1,2}$
${ }^{1}$ Max-Planck-Institut für Quantenoptik, D-85748 Garching, Germany
${ }^{2}$ Sektion Physik, Ludwig-Maximilians-Universität, D-80797 München, Germany
${ }^{3}$ Department of Physics, National University of Singapore, Singapore
(Received 25 August 2003; published 18 February 2004)

$P_{\text {HHH }}=C_{\text {Hнн }} / \sum_{i, j, k=\{H, V\}} C_{i j k}$
$C_{H H H}$ is the number of recorded $H H H$ events

incoherent mixture

$\rho_{M}=1 / 3(|H H V\rangle\langle H H V|+|H V H\rangle\langle H V H|+|V H H\rangle\langle V H H|)$
equally weighted mixture of biseparable states

$$
\begin{array}{r}
\rho_{B}=1 / 3 \rho_{a} \otimes \rho_{b c}+1 / 3 \rho_{b} \otimes \rho_{a c}+1 / 3 \rho_{c} \otimes \rho_{a b} \\
\rho_{a}=|H\rangle\langle H| \quad \rho_{b c}=\text { bell state between modes } b \text { and } c
\end{array}
$$

L / R Basis

W-State	3/8							
W-State								
incoherent mixture								

incoherent mixture
$\rho_{M}=1 / 3(|H H V\rangle\langle H H V|+|H V H\rangle\langle H V H|+|V H H\rangle\langle V H H|)$
equally weighted mixture of biseparable states

$$
\rho_{B}=1 / 3 \rho_{a} \otimes \rho_{b c}+1 / 3 \rho_{b} \otimes \rho_{a c}+1 / 3 \rho_{c} \otimes \rho_{a b}
$$

Characterizing the Entanglement

Measurement Basis $\left|k_{j}, \phi_{j}\right\rangle=1 / \sqrt{2}\left(|R\rangle+k_{j} e^{i \phi_{j}}|L\rangle\right)$

$$
\hat{\sigma}_{j}=\sum_{k_{j}} k_{j}\left|k_{j}, \phi_{j}\right\rangle\left\langle k_{j}, \phi_{j}\right|
$$

$$
k_{j}= \pm 1
$$

$$
j=a, b, c
$$

correlation function

$$
\begin{aligned}
E\left(\phi_{a}, \phi_{b}, \phi_{c}\right) & =\left\langle\hat{\sigma}_{a}\left(\phi_{a}\right) \hat{\sigma}_{b}\left(\phi_{b}\right) \hat{\sigma}_{c}\left(\phi_{c}\right)\right\rangle \\
& =\sum_{k_{a}, k_{b}, k_{c}= \pm 1} k_{a} k_{b} k_{c} p_{k_{a} k_{b} k_{c}}\left(\phi_{a}, \phi_{b}, \phi_{c}\right)
\end{aligned}
$$

$P k_{a} k_{b} k_{c}\left(\phi_{a} ; \phi_{b} ; \phi_{c}\right)$ is the probability for a threefold coincidence with the results k_{a}, k_{b}, and k_{c} for the specific setting of phases ϕ_{j}.

correlation function

$$
\begin{aligned}
E\left(\phi_{a}, \phi_{b}, \phi_{c}\right) & =\left\langle\hat{\sigma}_{a}\left(\phi_{a}\right) \hat{\sigma}_{b}\left(\phi_{b}\right) \hat{\sigma}_{c}\left(\phi_{c}\right)\right\rangle \\
& =\sum_{k_{a}, k_{b}, k_{c}= \pm 1} k_{a} k_{b} k_{c} p_{k_{a} k_{b} k_{c}}\left(\phi_{a}, \phi_{b}, \phi_{c}\right)
\end{aligned}
$$

For a W-state

$$
\begin{aligned}
E\left(\phi_{a}, \phi_{b}, \phi_{c}\right)= & -\frac{2}{3} \cos \left(\phi_{a}+\phi_{b}+\phi_{c}\right) \\
& -\frac{1}{3} \cos \left(\phi_{a}\right) \cos \left(\phi_{b}\right) \cos \left(\phi_{c}\right)
\end{aligned}
$$

$$
\phi_{b}=\phi_{c}=0 \quad E\left(\phi_{a}, 0,0\right)=-\cos \left(\phi_{a}\right)
$$

$$
\phi_{b}=\phi_{c}=0 \longmapsto E\left(\phi_{a}, 0,0\right)=-\cos \left(\phi_{a}\right)
$$

Note that $\mathrm{E}_{G H Z}\left(\phi_{a}, \phi_{b}, 0\right)=0 \quad$ While $\left|\mathrm{E}_{w}\left(\phi_{a}, \pi / 2, \pi / 2\right)\right|<2 / 3$

Robustness of the entanglement

Correlation between a and b, depending on the measurement result of the photon in mode c

Quantum State Tomography

A test of the Peres-Horodecki criterion
A separable state $\rho=\sum_{A} w_{A} \rho_{A}^{\prime} \otimes \rho_{A}^{\prime \prime}$
$\lambda^{H}=-0.5$
$\lambda_{\text {exp }}{ }_{\text {ex }}=-0.348 \pm 0.019$

$$
\begin{aligned}
& \lambda^{V}=-0.5 \\
& \lambda^{V}{ }_{\exp }=-0.113 \pm 0.062
\end{aligned}
$$

W-States in multiqubit systems

The totally symmetric state including $N-1$ zeros and 1 ones

$$
\left|W_{N}\right\rangle \equiv(1 / \sqrt{N})|N-1,1\rangle
$$

Example: $N=4$:
$\left|W_{4}\right\rangle=(1 / \sqrt{4})(|0001\rangle+|0010\rangle+|0100\rangle+|1000\rangle)$
reduced density operators ρ_{km} :

$$
\rho_{\kappa \mu}=\frac{1}{N}\left(2\left|\Psi^{+}\right\rangle\left\langle\Psi^{+}\right|+(N-2)|00\rangle\langle 00|\right)
$$

No experimental W-state > 3 yet

Measures of entanglement using the density matrix

Fidelity -a measure of state overlap:

$$
F\left(\rho_{1}, \rho_{2}\right)=\left(\operatorname{Tr}\left\{\sqrt{\sqrt{\rho_{1}} \rho_{2} \sqrt{\rho_{1}}}\right\}\right)^{2}
$$

ρ_{1} and ρ_{2} pure - simplifies to $\operatorname{Tr}\left\{\rho_{1} \rho_{2}\right\}=\left|\left\langle\psi_{1} \mid \psi_{2}\right\rangle\right|^{2}$

Tangle - The concurrence and tangle are measures of the non-classical properties of a quantum state

Concurrence: For a non-Hermitian matrix

$$
\hat{R}=\hat{\rho} \hat{\Sigma}_{\hat{\Sigma}} \hat{\rho}^{\mathrm{T}} \hat{\Sigma}
$$

$\hat{\Sigma} \equiv\left(\begin{array}{cccc}0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0\end{array}\right)$
For $r_{1}<r_{2}<r_{3}<r_{4}$ eigenvalues of R
Concurrence: $C=\operatorname{Max}\left\{0, \sqrt{r_{1}}-\sqrt{r_{2}}-\sqrt{r_{3}}-\sqrt{r_{4}}\right\}$
Tangle: $\quad T \equiv C^{2}$
For a product state: $T=0$
For a Bell state: $T=1$

Entropy and the Linear Entropy - The Von Neuman entropy quantifies the degree of mixture in a quantum state

$$
S \equiv-\operatorname{Tr}\{\hat{\rho} \ln [\hat{\rho}]\}=-\sum_{i} p_{i} \ln \left\{p_{i}\right\}
$$

$$
\begin{aligned}
& =\frac{4}{3}\left(1-\operatorname{Tr}\left\{\hat{\rho}^{2}\right\}\right) \\
& =\frac{4}{3}\left(1-\sum_{a=1}^{4} p_{a}^{2}\right)
\end{aligned}
$$

eigenvalues of ρ

$$
\begin{aligned}
& S_{L}=0 \text { for a pure state } \\
& S_{L}=1 \text { for a completely mixed state }
\end{aligned}
$$

Cluster states and

One-way quantum computation

Slide adopted from Kevin Resch (Waterloo U)

Cluster States

Examples

In two qubits: Bell State
In three qubits: GHZ state
In general, "Cluster States" have no simple state vector representation (no. of terms increases exponentially in no. of qubits).
Stabiliser formalism provides an easy and compact description.

Stabiliser Formalism

Operator \boldsymbol{O} is stabiliser of state $\mid \psi>$ if:

$$
O|\psi\rangle=|\psi\rangle
$$

Specifying multiple stabilisers can define a sub-space, or even a specific state.

Cluster States

Cluster states are pure quantum states of two level systems ~qubits! located on a cluster C.

This cluster is a connected subset of a simple cubic lattice Z_{d} in $\mathrm{d}>1$

The cluster states $\left|\phi_{\{\mathrm{k}\}}\right\rangle_{c}$ obey the set of eigenvalue equations:

$$
K^{(a)}\left|\phi_{\{\kappa\}}\right\rangle_{\mathcal{C}}=(-1)^{\kappa_{a}}\left|\phi_{\{\kappa\}}\right\rangle_{\mathcal{C}}
$$

with the correlation operators:

$$
\begin{gathered}
K^{(a)}=\sigma_{x}^{(a)} \bigotimes_{b \in \operatorname{nghb}(a)} \sigma_{z}^{(b)} \\
\{\kappa\}:=\left\{\kappa_{a} \in\{0,1\} \mid a \in \mathcal{C}\right\}
\end{gathered}
$$

Stabilizers for the Cluster State

A cluster state on a given qubit array A is defined by the following stabilisers.

$$
-1^{\kappa_{a}} X_{i \in \operatorname{ngbr}(\mathrm{a})}^{a} \bigotimes_{i} Z^{i}
$$

$\forall a \in A \quad$ where $\operatorname{ngbr}(a)$ represents all nearest neighbours of qubit a.

$$
k_{a} \in\{0,1\}
$$

The state is completely defined by the stabilizer eigenvalue equations, all of its properties can be calculated in terms of the stabilisers.

For $\kappa_{a}=0$, we have a special case

For:
 $\kappa_{a}=0, \quad \forall a \in \mathcal{C}$

An Ising Hamiltonian will transform a latice (1,2,3D) into a cluster state

$$
\exp \left[-i \frac{\pi}{4} \sum_{\langle j, k\rangle} \sigma_{z}^{(j)} \sigma_{z}^{(k)}\right]\left(\frac{|0\rangle+|1\rangle}{\sqrt{2}}\right)^{\otimes n}
$$

0000

 $0-0-0-a-a-0-0-0-0-0-0-0-0-0-0-0-0-0$

Example Cluster States

- For one dim cluster with two qubits

$$
\frac{1}{\sqrt{2}}(|00>+|01>+|10>-| 11>)
$$

- For one dim cluster with three qubits

$$
\frac{1}{2 \sqrt{2}}(|000>+|001>+|010>-|011>+|100>+|101>-|110>+| 111>)
$$

- For one dim cluster with four qubits

$$
\begin{aligned}
& \frac{1}{4}(|0000>+|0001>+|0010>-|0011>+|0100>+|0101>-|0110>+| 0111> \\
& \quad+|1000>+|1001>+|1010>-|1011>-|1100>-|1101>+|1110>-| 1111>)
\end{aligned}
$$

Generating a Cluster State

First produce the product state

$$
\left|+>_{C}=\otimes_{a \in C}\right|+>_{a}
$$

Then apply the entangling operator

$$
S^{(C)}=\prod_{a, b \in C \mid b-a \in \gamma_{d}} S^{a b}
$$

Where γ_{d} is the set of positive shifts by one place in one dimension (i.e. for $\left.\mathrm{d}=3 \quad \gamma_{3}=\left\{(1,0,0)^{T},(0,1,0)^{T},(0,0,1)^{T}\right\}\right)$
And

$$
S^{a b}=\frac{1}{2}\left(1+\sigma_{z}^{(a)}+\sigma_{z}^{(b)}+\sigma_{z}^{(a)} \otimes \sigma_{z}^{(b)}\right)
$$

The resultant state can be shown to satisfy eigenvalue equations

How much entangelment is in there?

Two measures of entanglement useful in characterizing the properties of a cluster state can be defined on the states of n qubits:

- A state is maximally connected if any pair of qubits can be projected, with certainty into a pure Bell state by local measurements on a subset of the other qubits
- The persistency of entanglement is the minimum number of local measurements such that, for all measurement outcomes, the state is completely disentangled
- A cluster state of n qubits is maximally connected and has

$$
P_{e}=\max \{p \mid p \leq n / 2\}
$$

Logical and cluster qubits

- A distinction is made between cluster qubits as shown in the diagram and logical qubits which correspond to qubits in a register in a quantum network computation

The logical qubits can be thought to "flow" during the computation from input clusters qubits 1,15 to output cluster qubits 7, 21

A Controlled Not Cluster

		17	18	19	20	
8	9	10	11	12	13	14
		3	4	5	6	

Operations on qubits

- Prepare cluster state

Measure the state of qubit j in an chosen basis

$$
B_{j}(\alpha)=\left\{|+\alpha\rangle_{j},|-\alpha\rangle_{j}\right\} \text { where }| \pm \alpha\rangle_{j}=\frac{1}{\sqrt{2}}\left(|0\rangle_{j} \pm e^{i \alpha}|1\rangle_{j}\right)
$$

- Consecutive measurements on qubits $1,2,3$ disentangle the state and completely determine the state of qubit 4.
- The state of „output" qubit 4 is dependant on the chosen bases.

Realization of a CNOT gate

- Prepare the state: $\left|\Psi_{\text {in }}\right\rangle_{\mathcal{C}_{15}}=\left|\psi_{\text {in }}\right\rangle_{1,9} \otimes\left(\underset{i \in \mathcal{C}_{15 \backslash\{1,9\}}}{\otimes}|+\rangle_{i}\right)$
- Entangle the 15 qubits of the cluster C_{15} via the unitary operation $\mathrm{S}^{\left(\mathrm{C}_{15}\right)}$
- Measure all qubits of C15 except for the outputs $(7,15)$ as in the following sketch

Measure in $\sigma_{\mathbf{x}}$ basis

Measure in σ_{y} basis

Dependent on the measurement results we get the following gate:

$U_{\mathrm{CNOT}}^{\prime}=U_{\Sigma, \mathrm{CNOT}} \operatorname{CNOT}(c, t)$

With the byproduct having the form:

$$
\begin{aligned}
& U_{\Sigma, \mathrm{CNOT}}=\sigma_{x}^{(c) \gamma_{x}^{(c)}}, \sigma_{x}^{(t) \gamma_{x}^{(t)}} \sigma_{z}^{(c)} \stackrel{\gamma}{z}_{(c)}^{(c)}, \sigma_{z}^{(t)}{ }^{\gamma_{z}^{(t)}} \\
& \gamma_{x}^{(c)}=s_{2}+s_{3}+s_{5}+s_{6}
\end{aligned}
$$

$$
\gamma_{x}^{(t)}=s_{2}+s_{3}+s_{8}+s_{10}+s_{12}+s_{14} \rightarrow
$$

Measurement s_{i} on quit i

$$
\gamma_{z}^{(c)}=s_{1}+s_{3}+s_{4}+s_{5}+s_{8}+s_{9}+s_{11}+1
$$

$$
\gamma_{z}^{(t)}=s_{9}+s_{11}+s_{13} .
$$

Realization of a 4 qubit CNOT gate

- Prepare the state $\left.\left|\psi>\mathrm{C}_{4}\right| i_{1}\right\rangle_{z, 1} \otimes\left|i_{4}\right\rangle_{z, 4} \otimes|+\rangle_{2} \otimes|+\rangle_{3}$
- Entangle the 4 qubits of the cluster C_{4} via the unitary operation $\mathrm{S}^{\left(\mathrm{C}_{4}\right)}$
- Measure σ_{x} of qubits 1and 2

- You get the following quantum state: control

$$
\begin{gathered}
\left|s_{1}\right\rangle_{x, 1} \otimes\left|s_{2}\right\rangle_{x, 2} \otimes U_{\Sigma}^{(34)}\left|i_{4}\right\rangle_{z, 4} \otimes\left|i_{1}+i_{4} \bmod 2\right\rangle_{z, 3} \\
U_{\Sigma}^{(34)}=\sigma_{z}^{(3)^{s_{1}+1}} \sigma_{x}^{(3)^{s_{2}}} \sigma_{z}^{(4)^{s_{1}}} \text { byproduct } \\
\cdot \text { You don't keep the control: }
\end{gathered}
$$

General one qubit SU(2) rotation

Euler Representation

$$
\begin{gathered}
U_{R o t}[\xi, \eta, \zeta]=U_{x}[\zeta] U_{z}[\eta] U_{x}[\xi] \\
U_{x}[\alpha]=\exp \left(-i \alpha \frac{\sigma_{x}}{2}\right) \\
U_{z}[\alpha]=\exp \left(-i \alpha \frac{\sigma_{z}}{2}\right)
\end{gathered}
$$

Measurement basis:

$$
\mathcal{B}_{j}\left(\varphi_{j}\right)=\left\{\frac{|0\rangle_{j}+e^{i \varphi_{j}}|1\rangle_{j}}{\sqrt{2}}, \frac{|0\rangle_{j}-e^{i \varphi_{j}}|1\rangle_{j}}{\sqrt{2}}\right\}
$$

General one qubit SU(2) rotation

- Prepare the state: $\left|\Psi_{\text {in }}\right\rangle_{\mathcal{C}_{5}}=\left|\psi_{\text {in }}\right\rangle_{1} \otimes\left(\underset{i=2}{\left.\stackrel{5}{\otimes}|+\rangle_{i}\right)}\right.$
- Entangle the 5 qubits of the cluster C_{5} via the unitary operation $\mathrm{S}^{\left(\mathrm{C}_{5}\right)}$

Measure qubits 1-4 in the following order and basis: measure qubit 1

$$
\mathcal{B}_{1}(0)
$$

measure qubit 2 in

$$
\mathcal{B}_{2}\left(-\xi(-1)^{s_{1}} \boldsymbol{t}\right)
$$

measure qubit 3 in

$$
\mathcal{B}_{3}\left(-\eta(-1)^{s_{2}}\right)
$$

measure qubit 4 in

$$
\mathcal{B}_{4}\left(-\zeta(-1)^{s_{1}+s_{3}}\right)
$$

General one qubit SU(2) rotation

Dependent on the measurement results we get the following gate:
$U_{R o t}^{\prime}[\xi, \eta, \zeta]=U_{\Sigma, R o t} U_{R o t}[\xi, \eta, \zeta]$

With the byproduct having the form:
Measurement S_{i} on qubit i

$$
U_{\Sigma, R o t}=\sigma_{x}^{s_{2}+s_{4}} \sigma_{z}^{s_{1}+s_{3}}
$$

Qustion: What do we do with the byproduct U_{Σ} ?

Answer: propagate it forward using classical communication and re-interpret the final answer at according to the measurement results.

$$
\text { Generaly: } \quad\left|\psi_{\text {out }}\right\rangle=\left(\prod_{i=1}^{|\mathcal{N}|} U_{\Sigma, g_{i}} U_{g_{i}}\right)\left|\psi_{\text {in }}\right\rangle
$$

We use the following propagation relations:

$$
\begin{gathered}
\operatorname{CNOT}(c, t) \sigma_{x}^{(t)}=\sigma_{x}^{(t)} \mathrm{CNOT}(c, t), \\
\operatorname{CNOT}(c, t) \sigma_{x}^{(c)}=\sigma_{x}^{(c)} \sigma_{x}^{(t)} \mathrm{CNOT}(c, t), \\
\operatorname{CNOT}(c, t) \sigma_{z}^{(t)}=\sigma_{z}^{(c)} \sigma_{z}^{(t)} \mathrm{CNOT}(c, t), \\
\operatorname{CNOT}(c, t) \sigma_{z}^{(c)}=\sigma_{z}^{(c)} \mathrm{CNOT}(c, t),
\end{gathered}
$$

$$
U_{R o t}[\xi, \eta, \zeta] \sigma_{x}=\sigma_{x} U_{R o t}[\xi,-\eta, \zeta],
$$

$$
U_{R o t}[\xi, \eta, \zeta] \sigma_{z}=\sigma_{z} U_{R o t}[-\xi, \eta,-\zeta],
$$

and for arbitrary rotation
for CNOT gates:

$$
\begin{gathered}
H \sigma_{x}=\sigma_{z} H, \quad U_{z}[\pi / 2] \sigma_{x}=\sigma_{y} U_{z}[\pi / 2], \\
H \sigma_{z}=\sigma_{x} H, \quad U_{z}[\pi / 2] \sigma_{z}=\sigma_{z} U_{z}[\pi / 2], \\
\text { for Hadamard and p/2 phase gates }
\end{gathered}
$$

As a result:

$$
\left|\psi_{\text {out }}\right\rangle=\left(\prod_{i=1}^{|\mathcal{N}|} U_{\Sigma, g_{i}} U_{g_{i}}\right)\left|\psi_{\text {in }}\right\rangle \longrightarrow\left|\psi_{\text {out }}\right\rangle=\left(\prod_{i=1}^{|\mathcal{N}|} U_{\Sigma, g_{i}} \mid \Omega\right)\left(\prod_{i=1}^{|\mathcal{N}|} U_{g_{i}}^{\prime}\right)\left|\psi_{\text {in }}\right\rangle
$$

The byproduct is propagated to the end state

6 photon

Experimental entanglement of six photons in graph states

Cluster State
CHAO-YANG LU ${ }^{1 *}$, XIAO-QI ZHOU¹, OTFRIED GÜHNE², WEI-BO GAO¹, JIN ZHANG ${ }^{1}$, ZHEN-SHENG YUAN¹,

6 photon

Cluster State

Lets' do it in two steps
1: Combine 3 and 2
$(1 / \sqrt{2})\left(|H\rangle_{1}|H\rangle_{2}|H\rangle_{3}|+\rangle_{4}+|V\rangle_{1}|V\rangle_{2}|V\rangle_{3}|-\rangle_{4}\right)$,
2: Combine 5 and 4

$$
\begin{aligned}
\left|C_{6}\right\rangle= & \frac{1}{2}\left(|H\rangle_{1}|H\rangle_{2}|H\rangle_{3}|H\rangle_{4}|H\rangle_{5}|H\rangle_{6}\right. \\
& +|H\rangle_{1}|H\rangle_{2}|H\rangle_{3}|V\rangle_{4}|V\rangle_{5}|V\rangle_{6} \\
& +|V\rangle_{1}|V\rangle_{2}|V\rangle_{3}|H\rangle_{4}|H\rangle_{5}|H\rangle_{6} \\
& \left.-|V\rangle_{1}|V\rangle_{2}|V\rangle_{3}|V\rangle_{4}|V\rangle_{5}|V\rangle_{6}\right)
\end{aligned}
$$

For the six-photon Cluster state a different witness is used:

$\operatorname{Tr}\left(W_{\mathrm{C}} \rho_{\exp }\right)=-0.095 \pm 0.036$.

Scheme to construct various six-photon 'graph’ states

SU(2) rotation \& gates (Zeilinger)

- A general $\operatorname{SU}(2)$ rotation and 2-qubit gates

- CPhase operations + single qubit rotations = universal quantum computer!

Doing the experiment (zielinger of course)

Quantum state tomography Reconstructed density matrix

Theory

Real part
 Imaginary Part

Experiment

Fidelity

$$
F=\left\langle\phi_{\text {Cluster }}\right| \rho\left|\phi_{\text {Cluster }}\right\rangle=(0.63 \pm 0.02)
$$

Rotation

Disentangle qubit 1 from qubits 2, 3, 4

$$
\begin{aligned}
& |0\rangle_{1} \otimes\binom{|+\rangle_{2}| \rangle_{3}|+\rangle_{4}}{+|-\rangle_{2}|1\rangle_{3}|-\rangle_{4}}=|0\rangle_{1} \otimes\left\{\begin{array}{l}
|+\alpha\rangle_{2}|+\beta\rangle_{3} \otimes\left(e^{+i \frac{\beta}{2}} \cos \frac{\alpha}{2}|+\rangle_{4}+e^{-i \frac{\beta}{2}} \cdot i \sin \frac{\alpha}{2}|-\rangle\right) \\
+|+\alpha\rangle_{2}|-\beta\rangle_{3} \otimes\left(e^{+i+\frac{\beta}{2}} \cos \frac{\alpha}{2}|+\rangle_{4}-e^{-i \frac{\beta}{2}} \cdot i \sin \frac{\alpha}{2}|-\rangle\right) \\
+|-\alpha\rangle_{2}|+\beta\rangle_{3} \otimes\left(e^{+i \frac{\beta}{2}} \cdot i \sin \frac{\alpha}{2}|+\rangle_{4}+e^{-i \frac{\beta}{2}} \cos \frac{\alpha}{2}|-\rangle\right) \\
+|-\alpha\rangle_{2}|-\beta\rangle_{3} \otimes\left(e^{+i \frac{\beta}{2}} \cdot i \sin \frac{\alpha}{2}|+\rangle_{4}+e^{-i \frac{\beta}{2}} \cos \frac{\alpha}{2}|-\rangle\right)
\end{array}\right\} \\
& =|0\rangle_{1}|+\alpha\rangle_{2}|+\beta\rangle_{3} \otimes\left(\mathrm{R}_{x}^{(-\beta)} \mathrm{R}_{2}^{(-\alpha)}|+\rangle_{4}\right)+\text { other } 3 \text { terms }
\end{aligned}
$$

and project the state on $|+\alpha\rangle_{2}|+\beta\rangle_{3}=>$ post selection

Linear ${ }^{(3)}$ cluster

Single qubit rotation

Single-qubit rotations

$$
\alpha=\left\{\begin{array}{l}
\pi / 2 \\
\pi / 4 \\
0
\end{array} \quad \beta=\pi / 2 \quad F=\left\{\begin{array}{l}
0.86 \pm 0.03 \\
0.85 \pm 0.04 \\
0.83 \pm 0.03
\end{array}\right.\right.
$$

Two-qubit gates

