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GHZ-A new state (of mind)

GOING BEYOND BELL’S THEOREM 1989

Daniel M. Greenberger', Michael A. Horne?, and Anton Zeilinger”.
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X measurement:

y measurement:
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1. Any specific result obtained in any individual or in any two-
photon joint measurement is maximally random

2. given any two results of measurements on any two photons,
we can predict with certainty the result of the corresponding
measurement performed on the third photon

Same can be done for H/V’

In every one of the three yyx, yxy and xyy

- experiments, Third photon measurement
(circular and linear polarization) is predicted
with certainty



local realism

Assume we did the measurement and found perfect correlations

‘ Each photon carries elements of reality for both x and y

Elements of reality
X. e{(-11)} for

Y. e{(-11)} for

H'/V'
R'/L'

) = %(|R> 1| L) 2 [H) 3+ |L)1|R) 2 |H') 3
+|R)1|R) 2|V )3+ |L) 1 |L) 2 |V') 3)

polarization

polarization
XYY, = -1

Y.Y, X, =-1
Y, XY, = -1




: : A
But what if we decide to measure XXX? ¢__
local realism |

- X Is independent the measurement performed on the other photon.

- And since always: Y.Y, =+1
‘ XXXy = (XY,Y5) - (Y1 X,Y5) - (Y,Y, X5)

) XX X;=-1 V' V' V',
H H.,V,

‘ Odd number of Vs
H, V', HY

‘ The possible results: V' H' H',




Quantum Mechanics? local realism
V '1V l2 V I3

V) = %(!Hl} L[ H) o [H) 3+ [H') 1 [V7) 2 [V 3
V)L H) o [V s+ V)1 V)2 |[H') 3)

measurement
decides who




10 years later:
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Observation of Three-Photon Greenberger-Horne-Zeilinger Entanglement

Dik Bouwmeester, Jian-Wei Pan, Matthew Daniell, Harald Weinfurter, and Anton Zeilinger

Insritue fiir Experimentalphvsik, Universitéic fnnsbruck, Technikerstrasse 25, A-6020 Innsbruck, Ausitria
(Received 6 October 1998]
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- A 4 photon GHZ state
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Verification of actual entanglement by performing
polarization test at a V/H’ basis

8 out of 16 combinations are possible all with even number of H’

D31‘C Filter Filter

Polarizer \. Polarizer

7 b2 Ly

= HHHH
o HHHV

80
60 -
«—> Delay 40 -
Mirror
:ii DI 90-
Polarizer Polarizer
Filter Fiter -1
0

HHHV is suppressed with a visibility of 0.79+£0.06



Experimental Test of Quantum Non Locality

First: perform yyx, yxy, and xyy experiments
Second : perform xxx experiments:

XXX quantum predlctlon

HVV ~ VHV  VVH  HHHW (a4

But... Are we sure that this means Q-M is right???

0.154

Fraction

Were does
this prediction
come from

QM EXP. /

- Q-M is ‘right’ 85% of the time

Vv HHV O HVH  VHH (b

0.104

If our visibility is 74% By P(xxx =+1)=0.87 £0.04 =

xxx local realistic prediction

)

XXX experiment

V'V'H’ (Cii
HHH



To address this argument, a number of inequalities for N-particle GHZ
states have been derived. For instance, Mermin’s inequality for a
threeparticle GHZ state reads as follows: |o,0,0, + 0,0,0, + 0,0,0, —
0,0,0,| < 2, where symbol - denotes the expectation value of a specific
physical quantity. The necessary visibility to violate this inequality Is
50%. The visibility observed in our GHZ experiment is 71+4% and
obviously surpasses the 50% limitation. Substituting our results
measured in the yyx, yxy and xyy experiments into the left-hand side of,
we obtain the following constraint: o,0,0, < —0.1 , by which a local
realist can thus predict that in an xxx experiment the probability
fraction for the outcomes yielding a +1 product, denoted by P(xxx =
+1), should be no larger than 0.45+0.03 (also refer to the first bar In

Bla Bla Bla.




LETIERS
6 h Oto n G I I 2 Experimental entanglement of six photons
in graph states

CHAOQ-YANG LU, XIAO-QI ZHOU', OTFRIED GUHNEZ, WEI-BO GAO!, JIN ZHANG!, ZHEN-SHENG YUANT,
ALEXANDER GOEBEL?®, TAO YANG' AND JIAN-WEI PAN!-2*

Start by preparing 3 EPRS’

1
Y | . | |
only If both incoming photons 27y ﬁ(IH)*lH)J+|V):|V)J)a

have the same polarization they ;
can go to different outputs. PBS‘X\; ‘z/p/‘PBS

Thus, a coincidence detection of N %

all six outputs corresponds to \./

the state @ @ @

1
|G) = —=([H):[H):|H)s|H)s[H)s5|H)s
V2
F VIV )LAV)IVILIV)sIV)e),



Characterization

Entanglement witness = An observable that has a
positive expectation value on all biseparable states

For the six-photon GHZ state: 4/, — { — |G (Gg|
5 \

Re-writing the state:

1 @6 X6 1 n &6
Ge)(Gol = STAH)HD® + (IVI(VD* T+ = ) | (=1)"ME],

M, = cos(nm/6)0o, + sin(niw/6)o, Are measurament on the x-y plane



0.025|

0.093

—

‘( WGpeXP)

seven measurement settings are required




W-STATES
GHZ state: )= (HuH A H.) VIV V)

W State |W> — %(lHHV%bc T |HVH>abC T |VHH>abc)

Which one Is better?

@® GHZ violates Mermin (Bell?) inequalities more (what does that
mean?)

@ \W-States are less fragile then GHZ states
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Incoherent mixture
pw =1/3(HHV }HHV |+|HVH }HVH |+|VHH }VHH |)

equally weighted mixture of biseparable states

Pe =113p, ® p,. +113p, ® p,. +1/3p. ® p,,

Pa = ‘ H ><H ‘ Phc = bell state between modes b and ¢



L/R Basis

3/8

W-State

Incoherent mixture |-

Incoherent mixture
pw =1/3(HHV }HHV |+|HVH }HVH |+|VHH }VHH |)

equally weighted mixture of biseparable states

ps =113p, ® p,. +1/13p, ® p,. +1/3p, ® p,,



Characterizing the Entanglement

Measurement Basis |k;, ¢ ;) = 1/v2(IR) + k;e'®i|L))
= 5 kilk;, 60K )

correlation function
E(¢a’ (;bb’ Cbc):(&a(qb )&b(qbb)é- (Qb )>

— Z KaokpKePi i, k. (Do bbb

k, ky k. =*1

Pk.k.k.(d.; é: ¢ is the probability for a threefold coincidence with the results k,, k,, and k; for
the specific setting of phases g,



correlation function
E(¢a’ gbb} ¢c):<&a(¢ )&b(qbb)a— (Qb )>

— Z KakpkeDi i, k, (Do bpy D)

ka’kbrkc *+1

For a W-state
E(¢a! ¢b’ ch) - %COS(¢G T ¢b T d)c)

|

— 3c08(¢,) cos(¢;,) cos(,)

= ¢.=0 ‘ E(¢a’ 0, O) — = COS(¢a)



-Tt/2 0 TT/2 T

¢, (=01

Note that Eg,p(¢.,4,0)=0 While |E, (., 72, 7/2)|<2/3



Robustness of the entanglement

Correlation between a and b, depending on the
measurement result of the photon in mode ¢
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Quantum State Tomography

A test of the Peres-Horodecki criterion | Aseparablestate p = > wap) ® p}

A

A =-0.5 AV =-0.5

A, = -0.348+0.019 WV, = -0.113+0.062

exp

(b)




W-States In multigubit systems

The totally symmetric state including N-1 zeros and 1 ones
Wy)=(1/YN)|N—=1,1)
Example: N=4:
W)= (1/y4)(]0001)+|0010) + |0100) -+ | 1000))
reduced density operators p,.

1
= (21W )W [+(N—2)|00)(00]

No experimental W-state > 3 yet



Measures of entanglement using the density matrix

Fidelity -a measure of state overlap:

’ NN 2
F(p1,p2) = (Tl"< \/\/,01/02\//01 >>

p1 and ps pure - simplifies to Tr {p1p2} = |<w1|w2)|2




Tangle - The concurrence and tangle are measures of the non-classical
properties of a qguantum state

Concurrence: For a non-Hermitian matrix R — bsz E

t

>

Il

o o O
o= O O

1
) For I'|<I',<I';<<I', eigenvalues of R

oo~ o
oo o |

Concurrence:l C = Max {0, /71 — /T2 — /T3 — \/T4}

Tangle: T = C’Q

For a product state: T=0
For a Bell state: T=1




Entropy and the Linear Entropy - The Von Neuman entropy quantifies the

degree of mixture in a quantum state

= —Tr{pln [p Z piln {p,,,

elgenvalues of p

(1= {p°})

(%)

The linear entropy for a two-qubit system: S =

Wl Wl

Forapurestate: o= p = Tr[p] =

eigenvalues of p

l S, = 0 for a pure state
S, =1 for a completely mixed state



a= e

- - Sllde adopted ?'rom T%evm Resch (Wé‘te%o )



Cluster States

Examples

In two qubits: Bell State
In three qubits: GHZ state
In general, “Cluster States” have no simple state

vector representation (no. of terms increases
exponentially in no. of qubits).

Stabiliser formalism provides an easy and
compact description.



Stabiliser Formalism

Operator O is stabiliser of state |y> If:

Oly)=|v)

Specifying multiple stabilisers can define a
sub-space, or even a specific state.



Cluster States

Cluster states are pure quantum states of two level systems ~qubits!
located on a cluster C.

This cluster is a connected subset of a simple cubic lattice Z, in d>1

The cluster states |¢,,,>. obey the set of eigenvalue equations:

KDl prare=(—1)%| dra)c

with the correlation operators:

KO=g@ & b
b € nghb(a)

{r}={r,e{0,1}]a eC}



Stabilizers for the Cluster State

A cluster state on a given qubit array A Is
defined by the following stabilisers.

L 1I<,CLXCI, ® ZZ
iengbr(a)

Ya e A where ngbr(a) represents all nearest neighbours of qubit a.

k {01}

The state Is completely defined by the stabilizer
eigenvalue equations, all of Its properties can be
calculated in terms of the stabilisers.

For x.=0, we have a special case



INPUT

For: K,= U, VaeC

An Ising Hamiltonian will transform

a latice (1,2,3D) Into a cluster state

' X
exp _% Z az(j)az(:k) (|O> —|/—3|1))
- (5,k) J

0000000000000 0000 000
T T T T OO0 UOOOTUOOD e

AVL

E

!

OUTPUT



Example Cluster States

» For one dim cluster with two qubits

i(|OO> + 101> + 10> - |11>)

J2

. For one dim cluster with three qubits

(/000> + [001> + |010> - |011> + |100> + |101> - |110> + |111>)

2J_

* For one dim cluster with four qubits

%(|0000> +|0001> + [0010> - [0011> + [0100> + |0101> - [0110> + [0111>
+|1000> + |1001> + |[1010> - |1011> - [1100> - [1101> + [1110> - |1111>)



Generating a Cluster State

o First produce the product state
|+>.=®, . |+>,
* Then apply the entangling operator

S(C) _ H Sab

a,beClb—acy,
Where 74 Is the set of positive shifts by one place in one
dimension (i.e. ford =3 »={(10,0)",(0,10)",(0,0,1)'})

And 1
g = (1+ ¥ 150 L 58 ® G(b))
2 Z Z Z Z

The resultant state can be shown to satisfy eigenvalue equations



How much entangelment is in there?

e Two measures of entanglement useful In
characterizing the properties of a cluster state can be
defined on the states of n qubits:

— A state I1s maximally connected if any pair of qubits can

be projected, with certainty into a pure Bell state by local
measurements on a subset of the other qubits

— The persistency of entanglement Is the minimum
number of local measurements such that, for all
measurement outcomes, the state is completely
disentangled

* A cluster state of n qubits is maximally connected and has

P.=max{p|p<n/2}




Logical and cluster qubits

A distinction is made between cluster qubits as
shown In the diagram and logical qubits which
correspond to qubits In a register in a guantum
network computation

* The logical qubits can be thought to “flow” during
the computation from input clusters qubits 1, 15 to
output cluster qubits 7, 21

A Controlled Not Cluster

r = B

15, [16[|17][18||19] |20] 21,

8119 ({1011 12{ 13|14

o
Lt

OEIBINEIE




Operations on qubits

*Prepare cluster state
Measure the state of qubit J in an chosen basis

B,(a)={]+a),. |-a),| where |ta) =%(\o>jiem\1>j)

 Consecutive measurements on qubits 1, 2, 3 disentangle the
state and completely determine the state of qubit 4.

» The state of ,,output™ qubit 4 is

dependant on the chosen bases.

e Classical feedforward makes
a OWQC deterministic 1 2 3 4



Realization of a CNOT gate

- Prepare the state: | Wi,)¢ =| win)hg@( Q|+,
i€Cy5\11,9)
 Entangle the 15 qubits of the cluster C,¢ via the unitary
operation S(Cus)

« Measure all gubits of C15 except for the outputs (7, 15) as
In the following sketch

I 2 3 4 5_6 7
control X 004 04 Na N e

i “.5:;!‘5'-.\'&5)".:- 3 St sty
\Fi e 3‘5;,. E
target X X B8 X X
%J. ;'go:d;r; Pt ety

o 10 1112 13 14 13 _ _
Measure in o, basis

., -:l:l' e
b
S
A
o

Measure in G, basis




(¢)

Yz

Dependent on the measurement results we get the
following gate: ’ __
99 Ucnor= Us,cnoTCNOT(c, 1)

With the byproduct having the form:

(% 0% (7 0
- C X X C z z
Us cnor= 0y Py g > U 2

NG 52+S3+SS+SIO+EM I\/Ieasurem_er_lt S;
= on qubit |

/'

g b B At SgHEyy e 1




Realization of a 4 qubit CNOT gate

* Prepare the state [y>c, [i1), 1 ® |is), 4 ® |+)r ® [+)3

« Entangle the 4 qubits of the cluster C, via the unitary
operation S(C4) 1 A0 3
(It, () O

* Measure o, of qubits land 2 target in target out

4
O
* You get the following quantum state:  control

(34)
[51)x1 ® [52)x2 ® Us "lis),4 ® |i} + iymod2), 3

Uy = o@" g7 @ byproduc

* You don't keep the control:




General one qubit SU(2) rotation

Euler Representation
URot[ga 7], g] — Ux[g] Uz[ 77] Ux[g]

O x

U, a]= exp( — iaj)

(0

U |a]= exp( — z'a'?:)

Measurement basis: . l_ Z_ \
|O>j_|_e (Pj|1>j |O>j_e ('Df|1>j>

B}'(@j):i 2 = 2




General one qubit SU(2) rotation

3
+ Prepare the state: |\Ifin>65_|¢in>1®(®l+>j)
=2

« Entangle the 5 qubits of the cluster C; via the unitary
operation S(%s) 1 2 34 5

XEBEmEEO

Measure qubits 1-4 in the following order and basis:
measure qubit 1 B,(0),

measure qubit2in - B, (—&(—1)%17),
measure qubit 3in By (— n( — 1)°2),

measure qubit4in By (— {(— 1)51753)



General one qubit SU(2) rotation

Dependent on the measurement results we get the
following gate:

UE?OZ‘[ 69 7], g] — UE,ROl‘UROZ‘[ 69 7], é]

With the byproduct having the form:

Measurement S

SaTra s
L +S54 S1t+S
UE,ROZ(_ O-x =



Quistion: What do we do with the byproduct U,.?

Answer: propagate 1t forward using classical
communication and re-interpret the final answer

at according to the measurement results.
V]

H UE,gl- Ugl-) |¢/in>

i=1

Generaly: |¥ow=

We use the following propagation relations:

CNOT(c,1) o) = o'CNOT(¢, 1), Ugol &, m,{10x=0,Ugo €, — 1,¢],

&= UE;C)O';I')CNOT(CJ): URot[ 63 7, g] 0;=0; URot[ o §, .~ g]’

CNOT(c,t) ot
for arbitrary rotation

cNoT(c,t) o= a9 aPeNoT(c, 1), and

-

Ho.=o0.H, U[|#@/2]o,=0,U[w/2],

cNOT(c,t) o' =o' cNoT(c, 1),

Ho.=oH, U]|@/2]o.=0.U]|7/2],

for CNOT gates:
J for Hadamard and p/2 phase gates



AS a result:

V]

V] V]
H UEg I-)hbin) ‘ l'about>:([_:]._.[1 UE,gJQ)(H U, )|¢m

| d/out>

The byproduct is propagated
to the end state




LETIERS
6 h Oto n Experimental entanglement of six photons
in graph states
I CHAO-YANG LU, XIAO-QI ZHOU', OTFRIED GUHNE2, WEI-BO GAO", JIN ZHANG', ZHEN-SHENG YUAN",

ALEXANDER GOEBEL?®, TAO YANG' AND JIAN-WEI PAN!-3*

Mode-lock CW pumping = P
Ti:sapphire 532 nm (16 W) il
Mira Verdi —= Polarizer
— Filter
Lens
LBO
«—>
Ad,
P

Cylindrical lens

BBO 2

JU oA W
hrole mi >

roic mirror Ultraviolet pulse 1

PBS

s

If one is to apply~a ™
Hadamard to photon 4

Aae




Lets’ do it in two steps
1: Combine 3 and 2

(1/~/2)(IH) [ H): [H)s14H)s + VLIV V)5=)0),
2: Combine 5 and 4

1Ce) = %(|H>1|H)2|H>3|H>4|H)5|H>6
+ [ H) 1 [H) o [H)s[V)al VsV
+ IV hlV )l V)| H)u H)s | H)s
— VIV A V)V VsV )e)




For the six-photon Cluster state a different witness Is used:

a PR b |
O—(—)
\ 3
4 '—'\‘5 g
=4y L lyly b5l

Go=X Xy Xy ly Z5 by
Ga=h &y dyly ksl
Gy=llp b2y 2515
G5 =h Zyly Xy X5 Xy
G =h b b1y 25 2

six-fold coincidences (3 h)

Tr (We Pexp) = —0.095 4 0.036.




Scheme to construct various six-photon ‘graph’ states

O OO ©— Cfg\o—)

O
05 00 — —»
© O

Four-qubit c
GHZ state

Six-qubit
cluster state

b 0—0—+0 T, -
v
oO—0—0—0
oO—O0—0—0 0, & £
— ( _Ql
+ O?O
o—O0—0—0—0

Six-qubit
GHZ state



SU(2) rotation & gates (Zeilinger)

e A general SU(2) rotation and 2-qubit gates

| Measurement || Readout |

VoYY Y

10}, [+), 10,1
do R O—O—0—0 w— et aaH 1 >
#1), ), 10); 1+, 1 2 3 4
1) )2 15 1=), Linear® cluster
[0} [+), 10)4 |+) ° !
0y [+, 100, |+ ol
+|0>1 |->§ n>: |+>: 1+ R H p——>
+1); 5 10)5 14)4
1)1 1+)o 1)s =), [+) R H %
3 4
Horseshoe!® cluster
1 2
10); 14),10)5 1+)4 ca L
+10), H, 11)3 ), k) R, H
+1)1 k=g 10)5 1=,
+H1) 1 H)5 M1)a 14+, y +) R 4
3

Box cluster

e CPhase operations + single qubit
rotations = universal quantum computer!



DOing the experiment (Zielinger of course)

e M1 lw> = |HHHH>+|HHVV>
O THe—® +|VVHH>-| VVVV>



Quantum state tomography Reconstructed
density matrix

(e [(|A) B]BY®|C) DY) with [A), [B), C), [D) & {(|H)+|V)),

/.
Vo

Real part Imaginary Part Real part Imaginary Part

Fldellty F = <¢C|uster ‘IO‘¢CIu3ter> = (063i 002)



Rotation

Disentangle qubit 1 from qubits 2, 3,4

il

[va), [+8),®| "2 cosZle), + e 2 i sinZ]-)

i2 _i8
+ |+a),|-B),® e cos—\ +), — € 2.jsinZ -)

909,14, ) g 6. )
el oke :

+ |-a),|+B),® e'2 i sm—\ +), + e_lzcosE -)

B _i#

+i

+ \—a}z\—ms@ e 2 |S|n—\ > + e 'ZCOS%H

_ \0>l\+a>2\+ﬁ>3®(R§‘ﬂ) R‘Z‘“)\+>4) + other 3 terms

and project the state on |+a),|+8), => post selection *

Measurement Readout

YoYUV Y . s

Q@ 0—0—0
12 3 4 Single qubit rotation

Linear® cluster




Single-qubit rotations

f7z_ (

% 0.86+0.03

a=17) B=7/ F=1085+004
0 0.83+0.03




Two-qubit gates







	Logical and cluster qubits

