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Excitation and control of large-amplitude standing magnetization waves
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A robust approach to excitation and control of large amplitude standing magnetization waves in an easy
axis ferromagnetic by starting from a ground state and passage through resonances with chirped frequency
microwave or similar alternative drives (spin torque, additional periodic anisotropy) is proposed. The formation
of these waves involves two stages, where in the first stage, a spatially uniform, precessing magnetization
is created via passage through a resonance followed by a self-phase-locking (autoresonance) with a constant
amplitude drive. In the second stage, the passage through an additional resonance with a spatial modulation of
the driving amplitude yields transformation of the uniform solution into a doubly phase-locked standing wave,
whose amplitude is controlled by the variation of the driving frequency. The stability of this excitation process
is analyzed both numerically and via Whitham’s averaged variational principle.

DOI: 10.1103/PhysRevB.99.014411

I. INTRODUCTION

Because of the complexity and despite decades of studies,
magnetization dynamics in ferromagnetic materials remains
of interest to basic and applied research. For example, non-
linear spin waves and solitons in ferromagnetic films were
studied experimentally extensively (e.g., Refs. [1–4]). Magne-
tostatic and boundary effects in such macroscopic films yield
complex dispersion of the spin waves. Depending on the sign
of the dispersion both bright and dark magnetic solitons were
observed. The long wavelength approximation in this problem
yields the nonlinear Schrodinger (NLS) model, providing
a convenient theoretical basis for investigation. The NLS
equation has well known traveling wave and soliton solutions
[5], allowing interpretation of the experimentally observed
magnetization dynamics.

In recent years, applications in ferromagnetic nanowires
opened new perspectives in studying magnetization wave-
forms [6]. At the nanoscales a quasi-one-dimensional symme-
try can be realized and magnetostatic effects can be reduced
to additional contributions to the anisotropy [6–8], which
can be conveniently modeled by the Landau-Lifshitz-Gilbert
(LLG) equation. It is known that the one-dimensional (1D),
dissipationless LLG equation, similar to the NLS equation,
is integrable and has a multitude of exact solutions including
solitons and spatially periodic waveforms [6,9,10], expected
to be observed in nanowires. The simplest solitons are domain
walls, which are studied extensively [11–15] as a basis for new
memory and logic devices [16,17]. A different type of solitons
are so-called breathers [6], which can be interpreted as an
interacting pair of domain walls with opposite topological
charges (soliton-antisoliton pair). They are stable localized
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objects in easy-axis ferromagnetic when dissipation is negli-
gible [9], which was also illustrated in numerical simulations
[18]. These breather solitons correspond to the bright NLS
solitons in the small amplitude approximation [9]. Solitons in
ferromagnetic nanowires with a spin polarized current were
also discussed in Refs. [19,20] in the framework of a modified
NLS model.

In this paper, we focus on excitation of large amplitude
standing LLG waves in an easy axis ferromagnetic, such that
the projection Mz of the magnetization vector M on the easy
axis is independent of time and periodic in z, while M⊥
precesses uniformly around the axis. These waves approach
a soliton limit as their wavelength increases (see below). The
question is how to generate such waves by starting from a
simple initial equilibrium and how to control their dynamics.
Excitation by an impulse or localized external fields usually
are unsuitable for generating pure large amplitude standing
waves because of significant residual perturbations. Here,
we suggest a simple method of exciting these waves based
on the autoresonance approach via driving the system by a
small, chirped frequency external rotating magnetic field or
similar alternative drives. This approach allows us to excite
the waves with a predefined amplitude and phase and stabilize
them with respect to dissipation. The autoresonance approach
uses the salient property of a nonlinear system to stay in
resonance with driving perturbations despite slow variation of
parameters. The idea was used in many applications starting
from particle accelerators [21,22], through planetary dynam-
ics [23], [24] and atomic physics [25,26], to plasmas [27],
magnetization dynamics in single domain nanoparticles [28–
30], and more. Autoresonant excitation of both bright and dark
solitons and spatially periodic multiphase waves within the
NLS model were studied in Ref. [31–33], while the autores-
onant control of NLS solitons is described in Refs. [34,35].
In all these applications, one drives the system of interest
by an oscillating perturbation, captures it into a nonlinear
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resonance, while slowly varying the driving frequency (or
other parameter). The resulting continuing self-phase-locking
(autoresonance) yields excursion of the system in its solutions
space, frequently leading to emergence and control of nontriv-
ial solutions. In this work, motivated by the aforementioned
results in related driven-chirped NLS systems, we apply a
similar approach yielding arbitrary amplitude, standing mag-
netization waves.

The scope of the presentation will be as follows. In Sec. II,
we introduce our autoresonant magnetization model and dis-
cuss the problem of capturing the system into resonance with
a chirped frequency microwave field followed by formation of
an autoresonant, spatially uniform magnetization state. In Sec.
III, we study transition from the uniform state to a standing
wave by spatially modulating the amplitude of the chirped
frequency drive. In the same section, we will illustrate this
process in simulations and present a qualitative picture of the
dynamics. Section IV will be focused on the theory of the
autoresonant standing waves and discuss their modulational
stability via Whitham’s averaged variational principle [36]. In
Sec. V, we illustrate excitation of the standing waves via two
alternative driving mechanisms involving spin torque or the
addition of spatially modulated hard axis anisotropy. Finally,
Sec. VI will present our conclusions.

II. AUTORESONANT MAGNETIZATION MODEL

Our starting point is the 1D Landau-Lifshitz-Gilbert (LLG)
equation for a ferromagnetic with the easy axis along êz

in an external magnetic field H = H0̂ez and in the pres-
ence of a weak rotating driving microwave field Hd =
b cos(cos ϕd êx + sin ϕd êy ) having spatially periodic ampli-
tude b = b0 + b1 cos(kz) (k = 2π/L, L being periodicity
length) and slowly chirped frequency ωd (t ) = −∂ϕd/∂t :

∂m
∂τ

= h × m+λm×∂m
∂τ

. (1)

Here λ is the Gilbert damping parameter,

h =∂2m
∂ξ 2

+ (mz + h0 )̂ez + ε(cos ϕd êx + sin ϕd êy ), (2)

and we use normalized magnetization m = M/M ,
dimensionless time τ = (γK/M )t , and coordinate
ξ = z/δ, δ = √

A/K (γ, A, and K being the gyromagnetic
ratio, the exchange constant, and the anisotropy
constant, respectively). Furthermore in Eq. (2), h0 =
MH0/K, ε = ε0 + ε1 cos(κξ ), ε0,1 = Mb0,1/K, ϕd =
− ∫

�ddτ, �d (τ ) = ωdM/(Kγ ), κ = 2π/l, and l = L/δ.
The proposed approach to excitation of magnetization

waves requires realization of the proper driving field.
For example, consider the Permalloy parameters A =
10−11 J/m, K = 105 J/m3, and M = 8 × 105 A/m [15]. This
yields the characteristic width δ = 10 nm, the linear res-
onance frequency (see below) f0 = γK/(2πM )(1 + h0) =
3.5(1 + h0) GHz, and the driving magnetic field amplitude
b0 = ε0K/M = 3.75 × 10−4 T for ε0 = 0.003 (as in exam-
ples in Fig. 3 below). The periodicity length L in our driven
problem is lδ. We will use l ∼ 10 in the examples below,
which corresponds to L ∼ 100 nm. Spatial modulation of the
microwave magnetic field on this submicron scale is difficult.

However, analogous autoresonant excitations of the magneti-
zation wave can be obtained by introducing other components
in the effective magnetic field h of a similar form but due
to different physical effects. Two such alternatives will be
discussed in Sec. V.

We seek spatially periodic solutions of Eq. (1) and proceed
from the dissipationless version of this equation in polar coor-
dinates (mx = sin θ cos ϕ, my = sin θ sin ϕ, mz = cos θ ):

θτ = �ξξ sin θ + 2�ξ θξ cos θ − ε sin �, (3)

�τ =
(

− 1

sin θ
θξξ + �2

ξ cos θ

)
+ cos θ − �′

d (τ )

− ε cot θ cos �, (4)

where � = ϕ − ϕd is the phase mismatch and �′
d = �d − h0.

This system is a spatial generalization of the recently stud-
ied autoresonant magnetization switching problem in single-
domain nanoparticles [28,29], where one neglects the spatial
modulation of the driving amplitude (so ε = ε0) and the
spatial derivatives in Eqs. (3) and (4) to get

θτ = −ε sin �, (5)

�τ = cos θ − �′
d (τ ) − ε cot θ cos �. (6)

In the 1D ferromagnetic case, Eqs. (5) and (6) describe
a spatially uniform, rotating around the axis magnetization
dynamics. In the rest of this section, we discuss formation and
stability of autoresonant uniform states in the dissipationless
case but include dissipation in numerical simulations for
comparison.

The autoresonance idea is based on a self-sustained phase
locking of the driven nonlinear system to chirped frequency
driving perturbation. Typically this phase locking is achieved
by passage through resonance with some initial equilibrium.
In our case, we assume linearly chirped driving frequency
�′

d (τ ) = 1 − ατ for simplicity, proceed from θ ≈ 0 (mz = 1)
at large negative time, and slowly pass the resonance �′

d = 1
at τ = 0. For small θ Eqs. (5) and (6) can be written as

dθ

dτ
= −ε sin �, (7)

θ
d�

dτ
= (ατ − θ2/2)θ − ε cos �, (8)

which can be transformed into a single complex equation for
� = θei�

i
d�

dτ
+ (ατ − |�|2/2)� = ε. (9)

This NLS-type equation was studied in many applications and
yields efficient phase locking at � ≈ π after passage through
linear resonance at τ = 0, provided ε exceeds a threshold [37]

εth = 0.58α3/4. (10)

Later (for τ > 0), the phase locking continues as the non-
linear frequency shift follows that of the driving frequency,
i.e., θ2/2 ≈ ατ . Importantly, this continuing phase locking
is characteristic of any variation of the driving frequency
[then α in (9) represents the local frequency chirp rate at the

014411-2



EXCITATION AND CONTROL OF LARGE-AMPLITUDE … PHYSICAL REVIEW B 99, 014411 (2019)

0 50 100−0.5
0

0.5
−1

−0.5

0

0.5

1

Tξ/l

−
m

z

0 50 100−0.5
0

0.5
−1

−0.5

0

0.5

1

Tξ/l

−
m

z

0 50 100

2

4

T

Φ

0 50 100

2

4

T

Φ

(a) (b)

(c) (d)

FIG. 1. The uniform autoresonant magnetization state. (a) z com-
ponent of magnetization −mz versus slow time T = α1/2τ ; (c) phase
mismatch �(0, T ) = φ − φd . In both panels λ = 0 and ε = 3 ×
10−3. Panels (b) and (d) are the same as (a) and (c), but λ = 3 × 10−3

and ε = 3 × 10−2 .

initial resonance], while the system remains in an approximate
nonlinear resonance

mz = cos θ ≈ �′
d (τ ), (11)

as long as the driving frequency chirp rate remains suf-
ficiently small. Under these conditions, the magnetization
angles θ and ϕ ≈ ϕd + π are efficiently controlled by simply
varying the driving frequency. We illustrate this effect in
Fig. 1, showing the results of numerical simulations of the
original system (1), assuming spatial periodicity of length l =
6 and linearly chirped frequency �′

d (τ ) = 1 − ατ . The initial
conditions θ = 0.01| cos(κξ )| (κ = 2π/l) represented a small
spatial perturbation for studying stability of the uniform state
and we used parameters λ = 0, h0 = 5, ε = 3 × 10−3, and
α = 5 × 10−4 in Figs. 1(a) and 1(c), while λ = 3 × 10−3

and ε = 3 × 10−2 in Figs. 1(b) and 1(d). Our numerical
scheme used an equivalent system of two coupled NLS-type
equations based on the quantum two-level analog [29,38]
described in the Appendix. Figures 1(a) and 1(b) (without
and with damping, respectively) show the evolution of −mz =
− cos θ versus slow time T = α1/2τ , which approximately
follows the linear time dependence cos θ ≈ �′

d on time, while
Figs. 1(c) and 1(d) represent the corresponding phase mis-
match �(0, T ) = ϕ(0, T ) − ϕd (T ) and illustrate the contin-
uing azimuthal phase locking in the system at � ≈ π . Note
that the uniform solution in this case is stable with respect
to spatial perturbations. The dissipation changes the threshold
condition for entering the autoresonant uniform state [29,39],
has some effect on the phase mismatch [compare Figs. 1(c)
and 1(d)], and leads to the collapse of the solution to the initial
equilibrium after dephasing. Nevertheless, in the phase-locked
stage the autoresonant uniform solutions are similar with and
without damping and remains stable with respect to spatial
perturbations. Note that a similar evolution can be obtained
by starting from the mz = −1 equilibrium if one applies the
external magnetic field in the −̂ez direction (h0 < 0). The
driving field in this case must rotate in the opposite direction
and the linear resonance takes place at the driving frequency
�d (τ ) = 1 + |h0|. With this modification, Fig. 1 and other

FIG. 2. The instability of the uniform magnetization state. The
parameters of the simulations in (a) and (b) are the same as in
Figs. 1(a) and 1(b), respectively, but κ = 2π/l < 1. A complex
spatiotemporal magnetization profile develops beyond the point of
instability.

figures below illustrating mz(ξ, T ) remain the same if one
changes the label −mz to mz.

In contrast to the example in Fig. 1, one observes a spatial
instability of the autoresonant uniform state in Figs. 2(a)
and 2(b), showing the numerical simulations with the same
parameters as in Figs. 1(a) and 1(b), but l = 8 instead of 6.
One can see the destruction of the uniform state in Fig. 2 and
formation of a complex spatiotemporal structure of mz(ξ, T )
starting T ≈ 21 in Fig. 1(a) and somewhat earlier in Fig. 1(b).
These results can be explained by a perturbation theory as
described below. We neglect damping for simplicity, freeze
the time at τ = τ0, and set � = π + δ� and θ = θ0 + δθ ,
where θ0 satisfies

cos θ0 − �′
d (τ0) + ε cot θ0 = 0. (12)

Then, for small perturbations δ� and δθ of frequency ν and
wave vector κ , Eqs. (3) and (4) become

−iνδθ = −(κ2 sin θ0 − ε)δ�, (13)

−iνδ� =
(

− sin θ0 + κ2

sin θ0
− ε

sin2 θ0

)
δθ,

yielding

ν2 = 1

sin2 θ0
(κ2 sin θ0 − ε)(− sin3 θ0 + κ2 sin θ0 − ε). (14)

One can see that for small ε, the uniform solution is stable
with respect to spatial perturbations provided

κ > sin θ0. (15)

The examples in Figs. 1 (κ = 1.047) and 2 (κ = 0.785) are
consistent with this result.

III. TRANSFORMATION FROM SPATIALLY UNIFORM
SOLUTION TO A STANDING WAVE

The formation of a uniform autoresonant solution
cos θ0(τ ) ≈ �′

d (τ ) in the spatially periodic LLG problem
was demonstrated above using a constant amplitude chirped
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FIG. 3. The formation of autoresonant standing waves from the
uniform magnetization state: (a) κ = 0.78, (b) κ = 0.45. The final
waveform is reached as the driving frequency gradually decreases
and stays constant for T > 69.

frequency drive, yielding stable evolution provided the in-
equality (15) is satisfied (see Fig. 1). If during the evolution,
this inequality is violated, the spatial instability develops (see
Fig. 2). However, one can avoid the instability and trans-
form the uniform autoresonant solution into an autoresonant
standing wave by adding a simple spatial modulation of the
driving amplitude, i.e., uses ε = ε0 + ε1 cos(κξ ). We illus-
trate this phenomenon via simulations in Fig. 3, where we
use parameters α = 5 × 10−4 and λ = 0, but, in the driving
term, apply a modulated drive with ε1 = ε0 = 3 × 10−3 and
switch on ε1 at τ = 0. The chirped driving frequency in
this numerical example is of form �′

d = 1 − �� sin(ατ/��)
for τ < π��/2α and �′

d = 1 − �� for τ > π��/2α, and
we use �� = 0.98. Thus, as in previous illustrations, the
frequency passes the resonance at τ = 0 having chirp rate α

but then gradually decreases reaching a constant. Figure 3(a)
(where we use l = 8) shows that the addition of the spatial
modulation of the driving amplitudes prevents the spatial
instability and leads to the emergence of a growing amplitude
standing wave solution. Figure 3(b) (where l = 13) shows
a similar dynamics, yielding formation of larger amplitude
standing wave, which starts earlier, at T ≈ 5 (we again use
the slow time T = α1/2τ in this and the following figures).
The excited standing wave is fully controlled by the variation
of the driving frequency and precesses azimuthally with the
angular velocity of the driving phase (due to the continuing
phase locking of � ≈ π ). Furthermore, the magnetization
waveform is spatially locked to the driving perturbation, while
the wave amplitude and form is controlled by the instan-
taneous frequency of the drive. Importantly, as l increases,
the maximum and the minimum of the final solution for mz

become near +1 and −1, respectively. We have also verified
numerically that this solution approaches the well known
soliton form with exponentially falling tails [see Eq. (6.21)
in Ref. [9]]. We further illustrate the autoresonant control of
the standing magnetization waves in Figs. 4(a) and 4(c), where
we show the results of simulations with all the parameters of
Fig. 3(b), but instead of saturating the driving frequency, we
allow it to vary according to the same sinusoidal formula for
an additional time interval π��/2α < τ < π��/2α, so the
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FIG. 4. The control of the phase-locked standing magnetization
wave by varying the driving frequency. In (a) and (c) the parameters
of the simulations are the same as in Fig. 3(b), but after reaching
its minimal value at T = 69, the driving frequency increases back to
the initial value, while the magnetization returns to the initial state.
Panels (b) and (d) show −mz and phase mismatch �, respectively,
versus slow time in the same case as (a) and (c), but λ = 10−3 and
ε = 10−2.

frequency returns to its original value. Figures 4(b) and 4(d)
show the results of similar simulations with the same param-
eters as in Figs. 4(a) and 4(c), but ε = 10−2 and λ = 10−3.
One observes the return of the magnetization to its initial
uniform state, being continuously phase locked [see Figs. 4(c)
and 4(d)] to the drive with or without dissipation. The idea
of the transformation from the uniform to standing wave
solution by passage through the spatial instability originates
from the similarity to the autoresonant excitations of standing
waves of the driven-chirped nonlinear Schrodinger (NLS)
equation [31]:

iψτ + ψξξ + |ψ |2ψ + εe−i
∫

ωddτ = 0. (16)

If one writes ψ = ae−iφ and separates the real and imaginary
parts in (16), one arrives at the system

aτ = a�ξξ + 2�ξ aξ − ε sin �, (17)

�τ = −aξξ

a
+ �2

ξ − a2 − ωd (t ) − ε

a
cos �, (18)

where � = φ − ∫
ωddτ . Similarly to our ferromagnetic prob-

lem, the passage through the linear resonance in this system
yields excitation of the uniform autoresonant NLS solution
followed by transformation into autoresonant standing wave
[31]. One notices the structural similarity between this NLS
system and LLG Eqs. (3) and (4), so we proceed to the theory
for the magnetization case using the driven NLS ideas.

We assume that the time evolution in Eqs. (3) and (4) is
slow and interpret the solutions at a given time τ , as being
a slightly perturbed solution of the same system of equations
but with the time derivatives and the forcing terms set to zero,
i.e.,

�ξξ sin θ + 2�ξ θξ cos θ = 0,(
− 1

sin θ
θξξ + �2

ξ cos θ

)
− �′

d (τ ) + cos θ = 0. (19)
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We notice that this is a dynamical, two degrees of freedom
problem (ξ serving as “time”) governed by Hamiltonian

H = 1
2

(
θ2
ξ + �2

ξ sin2 θ
) + V (θ ), (20)

where

V (θ ) = −�′
d (τ ) cos θ + 1

4 cos(2θ ). (21)

This fixed τ problem is integrable since it conserves the
canonical momentum B = �ξ sin2 θ and energy

E = 1
2θ2

ξ + Veff , (22)

where Veff (θ, τ ) = B2

2 sin2 θ
+ V (θ ). Next, we discuss oscillat-

ing solutions of this problem and introduce the conventional
action-angle variables (I,�) and (B,�), where the first pair
describes pure θ oscillations in the effective potential Veff ,
while the second pair is associated with the dynamics of �.
If one returns to the original (time dependent and driven)
system (3) and (4), E(τ ) and B(τ ) become slow functions
of time. We will present a theory describing these slow
parameters via Whitham’s average variational principle [36]
in the next section and devote the remaining part of the current
section to a simple qualitative picture of the dynamics. Our
qualitative picture is based on the assumption of almost purely
θ dynamics in the problem, i.e., setting B ≈ 0, which means
a continuous phase locking � ≈ π , simplifying the effective
potential to Veff ≈ −�′

d (τ ) cos θ + 1
4 cos(2θ ). As already dis-

cussed above, the phase locking at π is guaranteed in the ini-
tial excitation stage via temporal autoresonance with constant
amplitude ε = ε0, chirped frequency perturbation. But now
our driving amplitude ε = ε0 + ε1 cos(κξ ) has two terms,
where the first leads to excitation of the uniform autoresonant
solution as discussed above, while the second term yields tran-
sition to the standing wave solution. Initially, θ is efficiently
trapped at the minimum location θm of the potential well Veff

given by cos θm = �′
d (τ ). To O(ε) this yields θ ≈ θm, so this

dynamics corresponds to the uniform autoresonant solution
[see Eq. (12)]. The second term ε1 cos(κξ ) in the driving has
little effect on the evolution at this stage, until the spatial
frequency κ0 = √

∂2Veff/∂θ2
m of oscillations of θ around θm

passes the resonance with this driving term, i.e., when

�′
d (τ ) cos θm − cos(2θm) ≈ sin2 θm = κ2. (23)

But this is exactly the location of the instability of the uniform
solution [see Eq. (15)] without the term ε1 cos(κξ ) in the
drive. The passage through the resonance with this new
drive term excites growing amplitude oscillations of θ in the
effective potential. After the passage, the oscillations of θ

become autoresonant as the amplitude increases to preserve
their spatial frequency near κ continuously. These newly in-
duced spatially phase-locked, growing amplitude oscillations
of θ comprise the autoresonant standing wave solution. The
amplitude of these oscillations does not grow indefinitely.
Indeed, when the potential Veff becomes shallower again as
θm passes π/2 at �′

d (τ ) = 0, the spatial resonance cannot
be sustained, and the autoresonance is expected to interrupt.
We illustrate this dynamics in Fig. 5, showing the effective
potential Veff (thin red lines) at 14 successive values of slow
time starting T = −20. The thick blue lines in the figure
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FIG. 5. The formation of the autoresonant standing wave mod-
elled via dynamics of a quasiparticle in a slowly varying effective
potential Veff . Veff versus θ is shown for successive times (thin
red lines) starting at T = −20. The thick blue lines show spatial
oscillations of θ at these times, as obtained in simulations in Fig. 3(a).
The excitation proceeds as the quasiparticle remains at the bottom of
the potential well continuously, corresponding to the flat solution.
After passage through resonance with the spatial modulation of the
driving amplitude, autoresonant oscillations of the quasiparticle in
the effective potential are excited, describing the standing magneti-
zation wave.

show the value of the potential at θ (ξ, T ) at these times, as
obtained in the simulations in the example in Fig. 3(a).

IV. WHITHAM’S AVERAGED VARIATIONAL ANALYSIS

A. Averaged Lagrangian density

The LLG problem governed by Eqs. (3) and (4) allows
Lagrangian formulation with the Lagrangian density L =
L0 + L1 where

L0(θ, θξ ,�τ ,�ξ , τ ) = 1
2

(
θ2
ξ + �2

ξ sin2 θ
) + �τ cos θ

+�′
d (τ ) cos θ − 1

4 cos(2θ ) (24)

and the perturbing part

L1 = −ε sin θ cos �. (25)

For studying the slow autoresonant evolution in system (3)
and (4), we use Whitham’s averaged Lagrangian approach.
Following Refs. [31,40], describing a similar NLS problem,
we seek solutions of form

θ = ϑ (τ ) + U (�, τ ),� = υ(τ ) + V (�, τ ), (26)

where the explicit time dependence is slow, while �(ξ, τ ) is
a fast variable and U and V are 2π periodic in �. In addition,
the frequencies �τ = −�(τ ) and β = υτ are slow functions
of time and the wave vector �ξ = κ = const (κ = 2π/l, l

being the periodicity length in our problem). The Whitham’s
averaging [36] in this system proceeds from the unperturbed
Lagrangian density L0, where one freezes the slow time
dependence at some τ and, using �ξ = κV�, replaces �τ =
β − �V� = β − (�/κ )�ξ . This yields

L0 = 1

2

(
U 2

ξ + �2
ξ sin2 θ

)
+

(
β + �′

d − �

κ
�ξ

)
cos θ − 1

4
cos(2θ ). (27)
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Recall that the explicit dependence on U in (27) enters via
θ = ϑ + U . This Lagrangian density describes a two degrees
of freedom dynamical problem (for U and �), where ξ

plays the role of “time.” In dealing with this problem we
use Hamiltonian formulation. We define the usual canonical
momenta

P U = ∂L0/∂Uξ = Uξ (28)

P � = ∂L0/∂�ξ = �ξ sin2 θ − �

κ
cos θ (29)

and observe that � is a cyclic variable and therefore P � =
B is the integral of motion. We will unfreeze the slow time
dependence later and B(τ ) will becomes a slow function of
time. The Lagrangian density L0 yields the Hamiltonian in
the time-frozen problem

H0 = P UUξ + P ��ξ − L0 (30)

and, after some algebra,

H0 = H ′
0(P θ , θ ) + V1(θ, B,�, β ), (31)

where

H ′
0(P U,U ) = 1

2 (P U )2 + V (θ ) − V (ϑ ), (32)

V (θ ) = −�′
d cos θ + 1

4 cos(2θ ), (33)

and

V1(B,�, β, θ ) = V (ϑ ) +
(
B + �

κ
cos θ

)2

2 sin2 θ
− β cos θ.

At this stage, we return to the full driven (still time-frozen)
problem governed by the Hamiltonian

H = H ′
0(P U,U ) + V1 − L1 (34)

(recall that L1 = −[ε0 + ε1 cos(κξ )] sin θ cos �) and make
canonical transformation from P U,U to the action-angle
(AA) variables I,� of Hamiltonian H ′

0. The dynamics gov-
erned by this Hamiltonian conserves its energy E = H ′

0 and
is periodic of period 2π in �, and, at this stage, we identify �

with the angle variable used in the definitions (26). The action
variable in H ′

0 problem is

I = 1

2π

∮
P UdU = 1

2π

∮ √
2[E − V (θ ) + V (ϑ )]dU,

(35)
where the time dependence enters both explicitly in V and via
ϑ . Note that

∂I

∂E
= 1

2π

∮
1√

2[E − V (θ ) + V (ϑ )]
dU = 1

κ̃
, (36)

κ̃ (ϑ,E) being the (spatial) frequency of the oscillations of U

governed by H ′
0. Next, we write the full Lagrangian in our

problem in terms of the new action angle variables

L = d�

dξ
I − H = κI − E − V1(B,�, β, θ ) + L1(θ, ξ, τ ),

(37)
where θ = ϑ + U (I,�, τ ) in V1 and L1, as the result
of the canonical transformation. The Whitham’s averaged

Lagrangian density � is obtained by averaging L in the time-
frozen problem over one oscillation governed by H ′

0:

� = 1

2π

∫ 2π

0
Ld� = κI − E − 1

2π

∫ 2π

0
(V1 − L1)d�.

(38)
To complete the averaging, we calculate two remaining com-
ponents 〈V1〉 = 1

2π

∫ 2π

0 V1d� and �1 = 1
2π

∫ 2π

0 L1d� in (38).

〈V1〉 = V (ϑ ) + 1

2π

∫ 2π

0

[(
B + �

κ
cos θ

)2

2 sin2 θ
− β cos θ

]
d�

= V (ϑ ) + I1
B2

2
+ I2

B�

κ
+ I3

�2

2κ2
− βI4, (39)

where I1 = 〈 1
sin2 θ

〉, I2 = 〈 cos θ

sin2 θ
〉, I3 = 〈 cos2 θ

sin2 θ
〉, I4 = 〈cos θ〉,

and the averages 〈...〉 are defined as

〈...〉 = 1

2π

∫ 2π

0
(...)d�

= κ

2π

∮
(...)√

2[E − V (θ ) + V (ϑ )]
dU. (40)

Finally, we calculate the averaged driving part of the La-
grangian density (recall that θ = ϑ + U and � = υ + V )

�1 = − 1

2π

∫ 2π

0
[ε0 + ε1 cos(κξ )]

× sin(ϑ + U ) cos(υ + V )d�. (41)

Here, we limit evaluation of this averaged object to small
spatial oscillations of θ around ϑ , write U ≈ a(I ) cos �

and replace sin(ϑ + U ) ≈ sin ϑ + a(I ) cos ϑ cos �. Further-
more, we will also assume that V is sufficiently small to
replace cos(υ + V ) ≈ cos υ. Finally, assuming a continuous
approximate double resonance in the problem, i.e., υ(τ ) −
π = υ ′ ≈ 0 and � − κξ − π = μ(τ ) ≈ 0 (initial phase lock-
ing of υ at π was shown in the uniform autoresonant solution
stage), after averaging

�1 ≈
(

ε0 sin ϑ − ε1

2
a(I ) cos ϑ cos μ

)
cos υ ′. (42)

Therefore, our final averaged Lagrangian becomes

� = κI − E − V (ϑ ) − I1B
2

2
− I2B�

κ
− I3�

2

2κ2
+ I4β

+
[
ε0 sin ϑ − ε1

2
a(I ) cos ϑ cos μ

]
cos υ ′. (43)

We discuss the slow evolution of the full driven system next.
Following Whitham, this evolution is obtained by unfreezing
the time and taking variations of � with respect to all depen-
dent variables E,ϑ,B,�, and υ. Obviously, only slow objects
enter the averaged Lagrangian density.

B. Evolution equations and stability analysis

At this stage, we write variational evolution equations. The
variation of � with respect to B yields

dμ

dτ
= −� = κI1

I2
B, (44)
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and the variation with respect to � and use of (44) results in

d

dτ

[(
I 2

2 − I1I3
) B

κI2

]
≈ ε1

2
a cos ϑ sin μ. (45)

Similarly, the variation with respect to E and υ gives

I4E

dυ ′

dτ
= 1 − κ

κ̃
+ B2

(
I1E

2
− I2EI1

I2
+ I3EI 2

1

2I 2
2

)
(46)

+ ε1

2
aE cos ϑ cos μ cos υ ′

and

dI4

dτ
≈ −

(
ε0 sin ϑ − ε1

2
a cos ϑ cos μ

)
sin υ ′. (47)

Finally, the variation with respect to ϑ yields

I4ϑ

dυ ′

dτ
= ∂V (ϑ )

∂ϑ
− κ

∂I

∂ϑ
+ B2

(
I1ϑ

2
− I2ϑI1

I2
+ I3ϑI 2

1

2I 2
2

)
−

(
ε0 cos ϑ + ε1

2
a sin ϑ cos μ

)
cos υ ′. (48)

Equations (44)–(48) comprise a complete set of slow evolu-
tion equations for E,B,μ, υ ′, and ϑ . The solution of these
equations proceeds by defining a quasisteady state B0 = μ0 =
υ ′

0 = 0, ϑ = ϑ0 and E0 given by

(Vϑ − κIϑ )E0,ϑ0
− ε0 cos ϑ0 − ε1

2
a sin ϑ0 = 0, (49)

G(E0, ϑ0) =
(

1 − κ

κ̃
+ ε1

2
aE cos ϑ0

)
E0,ϑ0

= 0. (50)

Note that in the case ε1 = 0 and small E, Eq. (49) nearly
coincides with Eq. (12) describing the autoresonant uniform
solution. Furthermore, for small E, to O(ε), Eq. (49) yields
Vϑ0 ≈ 0, i.e., ϑ0 remains near the location of the minimum
of V (θ ) given by cos ϑ0 ≈ �′

d , as was suggested in the
qualitative model in Sec. IV and seen in simulations. On the
other hand, Eq. (50) clarifies the phase locking at μ ≈ 0 as κ̃

approaches the resonance κ̃ = κ from below.
Despite the formal complexity of the averaged variational

theory, it now allows us to easily find the quasisteady state of
the magnetization versus time in this chirped-driven problem
without solving the LLG equation numerically. We illustrate
such a calculation in Fig. 6. The dots in panel (a) in the figure
represent the quasienergy E versus time found by solving
algebraic equation (50) in the two examples in Fig. 3. The
solid lines in the same panel show the energy 1

l

∫ l

0 H ′
0(ξ )dξ

from our numerical simulations, where H ′
0 is defined in

Eq. (32). Panel (b) in the figure shows by dots the magnetiza-
tion waveform mz(ξ ) = cos ϑ found by quadratures, i.e., by
solving 1

2 (dϑ/dξ )2 + V (ϑ ) = E. The solid lines in this panel
show the results from the numerical simulations. One can see
that the agreement between the quasisteady state theory and
simulations is excellent. In contrast to the simplicity of finding
the quasisteady state via the variational theory, the analysis

0 20 40 60
0
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0.3
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0.5

T

E

−0.5 0 0.5
−1

−0.5

0

0.5

1

ξ/l

−
m

z

(b)(a)

l=8

l=13

l=8

l=13

FIG. 6. Comparison between the quasisteady state solution from
the variational theory (dots) and numerical simulations (solid lines).
Panel (a) presents the quasienergy E versus time in the two examples
in Fig. 3, while panel (b) shows the waveform mz(z) in the same
examples at time T = 70.

of its stability illustrated in numerical simulations is more
complex and is discussed below.

For small perturbations δE, δB, δμ, δυ ′, and δϑ of the
quasisteady state, we use I ≈ δE/̃κ ≈ δE/ sin ϑ0 to get the
lowest order (linear) set of equations

dδμ

dτ
= κI1

I2
δB, (51)

dδB

dτ
= −κε1aI2 cos ϑ0

2
(
I1I3 − I 2

2

) δμ, (52)

I4E

dδυ ′

dτ
= Gϑδϑ + GAδE, (53)

I4E

dδE

dτ
+ I4ϑ

dδϑ

dτ
= −

(
ε0 sin ϑ0 − ε1

2
a cos ϑ0

)
δυ ′, (54)

I4ϑ

dδυ ′

dτ
= Vϑϑδϑ − κRδE, (55)

where we use κ̃ ≈ sin ϑ0, so R ≈ cos ϑ0/ sin2 ϑ0 and all coef-
ficients in (51)–(55) are viewed as constants evaluated at the
quasisteady state. Equations (51) and (52) yield

d2δμ

dτ 2
+ ν2

1δμ ≈ 0, (56)

while Eqs. (53)–(55) reduce to

d2δυ ′

dτ 2
+ ν2

2δυ ′ ≈ 0, (57)

where the two frequencies satisfy

ν2
1 = ε1κ

2I1a cos ϑ0

2
(
I1I3 − I 2

2

) ,

ν2
2 =

(
ε0 sin ϑ0 − ε1

2 a cos ϑ0
)
(GEVϑϑ − κRGϑ )

I4E (I4EVϑϑ − κRGϑ ) + I4ϑ (GEI4ϑ − GϑI4E )
.
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FIG. 7. The transition to instability of the autoresonant mag-
netization wave. The parameters are as those in Fig. 3(a), but a
larger final driving frequency (smaller excitation amplitude) and
different ε1. Panels (a) and (b) show the excited waveforms for
ε1/ε0 = 9 and 11, respectively, i.e., below and above the instability
threshold ε1/ε0 = 9.8. The spatial phase locking is lost for T > 40 in
panel (b).

A positiveness of ν2
1,2 guarantees stability of the (doubly)

autoresonant (υ ′ ≈ 0 and μ ≈ 0) evolution of the system. We
observe that

I1I3 − I 2
2 ∝

(∑
i

1

si

)⎛⎝∑
j

x2
j

sj

⎞⎠ −
(∑

i

xi

si

)2

,

where xi = cos θi and si = sin2 θi

√
[E − Veff (θi )]. Then

I1I3 − I 2
2 ∝

∑
i,j>i

(xi − xj )2

sisj

, (58)

so ν2
1 is positive for ϑ0 < π/2. Then, since B = δB,

and μ = δμ, they both remain small. Furthermore,
for small excitations of E, to lowest order in E, κ =
sin ϑ0, Gϑ = cos ϑ0/ sin ϑ0, GE = ( 1

sin ϑ0
− 3

2 sin3 ϑ0
), I4ϑ =

− sin ϑ0, I4E = cos ϑ0/ sin2 ϑ0. With these substitutions,
one finds ν2

2 ≈ ε0 sin ϑ0 − ε1
2 a cos ϑ0. Then condition

ε0 sin ϑ0 − ε1
2 a cos ϑ0 > 0 guarantees the stability of the

autoresonant evolution. We illustrate this conclusion in Fig. 7,
showing the results of numerical simulations for parameters
of Fig. 3(a), but �� = 0.4, i.e., larger final driving frequency
�′ = 1 − �� and, thus, smaller excitation amplitude a.
We estimate numerically that in this case ϑ0 ≈ 0.89rad

and a ≈ 0.25rad. This yields the transition to instability
at ε1/ε0 = 2 sin ϑ0/(a cos ϑ0) ≈ 9.8 . Panels (a) and (b)
in Fig. 7 show the excited magnetization waveform for
ε1/ε0 = 9 and 11, respectively. One can see that below the
instability condition (ε1/ε0 = 9) the excited wave remains
spatially phase locked to the drive, arriving at the final
quasisteady state at later times. In contrast, for ε1/ε0 = 11 in
panel (b), the initial excitation stage is similar to that in panel
(a), but the spatial phase locking is lost beyond T ≈ 40 due
to the instability and the magnetization develops a complex
spatiotemporal profile.

V. ALTERNATIVE DRIVING SCHEMES

Here we discuss two modifications of the driving compo-
nent in the LLG equation (1), which may allow the required
submicron spatial modulation of the drive. The first modifi-
cation is using spin torque drive instead of the microwave (a
related autoresonant problem for single domain nanoparticles
was studied in Ref. [30]). The effective magnetic field associ-
ated with the spin torque is

hs = m × Is , (59)

where Is is the dimensionless spin polarized current, which
will be assumed of form Is = 2ε sin ϕdex in the following,
yielding hs = 2ε(mzey − myez), and possibly using nanocon-
tacts [41] for submicron spatial modulation of ε. The analog
of system (3), (4) for this drive is

θτ = �ξξ sin θ + 2�ξ θξ cos θ − ε cos θ sin �, (60)

�τ =
(

− 1

sin θ
θξξ + �2

ξ cos θ

)
− �′

D − ε cos �

sin θ
, (61)

where � = ϕ − ϕd + π/2. Note that for small θ the last
two equations are nearly the same as Eqs. (3), (4) for the
microwave drive. One consequence of this is that the autores-
onance threshold when passing the linear resonance is the
same for both cases. Figure 8(a) illustrates the formation and
control of the autoresonant standing wave via a spin torque
drive in simulations using the parameters of Fig. 3(b). One
can see that the form of the excited solution in Figs. 3(b)
and 8(a) are very similar. Despite this similarity, a complete
Whitham’s-type theory of the spin torque driven problem is
more complex than that for the microwave drive case, because
the driving parts in Eqs. (60) and (61) do not allow Lagrangian
description. Therefore, we leave this theory outside the scope
of the present work.

The second driving alternative is using the same chirped
frequency microwave drive of uniform amplitude ε0, but

0
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FIG. 8. Formation of the autoresonant standing magnetization
wave by chirped frequency spin torque drive [panel (a)] and via a
combination of a uniform AC drive and a modulation of the hard
axis anisotropy [panel (c)]. The parameters in the simulations are the
same as in Fig. 3(b) for the AC drive, while for the anisotropy mod-
ulation case ε2 = −2.5ε0. Panels (b) and (d) show the corresponding
phase mismatch �(0, T ) for the two drives, respectively.
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adding a spatially modulated [42] hard axis anisotropy in the
system (along êx , for example). The driving component of the
effective field in this case will become

hd = ε0(cos ϕd êx + sin ϕd êy ) − 2ε2 cos(κξ )mx̂ex, (62)

2ε2 being the ratio between the easy and hard axis anisotropy
coefficients. In the autoresonance, mx = sin θ cos ϕ ≈
− sin θ cos ϕd and one can rewrite hd as

hd ≈ [ε0 + ε2 sin θ cos(κξ )](cos ϕd êx + sin ϕd êy ) (63)

+ ε2 sin θ cos(κξ )(cos ϕd êx − sin ϕd êy ).

The last term in this expression is rotating in the opposite
direction and, being nonresonant, has a negligible effect.
Thus, effectively, hd has a form similar to that analyzed in
our theory for the microwave drive. Figure 8(b) illustrates
this idea in simulations using hd from Eq. (62) and the
same parameters as in Fig. 8(a), but ε1 = 0 and ε2 = 1.25ε0.
We see that this different combination drive yields a very
similar autoresonant magnetization wave as in Figs. 3(b) and
8(a). Furthermore, we have seen numerically that within this
driving scheme, one can excite large amplitude autoresonant
waves with the modulation scale reaching L = 1000 nm using
smaller driving amplitudes and chirp rates. However, this may
limit some experiments, because it also requires a weaker
dissipation for stable evolution.

VI. CONCLUSIONS

In conclusion, we have studied the problem of autores-
onant excitation and control of 1D standing magnetization
waves in an easy axis ferromagnetic in an external mag-
netic field and driven by a weak circularly polarized, chirped
frequency microwave field. We had modeled this problem
by the spatially periodic time dependent LLG equation [see
Eq. (1)]. We had discussed the excitation of the autoreso-
nant solutions in this system via theory and compared the
results with numerical simulations. The excitation proceeded
as the driving frequency passed a resonance with the initially
spatially uniform magnetization equilibrium in the direction
of the easy axis (polar angle θ = 0), yielding a driven spa-
tially uniform magnetization with the azimuthal angle ϕ of
the magnetization locked (and therefore controlled) by the
phase of the microwave. This phase locking (autoresonance)
reflects a continuous self-adjustment of θ [ see Eq. (11)], so
that the resonance is preserved despite the variation of the
driving frequency. It was shown that the condition for this
autoresonant evolution is the driving amplitude ε exceeding
a threshold, which scales with the driving frequency chirp
rate as εth ∼ α3/4 [see Eq. (10)]. We had also shown that
the uniform autoresonant magnetization state remained stable
with respect to spatial perturbations if sin θ < κ = 2π/l, l

being the periodicity length in the problem. In the case
2π/l > 1, the stable uniform state reached a complete mag-
netization inversion (θ → π ). In contrast, when θ increased
during the autoresonant uniform state evolution and passed
the point where sin θ = 2π/l, the spatial instability devel-
oped, yielding a complex spatiotemporal magnetization wave
form.

We had shown that if instead of a constant driving ampli-
tude, one introduced a spatially modulated amplitude ε0 +
ε1 cos(κξ ), then, instead of the instability, a standing wave
is excited with the amplitude and form controlled by the
frequency of the driving wave. This emerging autoresonant
solution is doubly phase locked, i.e., its azimuthal angle ϕ

is locked to the phase of the driving wave, while θ performs
slowly evolving growing amplitude nonlinear spatial oscilla-
tions in an effective potential, which are continuously phase
locked to the spatial modulation of the drive. Furthermore,
as the periodicity length l increases, the autoresonant wave
approaches the well know soliton form [see Eq. (6.21) in
Ref. [9]]. The formation of the autoresonant standing wave
is fully reversible and can be returned to its initial uniform
(θ ≈ 0) state by simply reversing the variation of the driving
frequency. In addition to suggesting a qualitative descrip-
tion of this autoresonant evolution (see Sec. III), we had
developed a complete theory of the dynamics in the problem
based on the Whitham’s averaged variational approach and
studied modulational stability of the autoresonant solutions
(see Sec. IV). We had found numerically that a sufficiently
weak dissipation does not affect the autoresonant evolution
significantly. The suggested method of excitation allows us
to form steady standing waves of prescribed amplitude by
simply fixing the driving frequency at any time, while the
autoresonant driving compensates the effect of dissipation.
We had also discussed and illustrated in simulations formation
of autoresonant standing waves when replacing the microwave
drive by a spatially modulated transverse spin torque driving
or adding a modulated hard axis anisotropy. Developing a
full Whitham’s type theory in these cases and inclusion of
dissipation and thermal fluctuations in the theory seem to be
important goals for future research. Finally, it is known that
the undriven, dissipationless LLG problem (1) is integrable
[9]. This means that there exist many additional, so-called
multiphase solutions in this problem. Addressing the question
of excitation and control of this multitude of solutions by
chirped frequency perturbations seems to comprise another
interesting goal for the future.
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APPENDIX: QUANTUM TWO-LEVEL MODEL

We perform our numerical simulations to lowest significant
order in λ and, therefore, approximate LLG Eq. (1) as

∂m
∂τ

≈ h × m+λm × (h × m) = h′×m, (A1)

where h′ = h − λh × m. Our numerical scheme for study-
ing the evolution governed by Eq. (A1) is based on the
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equivalent quantum two-level system (idea originated by
Feynman [38], and recently used in studying magnetiza-
tion inversion in single domain nanoparticles [29,30]). We
solve

i
∂A1

∂τ
= d0

2
A1 + dA2, (A2)

i
dA2

∂τ
= −d0

2
A2 + d∗A1, (A3)

where A1,2 = A1,2(ξ, τ ) are the wave functions of a pair of
coupled quantum levels and

d0 = h′
z, (A4)

d = (h′
x − ih′

y )

2
. (A5)

The magnetization m in d0 and d in Eqs. (A2), (A3) is related
to A1,2 via

mx = A1A
∗
2 + A∗

1A2 = 2B1B2 cos ϕ,

my = i(A1A
∗
2 − A∗

1A2) = 2B1B2 sin ϕ, (A6)

mz = |A1|2 − |A2|2 = B2
1 − B2

2 ,

where A1,2 = B1,2 exp(iϕ1,2) and ϕ = ϕ2 − ϕ1. Note that, as
expected, the total population of our two level system remains
constant, |A1|2 + |A2|2 = |m| = 1. Note also that m⊥ =√

m2
x + m2

y = 2B1B2, while ϕ is the azimuthal rotation angle

of the magnetization around ξ . Formally, the system (A2),
(A3) comprises a set of two coupled NLS-type equations for
wave functions A1,2. The numerical approach to solving this
system throughout this work used a standard pseudospectral
method [43] subject to given initial and periodic boundary
conditions.
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