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Quantum versus classical effects in the chirped-drive discrete nonlinear Schrödinger equation
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A chirped parametrically driven discrete nonlinear Schrödinger equation is discussed. It is shown that the
system allows two resonant excitation mechanisms, i.e., successive two-level transitions (ladder climbing) or a
continuous classical-like nonlinear phase locking (autoresonance). Two-level arguments are used to study the
ladder-climbing process, and semiclassical theory describes the autoresonance effect. The regimes of efficient
excitation in the problem are identified and characterized in terms of three dimensionless parameters describing
the driving strength, the dispersion nonlinearity, and the Kerr-type nonlinearity, respectively. The nonlinearity
alters the borderlines between the regimes and their characteristics.
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I. INTRODUCTION

The discrete nonlinear Schrödinger equation (DNLSE) is
an important nonlinear lattice model describing the dynamics
of many systems. Although it was originally proposed for a
biological system [1], nowadays the most important of those
systems are in the fields of atomic physics and optics (for a
comprehensive review, see Ref. [2]). Well-known examples
analyzed using the DNLSE include bright and dark solitons
[3,4], Bloch oscillations [5], and Anderson localization [6]
in optical waveguide arrays. Furthermore, Bloch oscillations
[7], dynamical transitions [8,9], quantum phase transitions
[10,11], controlled tunneling [12–14], and discrete breathers
[15,16] were studied in Bose-Einstein condensates (BECs) in
optical lattices.

Due to its prevalence across many fields of research, the
ability to control, excite, and manipulate systems described
by the DNLSE is of great interest. This paper will explore
the effects of a chirped frequency parametric driving added to
the DNLSE. Various physical systems including atoms and
molecules [17–21], anharmonic oscillators [22], Josephson
junctions [23], plasma waves [24,25], cold neutrons [26],
and BECs [27] all exhibit distinct classical and quantum-
mechanical responses to such chirped driving. The classical
response, known as autoresonance (AR) [22] is character-
ized by sustained phase locking between the system and the
drive, yielding continuing excitation in many dynamical and
wave systems. The quantum-mechanical response in the same
chirped-drive systems, on the other hand, is characterized
by successive Landau-Zener (LZ) transitions [28,29] yielding
climbing up the energy ladder and, hence, dubbed quantum
ladder climbing (LC).

But are the AR and LC processes, previously identified in
dynamical problems and continuous-wave equations, relevant
to the chirped-drive discrete equation in hand? Although
different types of chirped drives were studied in the past in
the context of the DNLSE [30–32], those works did not study
both the quantum-mechanical and classical responses of the
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same system (in some cases because the system contained
too few sites to study classical-like behavior). This paper will
show that both the quantum-mechanical LC and the classical
AR could appear in the chirped-drive DNLSE under different
choices of parameters. It will explore the characteristics of
both AR and LC processes in the case of DNLSE with
focusing nonlinearity, find the regions in the parameters space
where these processes exist, and demonstrate the degree of
control they can exert.

The scope of the paper is as follows: Sec. II introduces
the model and its parametrization. Section III is dedicated to
the studying of the periodic DNLSE with periodicity length
N of two sites, demonstrating the quantum-mechanical LZ
transitions and the effect of the explicit Kerr-type nonlinearity.
Using this two-level description as a building block, Sec. IV
characterizes the AR and LC responses when N is large,
including separation between the regimes in the associated
parameters space. Our conclusions are summarized in Sec. V.

II. THE MODEL AND PARAMETRIZATION

This paper focuses on a periodic chirped-drive DNLSE of
the form

i
dψn

dt
+ (ψn+1+ψn−1 − 2ψn)

�2
+ [β|ψn|2+ε cos φn]ψn = 0,

(1)
where ψn+N = ψn, φn = 2πn

N − θd (t ), θd is the driving phase
having slowly varying (chirped) frequency ωd (t ) = dθd/dt ,
we assume β > 0 (focusing Kerr-type nonlinearity) and initial
driving time t = 0. In the context of the BEC in optical
lattices, such parametric driving could be realized by spatial
and temporal modulations of the lattice, similar to Ref. [11].
Our proposed driving was studied in the past without the chirp
[33] and is designed to drive the system between the modes set
by the traveling-wave solutions of the linearized unperturbed
(β, ε = 0) equation,


m
n = 1√

N
exp(ikmn − iwmt ), km = 2πm

N
,

wm = 4

�2
sin2(km/2), m = 0, 1, . . . , N − 1. (2)
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It will also be demonstrated below that our results are not
limited to this specific choice of chirped-frequency driving
and that other driving schemes could be analyzed in a similar
fashion. A particular example is presented in Appendix A for
zero boundary conditions (ψ0 = ψN−1 = 0).

To proceed, one assumes a constant driving frequency
chirp rate α, (i.e., θd = αt2/2) and uses normalization∑

n |ψn|2 = 1. One can identify four timescales in the prob-
lem: The frequency sweeping timescale ts = 1/

√
α, the driv-

ing timescale td = 2/ε, the characteristic frequency dispersion
timescale tc = �2N2/4π2 ≈ 1/ω1, and the Kerr-type non-
linearity timescale tnl = N/β. The choice of tnl reflects the
effective average value of the Kerr-type interaction, which is
smaller by a factor of 1/N than β due to our normalization.
Using these four timescales, one can define three dimension-
less parameters,

P1 = ts
td

= ε

2
√

α
,

P2 = ts
tc

= 4π2

�2N2
√

α
,

P3 = ts
tnl

= β

N
√

α
.

These parameters characterize the driving strength, the disper-
sion nonlinearity, and the Kerr-type nonlinearity, respectively,
and fully determine the evolution of the driven system as can
be seen if one rewrites Eq. (1) in the dimensionless form

i
dψn

dτ
+ N2

4π2
P2(ψn+1 + ψn−1 − 2ψn)

+ (NP3|ψn|2 + 2P1 cos φn)ψn = 0, (3)

where τ = √
αt is the dimensionless slow time.

It is convenient at this stage to expand ψn = ∑
m am
m

n in
terms of the linear modes and rewrite (3) as

i
∑

m

dam

dτ

m

n + NP3K + P1

∑
m

(eiφn + e−iφn )am
m
n = 0,

(4)
where

K =
∑

m,m′,m′′
am′a∗

m′′am
m′
n 
m′′∗

n 
m
n .

Next, one combines all n-dependent components in the driv-
ing term and in K into a single base function, multiplies
Eq. (4) by 
 l∗

n , and sums the result over n using the orthonor-
mality

∑
n 
m

n 
m′∗
n = δm,m′ to get

i
dal

dτ
+ P3Kl + P1[al−1ei(�ωl τ−θd ) + al+1e−i(�ωl+1τ−θd )] = 0.

(5)
Here, �ωl = ωl − ωl−1, ωl = wl/

√
α is the dimensionless

form of wl and

Kl =
∑
m′,m′′

am′a∗
m′′al−m′+m′′ei(ωm′ −ωm′′ +ωl−m′+m′′−ωl )τ .

Equation (5) is still exact, and some approximations are
needed to advance the analysis. This is performed by moving
to the frame of reference rotating with the drive and neglecting
rapidly oscillating components in Kl . For the stationarity of
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FIG. 1. The numerical solution of Eq. (3) for the population of
mode 1 versus time. The parameters are N = 2, P1 = 0.5, P2 =
100, and P3 = 0 (red) or 5 (blue).

the terms in Kl in the rotating frame of reference, the phases
in the exponents must vanish. Aside from esoteric examples
[34], this could only be achieved when either m′ = m′′ or
m′ = l , which after the summation results for both cases
in

∑
m |am|2al = al , but the term |al |2al is counted twice.

Therefore, in the rotating-wave approximation (RWA), one
has

Kl ≈ 2al − |al |2al .

Finally, one defines bl = al exp(ilθd − iωlτ − i2τ ) to get

i
dbl

dτ
= −bl (lωd − ωl ) + P3|bl |2bl − P1(bl−1 + bl+1), (6)

where the dimensionless form of ωd equals τ . It should be
noted that the symmetry a−1 = aN−1 is broken in system (6)
as b−1 �= bN−1 and, therefore, a phase factor must be added
to the couplings between modes 0 and N − 1. For the sake of
this paper, it is sufficient to neglect these couplings as they are
nonresonant at times τ > 0 studied below.

Equation (6) can yield complex dynamics depending on
the parameters of the problem. Even the very basic example
of N = 2 illustrated in Fig. 1 exhibits remarkably different
evolutions when only parameter P3 is changed. Therefore,
Sec. III will discuss the N = 2 case first. Naturally, such a
system cannot exhibit classical-like behavior involving many
modes, but it provides key insights into the two-level inter-
actions which will be used in Sec. IV in studying the N � 1
case.

III. N = 2 CASE

We write Eq. (6) explicitly for N = 2,

i
d

dτ

(
b0

b1

)
=

(
P3|b0|2 −P1

−P1 P3|b1|2 − τ + ω1

)(
b0

b1

)
. (7)

As mentioned in Sec. II, the couplings b0 ↔ b−1 and b1 ↔ b2

in Eq. (6) are nonresonant and, thus, neglected in Eq. (7).
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FIG. 2. The numerical solution of Eq. (3) for the final population
of mode 1 as a function of P1. The parameters are N = 2, P2 =
τ f = 100, and P3 = 0 (red circles) or 5 (blue diamonds). The dashed
vertical line shows the theoretical NLZ threshold [Eq. (8)], whereas
the dashed-dotted curve is the theoretical LZ formula.

In the linear case, P3 = 0, Eq. (7) takes the well-known LZ
form [28,29] with an avoided energy crossing at τc = ω1 [35].
If one starts in the ground-state |b0(τ = 0)| = 1, the fraction
of the population transferred to mode 1 is given by the LZ
formula |b1(τ � τc)|2 = 1 − exp(−2πP2

1 ) [28,29]. The red
curve in Fig. 1 shows an example for such LZ dynamics for
P1 = 0.5 and P2 = 100. One can see a rapid population trans-
fer around τc ≈ 40.5 converging to the value given by the LZ
formula. However, when the explicit Kerr-type nonlinearity is
introduced, the dynamics changes significantly. This is shown
by the blue curve of Fig. 1, where P3 = 5, whereas all other
parameters are the same. In this case, the population transfer
is much slower and almost linear in time reaching a higher
final state for the same driving parameter P1.

Figure 2 shows the final population of mode 1 at τ f =
100 as a function of P1 and further demonstrates the differ-
ences between the two scenarios. In the linear P3 = 0 case
(red circles), the population transfer follows the LZ formula
(dashed-dotted curve), whereas for P3 = 5 (blue diamonds)
the population of mode 2 “jumps” abruptly, reaching nearly
full population transfer at lower driving strengths than in the
linear case. This so-called nonlinear Landau-Zener transition
(NLZ) was studied in the past in various contexts [27,30,
36–38]. It was shown that the growth of the population of
mode 2 is, in fact, linear in time (with superimposed oscil-
lations) as illustrated in Fig. 1, and a nearly full population
transfer takes place if P1 exceeds a sharp threshold [27,30,36],

PNLZ
1,cr ≈ 0.29/

√
P3. (8)

The value of PNLZ
1,cr is shown in Fig. 2 by a vertical dashed line,

in good agreement with the numerically observed jump in the
transfer of population.

One can further demonstrate the differences between LZ
and NLZ regimes by defining P1,cr as the value of P1 for which
half of the population transitions from mode 0 to mode 1. The

10-1 100 101

P3

10-1

P
1,

cr

P NLZ
1,cr

P LZ
1,cr

FIG. 3. The solution of Eq. (3) for the threshold value of P1,cr

yielding transfer of one half of the population to mode 1 as a function
of P3. The parameters are N = 2, P2 = τ f = 200, and the dashed
lines show the theoretical predictions according to the LZ formula
and Eq. (8). Numerical uncertainty is smaller than the marker sizes.

numerically obtained value of P1,cr is plotted in Fig. 3 versus
P3. For large enough P3, P1,cr matches PNLZ

1,cr (dashed diagonal
line). However, in the LZ regime, the LZ formula yields
PLZ

1,cr = √− ln 0.5/2π ≈ 0.33. And, indeed, for low P3, P1,cr

matches PLZ
1,cr (dashed horizontal line). The intersection of

the two threshold values PNLZ
1,cr = PLZ

1,cr yields a good estimate
for the value of P3 for which the transition between the two
regimes takes place.

Our driving perturbation differs from that assumed in the
asymptotic theories of LZ and NLZ processes because it
involves a finite driving time prior to the energy crossing at τc.
Nevertheless, it will be assumed that τc is large enough for the
two theories to be valid, which can always be accomplished
by increasing P2 (as τc ∝ P2). Nevertheless, the breaking of
this assumption is important in studying the N � 1 case in
Sec. IV and, thus, requires a further discussion. For τc to
be large enough for the applicability of the asymptotic LZ
and NLZ theories, it must be larger than the characteristic
time of population transfer from one mode to the next. In
the case of LZ, the transition time �τLZ is of order O(1)
when P1 is small and O(P1) when it is large, therefore, we
estimate �τLZ = 1 + P1 [39]. In the case of NLZ, the estimate
is �τNLZ = 2P3 [27]. These two times can be combined into
a single estimate for the transition duration,

�τ = 1 + P1 + 2P3, (9)

and, therefore, τc � �τ guarantees that the dynamics is of
the asymptotic LZ or NLZ types. Furthermore, since the
neglected terms in the derivation of Eqs. (6) and (7) oscillate
with frequency proportional to P2, the aforementioned condi-
tion also justifies the RWA approximation.

IV. QUANTUM AND CLASSICAL EFFECTS FOR LARGE N

The controlled excitation in our system is not limited to the
N = 2 case, therefore, the N � 1 limit is considered next (for
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FIG. 4. Color-coded excitation efficiencies (see the text) in the P1,2 parameter space for (a) P3 = 0 and (b) 2.5 as obtained from the
numerical solution of Eq. (3) with N = 80 and τ f = τ15 ≈ 23.1P2. The lines represent different borderlines in the parameter space—The
efficient LC threshold (solid line), efficient AR threshold (dashed line), quantum-classical separation (dotted line), and the large separatrix
boundary (dashed-dotted line). Panels (c)–(f) show the population of each mode at τ f for P1,2 values shown by the corresponding markers in
panels (a) and (b). For clarity, modes with l > N/2 are shifted and presented as l < 0.

some remarks on the case of moderate N see Appendix B).
Panels (c)–(e) in Fig. 4 show histograms of the final popula-
tions |bl (τ f )|2 for N = 80 and τ f ≈ 23.1P2. The parameters
P1,2 in these panels correspond to those shown by correspond-
ing markers in the parameter space of panels (a) and (b),
where P3 = 0 and 2.5, respectively. These figures illustrate a
controlled transfer of the populations to the vicinity of a target
mode (in this case, l ≈ 15) with some width around this mode.
In this section, we show how the different parameters in the
problem control the target mode, the fraction of the excited
population, and the width of the excited distribution of modes.

A. Quantum-mechanical ladder climbing

Panels (c) and (e) in Fig. 4 exhibit very narrow distributions
(1 to 2 modes) and hint at the connection between the cases
of N = 2 and N � 1. This connection becomes apparent
when one examines only two mode interaction l − 1 ↔ l and

neglects other modes in Eq. (6), i.e., solves

i
d

dτ

(
bl−1

bl

)
=

(
�l−1 −P1

−P1 �l

)(
bl−1

bl

)
, (10)

where �l = P3|bl |2 − lτ + ωl . Similar to the case of N = 2,
Eq. (10) takes the form of LZ or NLZ transition, depending
on the value P3. However, in this case, there are many such
transitions (resonances), and their timing is l dependent. This
temporal separation between the transitions allows the system
to successively perform quantum energy LC via pairwise LZ
or NLZ transitions. The time τl of the transition l − 1 ↔ l
can be found by equating �l−1 = �l (energy crossing) which
yields

τl = P2N2

π2
sin

(π

N

)
sin

(
π [2l − 1]

N

)
. (11)

Examining Eq. (11), one can identify a resonant pathway
of consecutive transitions from the ground state to l ≈ N/4.
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The final driving time τ f dictates how high in l the system
will climb and sets the target mode for the process. In the
simulations of Fig. 4, τ f ≈ 23.1P2 so that τ f = τ15 as could
be observed in panels (c)–(f). If the consecutive transitions
are well separated in time, one can treat them as individual
LZ or NLZ transitions and use all of the results discussed in
Sec. III for N = 2. Specifically, the probability of population
transfer will follow the LZ formula and will exhibit a sharp
threshold on P1 for the NLZ transition. Thus, the excitation
efficiency (the fraction of the excited population) in the two
cases should exhibit different characteristics. Once again, one
can define P1,cr as the value of P1, which will drive 50% of the
population after r transitions. Using the LZ formula, one can
calculate

P
LZ
1,cr =

√
− ln(1 − 2−1/r )

2π
. (12)

For NLZ transitions, the sharp threshold guarantees that if
the first transition was efficient, it will continue to be efficient
later and, thus,

P
NLZ
1,cr = PNLZ

1,cr . (13)

To check this prediction, Eq. (3) was solved numerically
with N = 80. The excitation efficiency was defined as the
total population between modes 10 and 20 (upper half of the
resonantly accessible modes). These results are color coded in
panels (a) and (b) of Fig. 4. The population undergoes r = 10
transitions between the ground state and the measurement
window, and the corresponding P1,cr according to Eqs. (12)
and (13) is plotted as vertical solid lines in panels (a) and (b).
One can see that, for large enough P2, the excitation efficiency
grows as expected with P1: It significantly increases in the
vicinity of P1,cr and grows sharply in the NLZ case [panel (b)].

The agreement with the numerics for high enough P2 only
is expected as the assumption that different transitions are well
separated in time is not valid for small P2. Using the logic
of Sec. III, for the transitions to be well separated, one must
require the typical time between the transitions to be larger
than the typical duration of a single transition as given by
Eq. (9). In the limit N � 1, l 
 N , Eq. (11) shows that the
time between two successive transitions is 2P2 (regardless of
the value of P3 since the temporal separation is set by the
linear unperturbed problem P1 = P3 = 0) and, therefore,

P2 � 1

2
+ P1

2
+ P3 (14)

is the criterion for the LC. The line in the P1,2 space on which
the two sides of inequality (14) are equal is shown by the
dotted lines in panels (a) and (b) of Fig. 4. One can see that the
LC prediction holds only above this line. Furthermore, panels
(c) and (e) of Fig. 4 (corresponding to final simulation time
and parameters in the LC regime) involve only two levels as
expected from separated successive LZ transitions. A movie
illustrating this dynamics at earlier times for the parameters
of panel (c) is presented in the Supplemental Material [40].
The observed temporal separability of the transitions differs
from the lack of separability in the context of counterdiabatic
protocols [41].

It should be noted that, although initially the transitions
are nearly evenly separated (similar to other LC systems

[19,21,39]) as one approaches larger l , the transitions become
more frequent. Condition (14) does not hold in this case, and
the dynamics will cease to be of LC nature. However, as could
be observed in Fig. 4 and will be discussed below, condition
(14) is still sufficient in the context of excitation efficiency.

But what happens when criterion (14) is not met and the
transitions are not well separated? Figure 4 shows that there
could still be efficient excitation, but now many modes are
coupled at a time. This mixing of many different modes leads
to classical-like behavior. This is also hinted by the wide dis-
tributions observed in panels (d) and (f) where the parameters
are outside the LC regime. The semiclassical analysis of this
regime will be our next goal.

B. Semiclassical autoresonant regime

For studying the semiclassical evolution of the system
when condition (14) is not met, return to Eq. (3) and assume
that this set can be replaced by a continuous equation in the
limit N � 1. Then, one expands

ψn±1 =
∞∑
j=0

1

j!

d jψn

dn j
(±1) j,

inserts this expansion into Eq. (3), and defines the continuous
spacelike variable x ≡ n to get

i
∂ψ

∂τ
+ P2

N2

2π2

∞∑
j=1

1

(2 j)!

∂2 jψ

∂x2 j

+ (NP3|ψ |2 + 2P1 cos �)ψ = 0. (15)

Here, ψ = ψ (x, τ ) and � = k0x − θd with k0 = 2π/N . At
this point, one writes the wavelike eikonal ansatz ψ =
b(x, τ ) exp[iS(x, τ )] [42], where S is viewed as a rapidly
oscillating phase variable, whereas b is a slow amplitude. In
addition, it is assumed that the derivatives of the fast phase,

k ≡ ∂S

∂x
,

� ≡ −∂S

∂τ

are both slow. The slowness in our problem means
|∂ (ln G)/∂x| 
 k, where G is any of the slow variables above
[42]. The eikonal ansatz models our basis modes 
m

n in dis-
crete formalism. For example, the increase in k in time would
describe a transition to higher modes. Next, one approximates
d2 jψ

dx2 j ≈ beiS (ik)2 j (neglecting small derivatives of b and k),
inserts this approximation into Eq. (15), and identifies the sum
over j as the Taylor expansion of −2 sin2(k/2) to obtain

i
db

dτ
+ b� − P2

N2

π2
b sin2 k

2
+ (NP3b2 + 2P1 cos �)b = 0.

(16)

The imaginary part of Eq. (16) yields db
dτ

= 0. For a more
accurate description of the evolution of the amplitude b in
the eikonal ansatz, one must go to a higher order of the
approximation. However, it can be shown that the essentials
of the resonant dynamics can be revealed without resolving
b. We start with the case P3 = 0 for which the real part of
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Eq. (16) reads

�(x, τ ) = P2
N2

π2
sin2 k(x, τ )

2
− 2P1 cos �. (17)

Equation (17) is a first-order partial differential equation
for the phase variable S in the eikonal ansatz and can be
solved along characteristics (rays). To this end, Eq. (17) can
be interpreted as defining the function of three variables � =
�(x, k, τ ), where k is also a function of x, t and introduce the
characteristics via

dx

dτ
= ∂�(x, k, τ )

∂k
. (18)

Note that by construction,

d�

dx
+ ∂k

∂τ
= 0,

which can be rewritten as

∂�

∂x
+ ∂�

∂k

∂k

∂x
+ ∂k

∂τ
= 0.

This yields the second ray equation,

dk

dτ
= ∂k

∂τ
+ dx

dτ

∂k

∂x
= −∂�

∂x
, (19)

which, in combination with (18), provides a complete system
for following x and k along the rays. Note that these two
equations comprise a Hamiltonian set with �(x, k, τ ) being
the Hamiltonian. In addition,

d�

dτ
= ∂�

∂τ
, (20)

and

dS

dτ
= ∂S

∂τ
+ ∂S

∂x

dx

dτ
= −� + k

∂�

∂k
. (21)

Equations (18)–(21) can be conveniently solved to provide the
phase factor S as well as x, k, and � along the rays, provided
the initial condition S(x, τ = 0) is known on some interval of
x. This knowledge also yields the initial conditions k(x, τ =
0) and �(x, τ = 0) [from (17)] on this interval and solving the
systems (18)–(21) by starting on the interval allows to evolve
the system in time. However, analyzing the phase space of our
Hamiltonian set is just as informative as shown below.

We insert Eq. (17) into Eqs. (18) and (19) and recall that
� = k0x − τ 2/2 to get

d�

dτ
= P2

N

π
sin k − τ, (22)

dk

dτ
= −P1

4π

N
sin �. (23)

This system has the form known from many other classi-
cal autoresonantly driven systems studied in the past (e.g.,
Refs. [21,43]), so previously known results can be used
directly in our case, and we briefly describe these results.
The angle � acts as a phase mismatch between the driving
force and the system. When the resonance condition d�

dτ
≈ 0

is met continuously, P2
N
π

sin k follows the driving frequency
(ωd = τ ), thus, the system is driven to higher modes. It should
be noted that this resonance condition is identical to that given

by Eq. (11) in the limit N, l � 1. Next, we take the second
derivative of (22) and insert (23) to get

d2�

dτ 2
= −4P1P2 cos k sin � − 1. (24)

Here, we approximate k ≈ kr , where kr (τ ) is the value of
k satisfying the exact resonance condition [21,43]. Then,
Eq. (24) describes a pendulum with a time-varying frequency
and under the action of a constant torque. If 4P1P2 cos kr > 1,
the phase space of the system has both open and closed
trajectories. On the open trajectories, � grows indefinitely
and sin k does not follow the driving frequency. In contrast
on the closed trajectories, � and d�/dτ are bounded and
yield sustained phase locking (autoresonance) of the system
to the drive, i.e., a continuing excitation of k. The separatrix
is the trajectory separating the closed and open trajectories in
phase space, and it only exists if 4P1P2 cos kr > 1. Therefore,
if one takes cos kr at its maximal value of 1, one obtains the
threshold,

P1P2 = 1
4 (25)

below which no autoresonant excitation is possible. This
threshold is shown by the diagonal dashed lines in panels (a)
and (b) in Fig. 4, showing good agreement with the numerical
simulations for both values of P3 [44], even though we have
assumed P3 = 0 above. This can be explained by observing
that, when P3 �= 0, only Eq. (23) is affected and becomes

dk

dτ
= −P1

4π

N
sin � + NP3

∂ (b2)

∂x
. (26)

Initially, in our simulations, the additional term in Eq. (26)
vanishes since b is independent of x. Therefore, initially, the
existence of the separatrix is not affected by P3. At later times,
if the separatrix exists, the focusing nonlinearity narrows the
distribution and, thus, does not scatter the trapped trajectories
out of the separatrix. Numerically, the narrowing of the dis-
tribution is seen when comparing panels (d) and (f) in Fig. 4.
Hence, the initial separatrix governs the existence of trapped
trajectories, and since it is independent of P3, threshold (25)
describes the case P3 �= 0 as well.

Until now, we have treated the trajectories inside the sep-
aratrix as those which will be excited to large k, but this is
not the case when the separatrix becomes too large. In this
case, even when a significant portion of the population is
inside the separatrix, not all of it will be excited to large
k and, subsequently, will be precluded from our numerical
measurement. The dashed-dotted lines in panels (a) and (b) of
Fig. 4 mark the values of P1,2 for which the separatrix extends
in k at τ f below our measurement window (π/4). Below this
line, the excitation efficiency drops as more population ends
up outside the measurement window. The aforementioned
narrowing of the autoresonant bunch hinders this argument
for P3 �= 0, but nevertheless, for the values of P3 in our
simulations, this criterion still qualitatively agrees with the
numerical simulations. The details of the separatrix-related
calculations are described in Appendix C.

Finally, we return to the quantum-classical separation line
given by Eq. (14), which was derived under the assumption
of equidistant energy crossings. Although this assumption
breaks when the population is transferred to higher modes
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and several modes are coupled simultaneously, one can again
use the semiclassical arguments as above. The same logic
dictates that the excited population will undergo a dynamical
transition from LC-type evolution to AR evolution. This is
guaranteed by the population being in resonance (again, one
should note the similarities between the quantum and the
classical resonance conditions), whereas the parameters in the
efficient LC regime are always sufficient for efficient AR.

It should be noted that some features in panels (a) and (b)
of Fig. 4 could not be accounted for using the theoretical
framework described in this section. For example, the effi-
ciency “dip” close to the quantum-classical separation line
(dotted line in the figure) could not be explored using the
LC or AR arguments as both approximations fail in this area
of the parameter space. Furthermore, using the semiclassical
theory to calculate the expected efficiency in the AR regime
of the parameter space is beyond the scope of this paper. The
main obstacle is the determination of the proper distribution
of initial conditions for Eqs. (22) and (23). In a different
context, this calculation was possible when the system’s initial
condition was a thermal state rather than the ground state [21].

V. SUMMARY

In conclusion, we have studied the problem of the res-
onantly driven discrete (periodic over N sites) nonlinear
Schrödinger equation for a ground-state initial condition.
Based on four characteristic timescales in the problem, we
introduced three dimensionless parameters P1–3 characterizing
the driving strength, the dispersion nonlinearity, and the Kerr-
type nonlinearity, respectively, and analyzed their effects on
the resonant evolution. First, we analyzed the case of N = 2
and used it to illustrate and analyze the processes of linear
(P3 = 0) and nonlinear (P3 > 0) Landau-Zener transitions. We
have used this two-level description in generalizing the case
of N � 1 and showed how successive linear or nonlinear
Landau-Zener transitions, or LC, can occur in some regions
of the three parameter spaces. Finally, we used semiclassical
arguments to show how, in a different region of the param-
eter spaces, when the transitions are not well separated and
many modes are mixed, the classical-like AR evolution could
appear. Our analysis identified the key borderlines in the
parameter spaces, including the LC-AR separation line and
the thresholds for effective LC or AR evolution.

The explicit Kerr-type nonlinearity introduces several new
effects. First, a single nonlinear Landau-Zener transition is
longer than the linear counterpart and presents a sharp thresh-
old with respect to the driving strength for achieving a full
population transfer. As a result, in the case of N � 1, the
LC regime is moved to higher-P2 values in the P1,2 parameter
space. Furthermore, the effective LC threshold becomes sharp
and is moved to lower-P1 values in the parameter space.
However, the efficient AR threshold remains the same, and
only the width of the autoresonant wave packet narrows.

The two resonant mechanisms available in the DNLSE
allow for intricate control, manipulation, and excitation of the
system, and one can efficiently excite either a narrow (via LC)
or a broad (via AR) distribution around given target modes.
Our analysis was not limited to the case of periodic boundary
conditions. The discussion of similar effects in the DNLSE

with zero boundary conditions was presented in Appendix A.
Furthermore, we expect that by adjusting the parameters of
the problem both temporally and spatially, one can use the
resonant mechanisms studied here to manipulate the system
in the configuration space. In the context of optical waveguide
arrays, some of these effects were illustrated previously by
spatially chirping the refractive index of each waveguide [30].

Owing to the versatility of the resonant mechanisms, their
appearance for various initial and boundary conditions and
the relevance of the DNLSE to many experimental systems
(particularly in the field of atomic physics and optics), this
paper may open many new possibilities for future research. It
would be also interesting to explore counterdiabatic schemes
[41,45] in this system.
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APPENDIX A: ZERO BOUNDARY CONDITIONS

The resonant mechanisms discussed in this paper are not
limited to the setting described in Sec. II. As an important
additional demonstration, we will now show how the driven
DNLSE with zero boundary conditions exhibits the same
resonant characteristics. To perform this, we return to Eq. (1)
but now imposing ψ0 = ψN−1 = 0 at all times (reducing the
system to N − 2 degrees of freedom) and using a modified
standing wave-type chirped driving,

i
dψn

dt
+ 1

�2
(ψn+1 + ψn−1 − 2ψn)

+
[
β|ψn|2 + ε cos θd cos

(
πn

N − 1

)]
ψn = 0. (A1)

To replicate the analysis of Sec. III, the new basis functions
are the standing-wave solutions of the linearized unperturbed
(β, ε = 0) equation,


m
n =

√
2

N − 1
e−iwmt sin(kmn),

km = πm

N − 1
,

wm = 4

�2
sin2(km/2),

m = 1, 2, . . . , N − 2.

The fact that the dispersion remains the same for both types of
boundary conditions is important in exhibiting the same reso-
nant characteristics. It is possible to define the parameters P1–3

in much the same way as in Sec. II, but we refrain from this to
avoid excessive notations at this point. We continue, following
Sec. II, to finding the corresponding DNLSE for coefficients
am in the expansion ψn = ∑

m am
m
n . Inserting this expansion

into Eq. (A1), multiplying by 
 l
n
∗
, and summing over n we get

i
dal

dt
+ ε

2
cos θd [al−1ei �wl t + al+1e−i �wl+1t ]

+ β

2(N − 1)

[ − A1
1 + A1

−1 + A−1
1 − A−1

−1

] = 0, (A2)
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where

Ak
j =

∑
m′,m′′

al+ jm′+km′′a∗
m′am′′e−i(wl+ jm′+km′′−wm′+wm′′−wl )t .

Now, we employ the RWA to get

−A1
1 + A1

−1 + A−1
1 − A−1

−1 ≈ 3al − al |al |2,
and

cos θd ≈ 1
2 e−iθd

for the resonant pathway ascending from mode 0. Finally,
the transformation to the rotating frame of reference bl =
al exp(ilθd − iwl t − i3t ) yields

i
dbl

dt
= − bl

(
l
dθd

dt
− wl

)
+ β

2(N − 1)
|bl |2bl

− ε

4
(bl−1 + bl+1), (A3)

which has the same form as Eq. (6). Therefore, the system
with zero boundary conditions could be controlled and ex-
cited in the same way as the system with periodic boundary
conditions. Note that, in this case, there is no coupling be-
tween modes 1 and N − 2, removing some of the subtleties
encountered in the original problem.

APPENDIX B: MODERATE-N CASE

For moderate N , the semiclassical description is not valid,
but one can still induce a ladder-climbing-type behavior.
However, unlike the case of N � 1, now, the exact structure of
the resonant ladder plays a more significant role. For example,
if N is divisible by 4, the last two transitions in the resonant
pathway will occur simultaneously resulting in a three-level
LZ transition (sometimes referred to as a “bow tie” transition)
[46–48]. In this case, the efficiency of this double-transition
is given by (1 − exp[−πP2

1 ])2 [47]. This effect could only
(realistically) be observed for moderate N as for the N � 1
case, the system will already behave classically when this final
transition is reached.

Although there is no semiclassical dynamics in this case,
the separation line of the form (14) is still useful in demon-
strating when the system could undergo the full ladder-
climbing process from mode 0 to the maximal accessible

mode lmax = D + 1 (D being N/4 rounded down to the nearest
integer). As in Sec. IV, we must demand that the minimal time
between transitions is longer than the duration of a single-
transition as given by Eq. (9). One can show that this minimal
time is either the time of the first transition τ1 when N � 4
or the time between the two last transitions when N > 4. The
time between the two last transitions is τlmax − τlmax−1 (when N
is not divisible by 4) or τlmax−1 − τlmax−2 (when N is divisible
by 4).

APPENDIX C: SEPARATRIX-RELATED CALCULATIONS

As discussed in Sec. IV, if the separatrix becomes too
large, one cannot distinguish between the captured and the not
captured into resonance trajectories as the captured trajecto-
ries might end up outside the numerical measurement window.
To analyze this effect, one must examine the size of the
separatrix. We begin by writing the Hamiltonian associated
with Eq. (24),

H

(
�,

d�

dτ

)
= 1

2

(
d�

dτ

)2

− 4 cos krP1P2 cos � + �,

(C1)

where the resonance condition (22) yields cos kr =√
1 − ( πτ

P2N )2. The separatrix is the trajectory for which
H equals the value of the potential at its maximum point.
Inserting this value of H into (C1) and shifting � such that
� = 0 at the maximum point of the potential, we find the
equation for the separatrix,

d�

dτ

∣∣∣∣
±

sep

= ±21/2
√

B(1 − cos �) + sin � − �, (C2)

where B =
√

(4 cos krP1P2)2 − 1. Following the arguments
in Sec. IV, we demand that the lower end of the separatrix
in k,� phase space at the final driving time is higher than the
lower end of our measurement window located at k = π/4.
Thus, we invert Eq. (22) and insert (C2) to get the condition,

arcsin

[(
d�

dτ

∣∣∣∣
−

sep

+ τ f

)
π

P2N

]
>

π

4
. (C3)

The dashed-dotted line in Fig. 4 is calculated numerically
based on the limiting case of (C3).
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