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Transient precessing domain structures in finite-size nanomagnets and inversion of magnetization
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Transient (in time) uniformly precessing magnetization structures (TUPS) on finite-length ferromagnetic
wires are discussed. These rotating around the wire magnetization solutions of the Landau-Lifshits-Slonczewski
equation are generalizations of traveling uniformly precessing domain walls of infinite range described by
Goussev et al. [Phys. Rev. Lett. 104, 147202 (2010)] and comprise a single parameter family of magnetization
profiles controlled by the precession frequency. The latter slowly varies in time resulting in passage of the
magnetization structure through different evolution stages. The modulational stability of the TUPS is also
discussed. An autoresonance approach using chirped frequency transverse spin polarized current is applied to
initiate TUPS with a desired precession frequency. The process of complete inversion of the magnetization of
the wire involving passage from spatially uniform to nonuniform and then back to uniform precessing state with
opposite magnetization is analyzed.
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I. INTRODUCTION

Domain structures and their dynamics in nanoscale mag-
netic systems are attracting increased attention nowadays
because they affect design and operation of magnetic-based
devices having promising technological applications like the
magnetic memory [1,2], sensor devices [3], and logic concepts
for magnetic computing [4,5].

The miniaturization trend of magnetic samples requires
studying of magnetic structures displaying new dynamical
properties, which can be realized in small size nanomagnets.
It is known from Brown’s theorem [6] that if the size of a
magnetic particle is less than some critical value, the particle
appears as a single-domain object. With the increase of the
size, domains of different magnetizations divided by domain
walls (DW) are found (see, for example, [7]). The critical size
for this transition of magnetic configuration depends on the
shape of the particle and is established by the competition
between magnetostatic, exchange, and anisotropy energies
[6]. In a specific case of an elongated narrow cylinder-shaped
particle (a segment of a “nanowire”), the critical length was
found in Refs. [8,9] by analyzing the energy barrier associated
with formation of the domain wall. The critical length in this
case is lcr ≈ πδ, where δ = √

A/K is the DW width, and A
and K are the exchange stiffness and the effective anisotropy
constant, respectively. If the size of the nanoparticle is less
then lcr, the formation of domains is suppressed, but in the
opposite case, it is preferable. For example, for Permalloy
a typical value of lcr is about 30 nm. This critical length
was verified in experiments on switching of magnetization
of nanoscale Fe islands [10], where small elongated particles
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with size less than lcr reversed their magnetization by coherent
rotation, typical for single-domain particles. In contrast, for
larger particles, a new domain was nucleated near one edge
and then the associated DW propagated through the sample
to reverse the magnetization. A similar complex behavior
of remagnetization of nanomagnets with sizes about lcr was
observed in Ref. [11].

In this paper we present a theory of new domain structures
when the size of nanomagnets is of order of lcr or larger.
The results will allow us to describe the process of inversion
of magnetization in short nanomagnets and define conditions
and thresholds for the inversion. We focus on the dynamics
of transient (varying in time) uniformly precessing structures
(TUPS) in a ferromagnetic nanowire of length l with the
easy axis along ez (in the direction of the wire) in a constant
external magnetic field H = H0ez and generalize the results
of Goussev et al. [12] who discovered exact precessing DW
solutions of infinite range and studied their stability [13]. The
analysis will be based on a one-dimensional (1D) Landau-
Lifshits-Slonczewski (LLS) equation [14,15]

∂m
∂τ

= h × m + ηm×∂m
∂τ

, (1)

where m = M/M is the normalized magnetization, η is the
Gilbert damping parameter, and

h = ∂2m
∂ξ 2

+ (mz + h0)ez + (m × jSC)×m. (2)

Here we use dimensionless time τ = (γ K/M )t (γ being the
gyromagnetic ratio) and coordinate ξ = z/δ, the normalized
length of the wire is L = l/δ, while h0 = MH0/K . Finally,
in Eq. (2) we have included an external driving term due
to transverse, oscillating, chirped frequency spin polarized
current (dimensionless) jSC = MJSC/K = 2ε cos ϕd ex, ϕd =∫

ωd (τ )dτ , which will be treated as a small perturbation in
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the following. Excitation of large amplitude magnetic struc-
tures and the associated switching of magnetization under the
action of a radio frequency driving near the ferromagnetic
resonance frequency ω0 = 1 + h0 [in dimensional units ω0 =
(γ K/M )(1 + h0)] was discussed in Refs. [16–19]. In our case,
the driving term was added to initiate and control TUPS via
slow passage through ω0 followed by autoresonance in the
system, the approach used recently for excitation of large
amplitude magnetization waves [20,21].

A typical dynamics of complete inversion of magneti-
zation from mz = +1 to −1 in this system in simulations
(using numerical approach described in [20]) is illustrated
in Fig. 1, showing mz(ξ, τ ) [Fig. 1(a)] and averaged over ξ

azimuthal precession frequency 〈∂ϕ/∂τ 〉 of the magnetization
vector [Fig. 1(b)] in the case L = 4.5, h0 = −0.2, ε = 6 ×
10−3, ωd (τ ) = ω0 − ατ , α = 5 × 10−4, ω0 = 0.8, and η =
5 × 10−3. The figure shows the emergence and evolution of
the DW on a timescale of O(1/η) accompanied by a slowly
varying averaged precession frequency of the magnetic struc-
ture around ez (negative frequency means rotation in the
opposite sense). We have also found in theses simulations [see
Fig. 1(c)] that, while mz versus ξ at fixed times has a form of
a DW, the precession frequency ∂ϕ/∂τ is independent of a
coordinate along the wire, which is the reason for using the
term “uniform precession” in TUPS. In the case of typical
Permalloy parameters, A = 10−11 J/m, K = 105 J/m3, and
M = 8 × 105 A/m, our example in Fig. 1 in real physical
variables corresponds to δ = 10 nm, ω0/2π = 2.8 GHz, and
amplitude of oscillations 1.5 × 10−3 T of JSC. Our goal in this
paper is to develop a theoretical understanding of all stages of
the magnetization dynamics illustrated in this example. The
paper is organized as follows. We will proceed by studying un-
driven and undamped dynamics in the system in Sec. II. This
will be followed in Sec. III by the discussion of the dynamics
of TUPS due to Gilbert damping. Section IV will focus on the
process of full inversion of magnetization as shown in Fig. 1,
while the stability of the process will be discussed in Sec. V.
Finally, Sec. VI summarizes our conclusions.

II. UNDRIVEN AND UNDAMPED DYNAMICS

The theory in the following sections will assume both
dissipation and driving as small perturbations. Therefore, to
zero order of the perturbation theory, we proceed by analyzing
uniformly precessing solutions by neglecting the dissipation
and spin polarized current drive. We write Eq. (1) for this case
in spherical coordinates (mx = sin θ cos ϕ, my = − sin θ sin ϕ,
mz = cos θ )

∂2θ

∂ξ 2
−

(
∂ϕ

∂ξ

)2

sin θ cos θ − q sin θ − 1

2
sin(2θ ) = 0, (3)

∂

∂ξ

(
∂ϕ

∂ξ
sin2 θ

)
+ ∂ (cos θ )

∂τ
= 0, (4)

where parameter q = h0 − ∂ϕ

∂τ
and free boundary conditions

∂θ/∂ξ = ∂ϕ/∂ξ = 0 at ξ = 0, L are imposed. This system

-1

-0.5

0

 0.5

 

1

  0  0.5  1.0  1.5  2.0  2.5  3.0  3.5

τ x10 3
 -0.5

� �

ϕτ

  0

 1

 2

 3

 4

-1

-0.5

 0

 0.5

 1

 0.50
 1.0

 1.5
 2.0

 2.5
 3.0

 3.5

x10 3

τ
ξ

mz

ξ

mz
ϕτ

1

2

3

1

2

3

-1

-0.5

 0

 0.5

1

 0  1  2  3  4

(a)

(b)

(c)

-1
-0.8
-0.6
-0.4
-0.2
 0
 0.2
 0.4
 0.6
 0.8
 1

FIG. 1. Inversion of magnetization of the ferromagnetic wire
driven by chirped frequency spin polarized current. The param-
eters are L = 4.5, h0 = −0.2, ε = 6 × 10−3, α = 5 × 10−4, ω0 =
0.8, η = 5 × 10−3. (a) Magnetization mz versus coordinate ξ and
time τ . (b) Averaged over ξ azimuthal precession frequency 〈ϕτ 〉 =
〈∂ϕ/∂τ 〉 of magnetization vector versus τ . The straight red line in
(b) is the chirped driving frequency. In part of the evolution, the
precession frequency of the magnetic structure is locked to that
of the drive. (c) The distribution of magnetization (blue lines) and
precession frequency ϕτ = ∂ϕ/∂τ (red lines) along the wire at fixed
times τ1 = 1.0 × 103, τ2 = 2.5 × 103, τ3 = 3.5 × 103.
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FIG. 2. Quasipotential V versus θ for several values of q. The
horizontal lines correspond to the values of the quasienergy for each
q. For q = 0 the potential (shown in red) is symmetric and describes
DW having fastest descent dθ/dξ at the bottom of the well (at θ =
π/2).

yields a family of exact uniformly precessing solutions, such
that ϕ = ωτ with constant precession frequency ω, while
θ = θ (ξ ) is described by a single parameter equation

∂2θ

∂ξ 2
− q sin θ − 1

2
sin(2θ ) = 0, (5)

subject to ∂θ/∂ξ = 0 at ξ = 0, L, while q = h0 − ω = const.
The simplest solution of (5) is uniform cos θ = −q. Here q

is defined in the whole interval |q| < 1, but for L > π this
solution is unstable (see Sec. V A) with respect to spatial
modulations δθ, δϕ ∼ cos(κξ ), κ = π/L in a smaller inter-
val |q| < qr = √

1 − κ2. However, in the region |q| < qr of
instability of the uniform solution, there exists an additional
nonuniform solution of Eq. (5). Indeed, one can write this
equation as

∂2θ

∂ξ 2
= −∂V /∂θ, (6)

where V (q, θ ) = q cos θ + 1
4 cos(2θ ). Formally, Eq. (6) is

equivalent to that describing oscillations of a particle hav-
ing “coordinate” θ in the “potential well” V with ξ playing
the role of “time.” This equivalence is useful in under-
standing spatial oscillations of θ in our system. Figure 2
illustrates V (q, θ ) in the case of L = 4.5 for five values of
q = −0.3, 0.0, 0.3, 0.6, and 0.9. For these q, the potential
has a local minimum V 0 = −1/4 − q2/2 at θ = θ0 satisfying
cos θ0 = −q. This θ0 is the simplest uniform solution in the
problem. More generally, the oscillation of θ in the potential
well conserves the “energy” A = 1

2θ2
ξ + V , but what is this

energy for a given q? Recall that we seek solutions satisfying
the boundary conditions θξ = 0 at ξ = 0, L. This means that
the ends of the wire are the “turning” points of the motion
of the particle. Suppose the motion of θ proceeds from ξ = 0
towards the second turning point ξ = L . Then A must be such
that half the “period” of the oscillation in the well equals L,
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FIG. 3. The magnetization mz versus ξ/L for each q in Fig. 2.
Note that q = 0 case (shown in red) has the form closest to that of
the precessing domain wall on an infinite wire.

i.e., ∫ θ2

θ1

dθ√
2(A − V )

= L, (7)

where θ1,2 are the turning points given by cos(θ1,2) = −q ±√
q2 + 2A + 1/2. Thus, for each q (and ω = h0 − q ), the

boundary conditions fully define A and, consequently, find
the solution θ (ξ, q) in the problem. In other words, A and
the spatial form of θ become functions of two parameters L
and q. In Fig. 2 these energies were found numerically via
binary search using condition (7) and are shown by horizontal
lines for different values of q. When the energy A, the solution
θ (ξ, q) can be found from

ξ =
∫ θ

θ1

ds√
2[A − V (q, s)]

, (8)

where θ1 is one of the turning points (corresponding to ξ = 0,
for example). Figure 3 shows the magnetization component
mz(ξ, q) = cos[θ (ξ, q)] associated with these solutions for the
values of q used in Fig. 2. These spatial magnetization struc-
tures have a form of domain walls which transform towards
mz = −1 as q increases.

III. DYNAMICS OF TUPS DUE TO GILBERT DAMPING

Our next step is switching on weak Gilbert damping. The
damping adds two terms in the right hand side (RHS) of
Eqs. (3) and (4):

∂2θ

∂ξ 2
−

(
∂ϕ

∂ξ

)2

sin θ cos θ − q sin θ − 1

2
sin(2θ ) = η

∂θ

∂τ
,

(9)

∂

∂ξ

(
∂ϕ

∂ξ
sin2 θ

)
+ ∂ (cos θ )

∂τ
= η

∂ϕ

∂τ
sin2 θ, (10)

where, as before, q = h0 − ∂ϕ

∂τ
and free boundary conditions

∂θ/∂ξ = ∂ϕ/∂ξ = 0 at ξ = 0, L are imposed at all times.
We assume that η is a small parameter in the problem and
seek solutions of form ϕ = ∫

ω(τ )dτ and θ = θ0(τ, ξ ), where
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θ0(τ, ξ ) and precession frequency ω(τ ) are slow, such that
∂F/∂τ ∼ O(η), where F is one of these functions. We also
impose zero boundary conditions on θ0(τ, ξ ). The stability of
these solutions will be discussed in Sec V C.

To O(η), Eqs. (9) and (10) become [note that by assump-
tion ηθ0τ ∼ O(η2)]

∂2θ0

∂ξ 2
− q sin θ0 − 1

2
sin(2θ0) = 0, (11)

∂ (cos θ0)

∂τ
= ηω sin2 θ0, (12)

where q = h0 − ω(τ ). Equation (11) is the same as Eq. (5),
but with slow parameter q(τ ) and yields solution θ0(ξ ) for
each value of q. On the other hand, Eq. (12) is nontrivial by
stating that for the aforementioned θ0(ξ ), ω is independent
of ξ . This issue will be resolved in Sec. V B by analyzing
stability of TUPS and showing that spatially dependent per-
turbations of ∂ϕ/∂τ remain small. As in the time independent
case above, for |q(τ )| � 1, Eq. (11) allows a uniform but
time dependent solution satisfying cos θ0 = −q(τ ). However,
if L > π , in the subinterval |q(τ )| � qr in addition to the uni-
form solution, there exists a nonuniform one θ0(τ, ξ ), which
can be found by solving Eq. (11) similarly to the time inde-
pendent (η = 0) case above. Suppose we consider the time
dependent problem with initial |q| < qr and seek time evo-
lution of the corresponding nonuniform magnetization state.
This evolution is found as follows. For each value of q(τ ), one
defines quasienergy A(q) = 1

2 (∂θ0/∂ξ )2 + V (q, θ0), where, as
before, the quasipotential is V (q, θ0) = q cos θ0 + 1

4 cos 2θ0.
This energy is found using Eq. (7) and yields the solution
of θ0(τ, ξ ) (i.e., the TUPS) via Eq. (8). But how do we find
parameter q(τ ) for performing these calculations? This goal
is accomplished by using Eq. (12). We average this equation
over ξ to get (recall the assumption of uniformity of ω dis-
cussed above)

d〈cos θ0〉
dτ

= ηω〈sin2 θ0〉, (13)

where 〈· · · 〉 = 1
L

∫ L
0 (· · · )dξ . Importantly, the necessary con-

dition for the decrease of 〈cos θ0〉 = 〈mz〉 in time is the
negativity of ω. For a given q, we find θ0 via Eq. (8) and cal-
culate the corresponding 〈cos θ0〉 and 〈sin2 θ0〉. Then Eq. (13)
yields an ODE for q(τ ),

dq

dτ
= η(h0 − q)〈sin2 θ0〉

d〈cos θ0〉/dq
(14)

and if ω = h0 − q is negative initially, q increases (ω be-
comes more negative) in time continuously. Finally, as q(τ )
increases, the magnetization profile becomes uniform [i.e.,
θ = θ (τ )] when q passes

√
1 − (π/L)2 at some τ . The evo-

lution of this uniform state is described by Eq. (12) yielding
an ODE:

θτ = −ηω sin θ, (15)

where the precession frequency ω = h0 + cos θ . If the initial
sign of ω of this uniform state is negative, θ increases contin-
uously and the magnetization transits to mz = −1.

As an example of application of our theory, Fig. 4(a) shows
the evolution of the magnetization component mz = cos θ in

FIG. 4. (a) Magnetization mz versus normalized time ητ and
coordinate ξ/L. (b) Precession frequency ω in the example L = 4.5,
η = 0.05, h0 = −0.6, and initial q = −0.55. The red dashed line is
from full numerical simulations.

the case of L = 4.5, η = 0.05, h0 = −0.6, and initial q =
−0.55. In addition, Fig. 4(b) illustrates the corresponding
evolution of the precession frequency ω . Note that Eqs. (14)
and (15) suggested using natural normalized time T = ητ in
the figures. We have also performed full simulations using
Eq. (1) in this example starting from the steady state initial
magnetization profile corresponding to q = −0.55. The re-
sulting mz was the same within the resolution in Fig. 4(a).
This excellent agreement between the theory and simulations
is also seen in Fig. 4(b), where the precession frequency from
full simulations is shown by a red dashed line.

IV. INVERSION OF MAGNETIZATION

In this section we discuss the dynamics of full inversion
of magnetization of a finite-length nanowire from the initial
uniform state mz = 1 to −1, as in the example shown in Fig. 1.
We have shown in the previous section that slow and smooth
evolution is triggered by Gilbert damping if one starts in one
of the three initial magnetization states: (a) a uniform state
with |q| � 1 if L < π , (b) a uniform state with |q| > qr =√

1 − (π/L)2 if L > π , and (c) a nonuniform TUPS if L > π

and |q| < qr . We have also shown [see Eq. (13)] that this
evolution results in the decrease of 〈cos θ〉 (or increase of
θ of the uniform state) due to the slow increase of q only
if initial precession frequency ω is negative (q > h0). For
example, if one starts in the uniform mz = 1 state and q = −1,
this increase of θ requires h0 > −1. In contrast, for positive
initial ω (q < h0), 〈cos θ〉 and ω will slowly increase, while
q decreases. But how do we control the initial precessing
magnetization state and prescribe parameter q (this parameter
also defines the initial precession frequency ω = h0 − q)? Our
idea is to invert the paradigm and instead of q, impose the pre-
cession frequency on the system, which will then define q. We
exploit the autoresonance phenomenon to achieve this goal.
The autoresonance approach uses a general property of many
driven nonlinear systems to stay in a continuous resonance
with the oscillating chirped frequency drive despite variation
of the driving frequency. Under an autoresonant driving idea,
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the system self-adjusts its nonlinear oscillation frequently,
leading to emergence of new nonlinear states. In the past this
idea was used in controlling magnetization of ferromagnetic
nanoparticles [22,23] and nanowires [20,21]. Here we will use
the spin polarized current drive [23] to impose the precession
frequency, thereby defining the desired value of parameter q.

Assume that as in Fig. 1 one starts in mz = 1 state and
L > π . Then as shown in [23], if one drives the system
by external chirped frequency spin polarized current of form
JSC = 2ε cos ϕd ex, ϕd = ω0τ − ατ 2/2, where ω0 = h0 + 1 is
the ferromagnetic resonance frequency of the ground state and
slowly passes the resonance at τ = 0, it enters the autoreso-
nant precessing magnetization regime, where the precession
frequency ω approximately follows the driving frequency
ωd = ω0 − ατ . The autoresonant capture process requires the
driving amplitude to exceed a threshold [23], which is the case
shown in the example in Fig. 1. The precession frequency
at resonance in this case is ω ≈ ω0 = 0.8 (q = −1) and is
positive. Therefore, without the drive, the magnetization state
would be frozen at mz = 1 because of Gilbert damping, as
described above. However, as the chirped driving continues,
in autoresonance, the precession frequency locked to that of
the drive will decrease and approach zero. The system will
dephase from the drive at this stage because of nonadiabaticity
and becomes free. If the residual precession frequency after
the dephasing will be negative, the precessing state will evolve
towards uniform mz = −1 state, i.e., the magnetization will be
fully reversed, as indeed seen in Fig. 1.

There are additional details in Fig. 1 which require further
comments. During the evolution of the initial uniform state
starting from q = −1, as q(τ ) ≈ h0 − ωd (τ ) increases, one
crosses the modulational instability point q = −qr . We have
found in simulations that at this time one bifurcates from
uniform to a nonuniform state. At the bifurcation point, the
solution develops oscillations around the smooth solution, but
these oscillations are damped at later times, while averaged
solution 〈cos θ〉 is smooth and is described well by the theory
presented in the previous section. We will show later that this
damping is the result of the nonuniform TUPS state being a
stable attractor in the problem. After the attraction, the TUPS
evolution continues, as it moves towards negative 〈cos θ〉 and
later transforms from the nonuniform into the uniform state
at q = qr and finally reaching full magnetization inversion
mz → −1. We illustrate this theory in Fig. 5 showing the
evolution of mz [Fig. 5(a)] and ω [Fig. 5(b)] in the example
shown in Fig. 1 in the Introduction L = 4.5, h0 = −0.2, ε =
6 × 10−3, α = 5 × 10−4, η = 5 × 10−3. Passage times of var-
ious evolution stages are indicated by numbers in Fig. 5(b).
These times indicate (1) the linear resonance at τ = 0 and
excitation of autoresonant precessing uniform state; (2) the
formation of autoresonant TUPS at q = −qr ; (3) the end
of the autoresonant evolution when ωd passes zero fol-
lowed by free TUPS propagating due to Gilbert damping;
and, finally, (4) the TUPS transforms into a uniform state,
which then completes the transition to mz = −1. Compari-
son of the results in Fig. 5(a) to those in full simulations
in Fig. 1 shows that they differ by oscillations around a
slowly evolving average after the transition through q =
−qr and these oscillations are damped at later times. The
red line in Fig. 5(b) show the results of full simula-

FIG. 5. The complete inversion of magnetization initiated by
autoresonant drive for parameters in Fig. 1. (a) The magnetization in
space-time (theory). (b) The precession frequency versus time (blue
line theory, red line full simulations). The numbers indicate times of
transition between different stages of evolution: 1. passage through
linear resonance and excitation of autoresonant uniform state; 2.
formation of autoresonant DW; 3. autoresonant evolution ends and
free DW propagates due to Gilbert damping; and 4. the DW transits
to uniform state, which then completes the transition to mz = −1.

tions illustrating a good agreement between the theory and
simulations.

V. MODULATIONAL STABILITY OF PRECESSING
MAGNETIZATION STATES

In this section we consider the stability of the precessing
DW solutions described above. We write θ = θ0 + ϑ and
ϕ = ∫

ωdτ + φ, where ϑ and φ are small perturbations and
linearize Eqs. (9) and (10) around Eqs. (11) and (12) to get

∂φ

∂τ
= − 1

sin θ0

∂2ϑ

∂ξ 2
+ G

sin θ0
ϑ + η

sin θ0

∂ϑ

∂τ
, (16)

∂ϑ

∂τ
= sin θ0

∂2φ

∂ξ 2
+ 2

∂ sin θ0

∂ξ

∂φ

∂ξ
− η(sin θ0

∂φ

∂τ
+ ω cos θ0ϑ ),

(17)

where, as before, θ0 = θ0(ξ, q), q = h0 − ω, G = q cos θ0 +
cos(2θ0), and q(τ ) is a slow parameter in the problem. We
will study this system in three stages of increased complexity.
We proceed from η = 0 case, when θ0 and q remain stationary
and discuss stability of precessing uniform (stage A) and then
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nonuniform states (stage B). Finally, in stage (C) we will
include Gilbert damping and study stability of the TUPS.

A. Stability of uniform, precessing magnetization states

In η = 0 case, θ0 and q remain constant and our linearized
system is

∂φ

∂τ
= − 1

sin θ0

∂2ϑ

∂ξ 2
+ G

sin θ0
ϑ, (18)

∂ϑ

∂τ
= sin θ0

∂2φ

∂ξ 2
+ 2

∂ sin θ0

∂ξ

∂φ

∂ξ
, (19)

where G = q cos θ0 + cos(2θ0). Seeking solutions of form
ϑ = a(τ ) cos(κξ ), φ = b(τ ) cos(κξ ), where κ = π/L, we ob-
tain

[κ2 + q cos θ0 + cos(2θ0)]a = bτ sin θ0, (20)

κ2b sin θ0 + aτ = 0. (21)

For the uniform solution (satisfying cos θ0 = −q), the last two
equations yield

aττ + κ2[κ2 + q cos θ0 + cos(2θ0)]a = 0, (22)

predicting instability if κ2 + q cos θ0 + cos(2θ0) = κ2 + q2 −
1 < 0, i.e., |q| < qr =

√
1 − (π/L)2 and stability in the oppo-

site case qr < |q| < 1.

B. Normal modes analysis of stability of nonuniform states

Here we start from Eqs. (16) and (17) for the perturbations,
where θ0 = θ0(ξ, q), q = h0 − ω = const., and η = 0. Be-
cause of the free boundary conditions, we can symmetrically
extend the region of definition of the perturbations ϑ and φ

to the interval ξ ∈ [−L,+L]. Due to the symmetry around
ξ = 0, this solution can be represented by cosine-Fourier ex-
pansions

ϑ =
N∑

l=0

al (τ ) cos(lkξ ), φ =
N∑

l=0

bm(τ ) cos(mkξ ), (23)

which we have truncated at some N . These expansions are
substituted into Eqs. (18) and (19) to get

N∑
l=0

∂bl

∂τ
cos(lkξ ) =

N∑
m=0

(mk)2 + G

S
cos(mkξ )am, (24)

N∑
l=0

∂al

∂τ
cos(lkξ )

= −
N∑

m=0

mk

[
mkS cos(mkξ ) + 2

∂S

∂ξ
sin(mkξ )

]
bm, (25)

where to shorten notations we defined S = sin θ0 and C =
cos θ0. Next, we multiply (24) and (25) by cos(nkx) and aver-
age over x ∈ [0, L] yielding in vector form

∂b
∂τ

= Da · a, (26)

∂a
∂τ

= −Db · b, (27)
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FIG. 6. Stability of nonuniform states: minimal characteristic
eigenvalue λi = ν2

i versus q for L = 4.5 and 7.5.

where matrices Da and Db are

Da
nm = 2H (n)

L

[〈
(mk)2 + G

S
cos(mkξ ) cos(nkξ )

〉]
, (28)

Db
nm = 2H (n)mk

L

〈[
mkS cos(mkξ )
+2 ∂S

∂ξ
sin(mkξ )

]
cos(nkξ )

〉
, (29)

and H (n) is Heaviside function [H (n) = 0, 0.5, and 1 for n >

0, n = 0, n > 0, respectively]. Finally, Eqs. (26) and (27) can
be rewritten as two separate equations for a and b:

∂2a
∂τ 2

= −D · a,
∂2b
∂τ 2

= −D̃ · b, (30)

where D = Db · Da and D̃ = Da · Db. Note that these two
equations are not independent, since, for example, in Eq. (30)
for a, b enters via initial condition on ∂a/∂τ through
Eq. (26). Seeking normal mode solutions a = A exp( − iντ ),
b = B exp( − ĩντ ) of Eqs. (30), we have

(D − ν2I) · A = 0, (D̃ − ν̃2I) · B = 0. (31)

Therefore, the stability of our system is determined by the
sign of the eigenvalues λi = ν2

i and λ̃i = ν̃2
i (i = 1, . . . , N) of

D and D̃. We find that the two sets of the eigenvalues are the
same. Furthermore, one of the eigenvalues in these sets van-
ishes, corresponding to m = 0 (spatially uniform component
of the perturbation), while all the rest of the eigenvalues are
positive and, therefore, our system is stable. As an illustration,
Fig. 6 shows the dependence of R = min(ν2

i ) on q found
numerically in the region of existence of nonuniform states,
i.e., |q| <

√
1 − (π/L)2 for two values of L = 4.5, 7.5 and

N = 6. We see that indeed in these examples R is positive
indicating stability of the associated nonuniform states.
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C. Stability of TUPS

Now we include Gilbert damping, so our linearized equa-
tions for the perturbations become

∂φ

∂τ
= −1

S

∂2ϑ

∂ξ 2
+ G

S
ϑ + η

S

∂ϑ

∂τ
, (32)

∂ϑ

∂τ
= S

∂2φ

∂ξ 2
+ 2

∂S

∂ξ

∂φ

∂ξ
− η(S

∂φ

∂τ
+ ωCϑ ). (33)

We will use the same Fourier expansions of ϑ and φ as above.
These expansions are substituted into Eqs. (32) and (33) to get

N∑
l=0

∂bl

∂τ
cos(lkξ )

=
N∑

m=0

cos(mkξ )

[
(mk)2 + G

S
am + η

S

∂am

∂τ

]
, (34)

N∑
l=0

∂al

∂τ
cos(lkξ )

= −
N∑

m=0

{
mk

[
mkS cos(mkξ ) + 2 ∂S

∂ξ
sin(mkξ )

]
bm

+η cos(mkξ )
(
S ∂bm

∂τ
+ ωCam

) }
.

(35)

Next, we multiply (34) and (35) by cos(nkx) and average over
x ∈ [0, L] to get in vector form

∂b
∂τ

= Da · a + ηQa · ∂a
∂τ

, (36)

∂a
∂τ

= −Db · b − η

(
Qb · ∂b

∂τ
+ P·a

)
, (37)

where matrices Da, Db are the same as above and Qa, Qb, P
are

Qa
nm = 2H (n)

L

〈
cos(nkξ ) cos(mkξ )

S

〉
, (38)

Qb
nm = 2H (n)

L
〈S cos(nkξ ) cos(mkξ )〉. (39)

Pnm = 2H (n)

L
ω〈C cos(nkξ ) cos(mkξ )〉. (40)

Note that all these matrices are slow because of the variation
of θ0 due to the damping as described previously. Therefore,
we seek an eikonal-type solution a = A exp(−i

∫
νdτ ), where

ν is real, A = A(τ )e, A(τ ) is slow, and e is the slow normal-
ized polarization vector. Then, to O(η), our equations can be
rewritten as

∂B
∂τ

− iνB = Da · A − iνηQa · A, (41)

∂A
∂τ

− iνA = −Db · B + iνηQb · B − ηP · A. (42)

For nonzero ν and η = 0, from Eq. (41) we have B = i
ν
Da · A

and by iteration in the same equation

B = i

ν
Da · A + 1

ν

∂

∂τ

(
1

ν
Da · A

)
+ ηQa · A, (43)

which after substitution in Eq. (42) to O(η) results in

(D − ν2I) · A = iν

[
∂A
∂τ

+ Db

ν
· ∂

∂τ

(
Da

ν
· A

)
+ ηQ · A

]
.

(44)
Here, as before, D = Db · Da and Q = Db · Qa+Qb · Da + P.
Note that the right-hand side of this equation is of O(η),
suggesting the following a perturbative approach in solving
the problem. We write A = A0 + ηA1, where A0 satisfies

(D − ν2I) · A0 = 0. (45)

All matrices here are slowly varying objects due to the varia-
tion of parameter q. Equation (45) defines N slow frequencies
νn via eigenvalues λn = ν2

n of D (these frequencies are all
real as discussed above) and the corresponding normalized
eigenvectors en familiar from η = 0 limit. Then for each of
these n modes, Eq. (44) yields(
D − ν2

n I
) · A1 = iνn

[
∂A0n
∂τ

+ Db

νn
· ∂

∂τ

(Da

νn
· A0n

) + ηQ · A0n

]
,

(46)
where, to lowest order on the RHS of (46), A0n = Anen. This
equation is then multiplied from the left by the left eigenvector
eT

n of D (eigenvector of the transposed matrix DT ) correspond-
ing to eigenvalue ν2

n to get

eT
n ·

[
∂A0n

∂τ
+ Db

νn
· ∂

∂τ

(
Da

νn
· A0n

)
+ ηQ · A0n

]
= 0 (47)

or

2eT
n · en

∂ (ln An)

∂τ
= −eT

n ·
[

∂en
∂τ

+ Db

νn
· ∂

∂τ

(Da

νn
· en

)
+ ηQ · en

]
. (48)

Finally, we write An(τ ) = An(0) exp(− ∫ τ

0 δνndτ ), recall that
in our TUPS problem, ∂

∂τ
(· · · ) = ∂

∂q (· · · ) dq
dt , where dq/dt is

given by Eq. (14) and find δνn (−iδνn is formally the imagi-
nary correction to the zero order real frequency νn),

δνn = eT
n ·

2eT
n · en

{[
∂en
∂q + Db

νn
· ∂

∂q

(Da

νn
· en

)] dq
dt

+ηQ · en

}
. (49)

Obviously δνn must be positive for local stability of An, or
− ∫ τ

0 δνn(τ ′)dτ ′ should be negative, if we follow the evolution
for an extended period of time.

The same development can be performed for the azimuthal
perturbation φ . Without further details in this case, Eqs. (36)
and (37) yield the analog of Eq. (44):

(D̃ − ν2I) · B = iν

[
∂B
∂τ

+ Da

ν
· ∂

∂τ

(
Db

ν
· B

)]
+ ηQ̃ · B,

(50)

where Q̃ = Da · Qb+Qa · Db + D
ν

a · P·D
ν

b
and D̃ = Da · Db.

Again, the right-hand side of this equation is of O(η), sug-
gesting the same approach in solving the problem. We write
B = B0 + ηB1, where B0 satisfies

(D̃ − ν2I) · B0 = 0. (51)

This equation yields N slow frequencies νn via eigenvalues
λn = ν2

n of D̃ (the same as for D) and corresponding normal-
ized eigenvectors ẽn. Then for each of these modes, Eq. (50)
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yields

(
D̃ − ν2

n I
) · B1 = iνn

[
∂B0n
∂τ

+ Da

νn
· ∂

∂τ

(Db

νn
· B0n

)
+ ηQ̃ · B0n

]
. (52)

By writing B0n = Bñen and multiplying (52) by the left eigen-
vector ẽT

n of D̃ we get the analog of Eq. (48):

2̃eT
n · ẽn

∂ (ln Bn)

∂τ

= −̃eT
n ·

[
∂ ẽn

∂τ
+ Da

νn
· ∂

∂τ

(
Db

νn
· ẽn

)
+ ηQ̃ · ẽn

]
. (53)

This yields the imaginary correction −iδ̃νn = i∂ (ln Bn)/∂τ to
the frequency, where [compare to Eq. (49)]

δ̃νn = ẽT
n ·

2̃eT
n · ẽn

{[
∂ ẽn
∂q + Da

νn
· ∂

∂q

(Db

νn
· ẽn

)] dq
dt

+ηQ̃ · ẽn

}
. (54)

Finally, we address the case associated with the zero mode
(ν0 = 0). In this case, we assume that ∂a/∂τ is of O(η), which
allows to approximate Eq. (36) as

∂b
∂τ

= Da · a, (55)

showing that ∂b/∂τ is not of O(η). We will see below that this
derivative describes the correction to the precession frequency
due to the initial perturbation of the solution. At this stage we
substitute Eq. (55) into Eq. (37) to get

∂a
∂τ

= −Db · b − η(Qb · Da + P)·a. (56)

Here we seek solutions a = a0 + ηa1 and b = b0 + ηb1

where a0 and b0 are the amplitudes of the zero modes in η = 0
case. Then to lowest significant order O(η),

∂b0

∂τ
= Da · a0, (57)

∂a0

∂τ
= −Db · b0 − ηDb · b1 − η

(
Qb · Da + P

)·a0. (58)

Next, by multiplying (58) by Da from the left, we get

Da · ∂a0

∂τ
= −ηD̃ · b1 − ηR·a0, (59)

where, as before, D̃ = Da · Db and R = Da · (Qb · Da + P).
Finally, the last equation is multiplied from the left by the zero
left eigenvector ẽT

0 of D̃ corresponding to its zero eigenvalue,
yielding

ẽT
0 · Da · ∂a0

∂τ
= − η̃eT

0 · R·a0. (60)

In this equation we write a0 = A0(τ )e0 and calculate the
imaginary frequency correction −iδν0 = i∂ (ln A0)/∂τ of the
zero mode, where

δν0 =
ẽT

0 · (
Da · ∂e0

∂q
dq
dt + ηR·e0

)
ẽT

0 · Da · e0
. (61)

Finally, we return to Eq. (57), where b0 = B0(τ )̃e0. Since m =
0 column of matrix D̃m,n vanishes, while other elements of the
matrix are not, the m = 0 component of ẽ0 is unity, while
all other components vanish, i.e., ẽ0 is a constant unit vector.

FIG. 7. Imaginary frequency corrections (relative rates of vari-
ation of the amplitudes of different modes of perturbations) δν, δ̃ν,
and δν0 versus q for L = 4.5, and L = 7.5 (in both cases h0 = −0.7).

Therefore, when a0 = A0(τ )e0 is known, Eq. (57) yields the
correction to the precession frequency

δω = ∂B0

∂τ
= A0̃e0 · Da · e0, (62)

and since ẽ0 · Da · e0 is of O(1), δω remains small if A0(τ )
remains small.

As an illustration of this theory, Fig. 7 shows the depen-
dence of the imaginary frequency corrections (relative rates
of variation of the amplitudes of different modes of pertur-
bations) δν and δ̃ν vs q for the smallest nonzero frequency
mode as well as δν0 for the zero mode in the two examples
in Fig. 6 with L = 4.5 and 7.5 (in both cases h0 = −0.7).
In most of the region of existence of the TUPS, the system
is locally stable and initial perturbations ϑ (0, τ ) and φ(0, τ )
are damped on the timescale of O(1/η). In contrast, the zero
frequency mode amplitude is amplified (δν0 < 0), but since
the time of complete transition of TUPS is finite, a sufficiently
small initial perturbation A0(0) guarantees a small departure
of the magnetic structure from its slow quasisteady transient
state. The case q = 0 (i.e., ω = h0) for a finite but long wire
such that δ 
 L, where δ is the width of the TUPS, is of
special interest. The reason is that this TUPS is located in the
middle of the wire and approximates well the L = ∞ case,
i.e., the problem studied by Goussev et al. [12], suggesting
stability in the latter case as well.

VI. CONCLUSIONS

We have studied a family of transient, uniformly precessing
structures (TUPS) on finite-size ferromagnetic wires in the
framework of a LLS equation, where Gilbert damping and
chirped frequency spin polarized current driving term are
viewed as small perturbations. These structures are general-
izations of precessing domain walls of Goussev et al. [12] on
an infinite domain. In the absence of damping and spin current
drive, for a given normalized length L of the wire, these pre-
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cessing structures are exact solutions, which do not propagate
and depend on a single parameter q = h0 − ω, where h0 is the
normalized longitudinal magnetic field, ω is the precession
frequency, and |q| � 1 (see Sec. II). The simplest of these so-
lutions are uniform and stable for L < π. However, if L > π ,
the stability is lost in a smaller interval |q| <

√
1 − (π/L)2

(see Sec. V A). However, in the same interval there exist
additional nonuniform uniformly precessing solutions which
are stable (Sec. V B).

Addition of Gibert damping causes the aforementioned
solutions to evolve and vary their precession frequency, thus
affecting parameter q, which becomes a function of time.
We have shown that the direction of evolution of q depends
on the initial sign of the precession frequency. Negative ini-
tial ω yields the increase of q and evolution of the system
towards final mz = −1 state. In contrast, positive initial ω

yields transition to mz = 1. We have studied different sce-
narios of these evolutions. For example, if L < π and initial
ω is negative, the precessing solution remains uniform as
it transits to mz = −1. In the case L > π , if one starts in
the stable nonuniform state [i.e., |q| <

√
1 − (π/L)2] and

again initial ω is negative, parameter q increases in time,
the solution passes the bifurcation point q =

√
1 − (π/L)2,

becomes uniform, and reaches the mz = −1 state (see illus-
tration of this process in Fig. 4). We have also studied the
stability of the transient nonuniform solutions in Sec. V C
and have shown that they comprise stable attractors, i.e.,
the lowest frequency perturbations around these solutions are
damped.

Finally, we have suggested an approach for formation of
TUPS with a prescribed precession frequency. The approach
exploits the autoresonance phenomenon, via small transverse

chirped frequency spin polarized current. The case of initial
mz = 1 is discussed in detail (see illustration in Fig. 1). We
have shown that if the driving current passes the resonance
with this initial uniform state, and the driving amplitude is
above a threshold, it captures the system into a continuing
resonance, i.e., the precession frequency of the magnetic
structure follows that of the drive. This allows us to control
the precession frequency of the solution and reach the desired
uniformly precessing magnetization state. In the example in
Fig. 1, the goal was the complete inversion of magnetiza-
tion from mz = 1 to −1. The initial precession frequency in
autoresonance was positive, meaning that without the drive,
the system would stay in mz = 1 state. However, as the au-
toresonance continued, both the locked driving and precession
frequencies approached zero. At this stage, the system de-
phased from the drive because of nonadiabaticity and formed
a free precessing state with small, but negative ω, which then
led to full inversion of magnetization due to Gilbert damping
(see the discussion of different transition stages during the
process in Sec. IV).

Thus, interplay of Gibert damping and a chirped frequency
spin current drive allows us to conveniently excite and control
the TUPS. Investigation of other autoresonant schemes (using
microwave chirped frequency drives, for example) for excita-
tion and control of these transient magnetic structures, seems
to comprise an interesting goal for future research. Further-
more, it is known that the dissipationless and undriven LLS
equation in 1D is integrable and has a large variety of solutions
[9,24]. The excitation and control of some of these solutions
on finite-length ferromagnetic wires and their transients under
weak damping conditions comprises another important goal
for the future.
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