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Autoresonant excitation of space-time quasicrystals in plasma
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We demonstrate theoretically and numerically that a warm fluid model of a plasma supports space-time
quasicrystalline structures. These structures are highly nonlinear, two-phase, ion acoustic waves that are excited
autoresonantly when the plasma is driven by two small amplitude chirped-frequency ponderomotive drives. The
waves exhibit density excursions that substantially exceed the equilibrium plasma density. Remarkably, these
extremely nonlinear waves persist even when the small amplitude drives are turned off. We derive the weakly
nonlinear analytical theory by applying Whitham’s averaged variational principle to the Lagrangian formulation
of the fluid equations. The resulting system of coupled weakly nonlinear equations is shown to be in good
agreement with fully nonlinear simulations of the warm fluid model. The analytical conditions and thresholds
required for autoresonant excitation to occur are derived and compared to simulations. The weakly nonlinear
theory guides and informs numerical study of how the two-phase quasicrystalline structure “melts” into a single
phase traveling wave when one drive is below a threshold. These nonlinear structures may have applications to
plasma photonics for extremely intense laser pulses, which are limited by the smallness of density perturbations
of linear waves.
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I. INTRODUCTION

Photonic crystals [1–4] built from conventional materials
are routinely employed to focus, polarize, and manipulate
light pulses. A periodic array of alternating dielectrics and
plasmas called plasma photonic crystals (PPCs) has been the
subject of much interest [5–19] owing to its optical proper-
ties. Besides crystals, Levine and Steinhardt [20] introduced
quasicrystals—materials with properties that are ordered in
space but do not possess an exact periodicity. Photonic qua-
sicrystals have been studied extensively [21–28]. Moreover,
crystals can be periodic not just in space but also in time.
For example, the optical properties of photonic time crystals
with a refractive index varying periodically in time have been
investigated in Refs. [29–36]. The optical properties of the
structures possessing periodicity both in space and time have
been studied in Refs. [36–43].

Plasma photonic crystals have a major drawback where the
plasmas are contained within solid material: They break down
at high field intensity and are, therefore, incapable of control-
ling the laser pulses that are essential for many high energy
density science applications. Purely plasma based structures,
on the other hand, can withstand high intensity pulses. Many
concepts for plasma-based optical elements have been pro-
posed and built [44]. Plasma channels [45] routinely focus
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lasers for particle acceleration experiments. Over two decades
ago, it was realized that resonant interactions [46] could be
used for compression of intense pulses (replacing large com-
pressor gratings). Plasma mirrors [47–50] are routinely used
[51,52] at the National Ignition Facility (NIF) to improve
performance in inertial fusion experiments. Laser-sculpted
plasma grating structures [53,54] as well as polarization con-
trol using plasma structures [55–58] have been investigated.
A significant challenge of plasma gratings is that their ef-
ficacy depends on the maximum variation in the index of
refraction that can be achieved at the required spatial scale.
Plasma density is well below critical density, and the density
modulation should be as large as possible. This naturally leads
to an exploration of nonlinear waves.

In this paper, we propose formation and control of space-
time quasicrystalline structures in plasma through excitation
of strongly nonlinear large amplitude multiphase ion acoustic
waves that modulate plasma density in the desired way. It
is known that a linear standing wave of the form U (x, t ) ∝
cos(kx) cos(ωt ), which is periodic in both time and space,
is formed by superposing two linear traveling waves of the
same frequency ω, but propagating in the opposite direction.
Nonlinearity of the media in some cases allows a generaliza-
tion of linear standing waves to a waveform U (x, t ) = F (kx −
ωt, kx + ωt ), where F is a 2π -periodic nonlinear function of
two phase variables and is also periodic in time and space.
Recently, it was demonstrated that such nonlinear structures
could be formed in plasma in the form of electron plasma
[59] and ion acoustic [60] waves. It is also known that even
more complex multiphase constructs of the form U (x, t ) =
F (θ1, θ2, . . . , θN ), where each phase is θi = kix − ωit , exist in
other physical systems described by integrable nonlinear wave
equations, such as the Korteweg-de Vries (KdV), nonlinear
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Schrödinger (NLS), and sine-Gordon (SG) equations [61].
Generally, multiphase functions F are very nontrivial and
can be described by a complex analysis based on the inverse
scattering transform (see, for example, Ref. [62] for the KdV
case). The multiphase waves are 2π periodic in each of the
phase variables, but if at least two of ki or ωi are not com-
mensurate, function F is not exactly periodic in time and/or
space and, thus, comprise a family of nontrivial space-time
quasicrystals. But how can one excite such a multiphase wave
in a given physical system? Because of the complexity of the
waveform, a direct realization of a multiphase wave requires
setting up precise initial conditions, making it an impractical,
if not impossible, strategy for experiments even in the case of
just two phases θ1, θ2. A possible way to circumvent the ex-
perimental difficulty of setting up the precise initial conditions
is exploiting phase locking with small amplitude chirped-
frequency traveling waves. In the past this approach was used
in exciting multiphase solutions for integrable systems: KdV
[63], NLS [64], SG [65], and the periodic Toda lattice [66].
The autoresonant excitation was also demonstrated for single
phase large amplitude ion acoustic waves [67,68]. This sug-
gests that perhaps the autoresonance could be used in a more
general way to excite multiphase solutions for ion acoustic
waves.

Here, we demonstrate, using a warm fluid plasma model,
that a two-phase, strongly nonlinear ion acoustic wave can
be generated and controlled. The wave is created by starting
from zero and autoresonantly driving the system with two
small amplitude chirped-frequency ponderomotive traveling
waves. We show that slow passage of the driving waves
through resonances in the plasma results in the continuing
autoresonant (phase locked with both drives) excitation of
the wave. The system sustains this double autoresonance as
the driving frequencies vary in time by increasing the am-
plitude of the excited waveform, creating an extremely large
amplitude space-time quasicrystal in plasma. This result is
surprising and suggests some degree of integrability in the
problem. We conjecture that this integrability is related to the
fact that in the limit of small amplitude, ion acoustic waves are
reduced to the KdV-type equation [69]. Since there exist many
continuous physical systems approximated by the KdV, NLS,
and SG equations, we expect that autoresonant space-time
quasicrystals can be formed similarly in all these systems.

The paper is organized as follows. In Sec. II, we formulate
the problem within a warm fluid plasma model and present
a fully nonlinear numerical solution. In Sec. III, by using the
Lagrangian formulation of the fluid equations and applying
Whitham’s averaged variational principle [70], we derive an
analytical weakly nonlinear theory and demonstrate that it
agrees well with the fully nonlinear simulations. In Sec. IV,
we use our weakly nonlinear theory to study how to choose
the parameters required to excite a two-phase autoresonant
solution as well as discuss its threshold nature. Finally, in
Sec. V, we summarize and discuss our results.

II. FORMULATION OF THE PROBLEM AND THE
NUMERICAL RESULTS

We start with a warm fluid model of ion acoustic waves
in plasma described by the following system of continuity,

momentum, and Poisson’s equations:

nt + (nu)x = 0, (1)

ut + uux = −ϕx − �2nnx, (2)

ϕxx = eϕ+ϕd − n. (3)

Here n is the ion density, u is the ion fluid velocity,
�2 = 3u2

th, where uth is the ion thermal velocity, ϕ is the
electric potential, and ϕd is the driving potential. All vari-
ables and parameters are dimensionless, such that the time
is measured in terms of the inverse ion plasma frequency
ω−1

pi = √
mi/meω

−1
p , the distance in terms of the Debye length

λD = ue/ωp, and, consequently, the velocities are measured
in terms of the modified electron thermal velocity

√
me/miue.

The plasma density and the electric potential are normalized
with respect to the unperturbed plasma density and kBTe/e,
respectively. The driving potential consists of two small am-
plitude (ε1, ε2) traveling waves and has the following form:

ϕd = ε1 cos (θd,1) + ε2 cos (θd,2), (4)

where the traveling wave drives have driving phases θd,i =
kix − ∫

ωd,i(t )dt with slowly varying driving frequencies
ωd,i(t ) = −dθd,i/dt (i = 1, 2).

We can solve the system of the nonlinear equations (1)–(3)
numerically using the water bag model method similar to the
procedure described in Refs. [60,68].

To be specific, let us consider two driving counter prop-
agating traveling waves with k1 = −0.5 and k2 = 1. We use
linearly chirped driving frequencies for t � 0 and arctan drive
for t > 0 (i = 1, 2):

ωd,i =
{
ωa,i + αit, t � 0,

ωa,i + αiTi arctan
(

t
Ti

)
, t > 0.

(5)

Here, ωa,i(ki ) (i = 1, 2) are the frequencies given by the
linear ion acoustic wave dispersion relation:

ωa,i(ki ) = |ki|
√

1

1 + k2
i

+ �2, (6)

and we use equal chirp rates α1 = α2 = 2.5 × 10−5 for t �
0 and Ti = 2�ωi/παi (i = 1, 2), �ω1 = �ω2 = 0.07 for
t > 0. We also slowly build up the driving amplitudes as
εi = ε̄i[0.5 + arctan(t/Ti )/π ], ε̄i = 16α

3/4
i (i = 1, 2) to have

a smoother entrance into the autoresonant regime. The ion
thermal velocity is chosen as uth = 0.003.

The results of the numerical simulations are presented in
Fig. 1. Figure 1(a) shows a colormap of the electron density
ne(x, τ ) approximated by eϕ(x,τ ) as a function of x and τ ,
where we introduced a slow time variable τ = √

α1t . We can
clearly see in Fig. 1(a) a crystal-like quasiperiodic spatiotem-
poral structure representing a large amplitude (δne/ne ∼ 1)
two-phase strongly nonlinear ion acoustic wave excited by the
two driving counter propagating traveling waves. Figures 1(b)
and 1(c) show a colormap of ne(x, τ ) ≈ eϕ(x,τ ) but when
driven by just one of the driving components with k1 = −0.5
and k2 = 1, respectively. We can see that an excitation of a
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FIG. 1. The colormap of the electron density ne(x, τ ) as a function of slow time τ = √
α1t and coordinate x. (a) Two-phase autoresonant

ion acoustic wave excited by two driving counter propagating traveling waves with k1 = −0.5 and k2 = 1 obtained by solving the fully
nonlinear equations (1)–(3). (b) Autoresonant single phase ion acoustic wave driven by the first driving component in (a) with k1 = −0.5.
(c) Autoresonant single phase ion acoustic wave driven by the second driving component in (a) with k2 = 1. The red-vertical line indicates the
termination of the drive at τ = 12.

single phase large amplitude ion acoustic wave creates trav-
eling wave-type spatiotemporal photonic plasma structures.
In these single phase solutions the phases remain constant
along the characteristic directions given by the phase velocity
of the driving waves. The same two characteristic directions
can also be seen in the two-phase wave solution in Fig. 1(a).
We start our simulations at τ = −7 and stop the driving at
τ = 12 (which is indicated by the red vertical line in Fig. 1. At
τ = 0 both driving waves pass the linear resonances and then
the system enters the autoresonant regime and its excitation
amplitude increases to preserve the resonances with the drives.
This can be seen in Fig. 2, which shows the maximum value
over x of the ion fluid velocity u(x, τ ) versus slow time τ =√

α1t . Note that the crystal-like structure is preserved in time

after we turn off the drive at τ = 12, suggesting formation of
some fundamental mode of the system.

The limiting factor as to what amplitudes we can excite the
ion acoustic waves is determined by the kinetic wave breaking
[60,68,71,72]. For the cold plasma this occurs when the ion
fluid velocity exceeds the absolute value of the phase velocity
of at least one of the driving waves. As we can see in Fig. 2,
the maximum amplitude of the ion fluid velocity u stays below
the absolute value of the phase velocities of the driving waves;
we thereby avoid the wave-breaking limit for the parameters
chosen in our example.

In the next section, we are going to cast the problem into
the Lagrangian form and develop an adiabatic, weakly non-
linear theory using Whitham’s averaged variational principle
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FIG. 2. The maximum (over x) of the ion fluid velocity u(x, τ ) vs
slow time τ = √

α1t for a two-phase autoresonant ion acoustic wave
excited by two driving traveling waves with k1 = −0.5 and k2 = 1
obtained by solving the fully nonlinear equations (1)–(3) (denoted
as “fully nonlinear”, blue line) and the weakly nonlinear reduced
dynamical equations (38)–(41) (denoted as “weakly nonlinear”, pink
line). The solid-black line represents the absolute value of the phase
velocity ωd,1(τ )/|k1| of the first driving wave and the dashed-black
line represents the absolute value of the phase velocity of the second
driving wave ωd,2(τ )/|k2| vs τ . The parameters used in the simula-
tions are the same as in Figs. 1(a), 3, and 4

[70]. These analytical results will allow us to understand how
to control and choose parameters for the excitation of large
amplitude multiphase ion acoustic waves.

III. THE LAGRANGIAN FORMULATION AND
WHITHAM’S VARIATIONAL PRINCIPLE

For convenience, let us introduce two new potentials ψ

and σ via u = ψx, n = 1 + σx. The system of the nonlinear
equations (1)–(3) in terms of the new variables is then

σxt + [(1 + σx )ψx]x = 0, (7)

ψxt + ψxψxx = −ϕx − �2(1 + σx )σxx, (8)

ϕxx ≈ (1 + ϕd )eϕ − σx − 1, (9)

where we assumed that the drive is small: eϕd ≈ 1 + ϕd .
Equations (7)–(9) can be derived from the Lagrangian

variational principle δ(
∫

Ldxdt ) = 0 with the corresponding
Lagrangian density L given by

L = 1

2
ϕ2

x + V (ϕ) − 1

2
(ψtσx + ψxσt )

−
(

1

2
ψ2

x + ϕ

)
(1 + σx ) − �2

2
σ 2

x

(
1 + 1

3
σx

)
+ ϕdϕ,

(10)

where V (ϕ) = ϕ + 1
2ϕ2 + 1

6ϕ3 + 1
24ϕ4.

The Lagrangian form of the problem together with the
slow adiabatic synchronization (autoresonance) procedure we

employ to excite multiphase waves suggest that it should be
possible to use Whitham’s averaged variational principle [70]
to derive weakly nonlinear analytical results for our problem.

We proceed by writing the following ansatz describing
the two-phase [θ1 = k1x − ∫

ω1(t )dt , θ2 = k2x − ∫
ω2(t )dt]

solutions for the potentials σ , ψ , ϕ:

σ = Ã10 sin (θ1) + Ã01 sin (θ2)

+ Ã11 sin (θ1 + θ2) + Ã1,−1 sin (θ1 − θ2)

+ Ã20 sin (2θ1) + Ã02 sin (2θ2), (11)

ψ = B̃10 sin (θ1) + B̃01 sin (θ2)

+ B̃11 sin (θ1 + θ2) + B̃1,−1 sin (θ1 − θ2)

+ B̃20 sin (2θ1) + B̃02 sin (2θ2), (12)

ϕ = C00 + C10 cos (θ1) + C01 cos (θ2)

+C11 cos (θ1 + θ2) + C1,−1 cos (θ1 − θ2)

+C20 cos (2θ1) + C02 cos (2θ2). (13)

Here, we view the amplitudes Ã10, Ã01, B̃10, B̃01, C10, C01

as the first-order coefficients, while the amplitudes Ã20, Ã02,
B̃20, B̃02, C20, C02, Ã11, Ã1,−1, B̃11, B̃1,−1, C11, C1,−1, and
C00 as the second-order coefficients. It is also convenient to
write the driving potential ϕd in the form with explicit phase
mismatches �i = θi − θd,i (i = 1, 2) between phases of the
solutions θ1, θ2 and the driving phases θd,1, θd,2:

ϕd = ε1 cos (θ1 − �1) + ε2 cos (θ2 − �2). (14)

Furthermore, here and in the following it is assumed that
the phases θ1, θ2 are varying rapidly, while all the coefficients
in our ansatz and �1, �2 are slow functions of time.

In the linear case without phase mismatches we have the
following solutions:

σ = Ã10 sin (θ1) + Ã01 sin (θ2), (15)

ψ = B̃10 sin (θ1) + B̃01 sin (θ2), (16)

ϕ = C10 cos (θ1) + C01 cos (θ2), (17)

where the amplitudes C10 and C01 satisfy

C10

(
k2

1

ω2
1 − �2k2

1

− 1 − k2
1

)
= ε1, (18)

C01

(
k2

2

ω2
2 − �2k2

2

− 1 − k2
2

)
= ε2, (19)

and the amplitudes Ã10, Ã01, B̃10, B̃01 are expressed through
C10 and C01 as follows:

Ã10 = k1

ω2
1 − �2k2

1

C10, (20)

Ã01 = k2

ω2
2 − �2k2

2

C01, (21)

B̃10 = ω1

ω2
1 − �2k2

1

C10, (22)

B̃01 = ω2

ω2
2 − �2k2

2

C01. (23)
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The next crucial step is to find the averaged Lagrangian
density over the rapidly varying phases θ1, θ2:

L̄ = 〈L(θ1, θ2, t )〉θ1,θ2
=

∫
L(θ1, θ2, t )

dθ1

2π

dθ2

2π
, (24)

which will depend only on slow variables: the amplitudes of
various harmonics and the phase mismatches.

After long but straightforward calculations one can obtain
the average of Eq. (10) over the rapidly varying phases. This
derivation of the averaged Lagrangian can be found in Ap-
pendix A.

Weakly nonlinear equations

Now, having obtained the averaged Lagrangian, we can
derive the weakly nonlinear equations that describe the evolu-
tion of the wave amplitude by applying Whitham’s variational
procedure [70].

First, we take variations with respect to the phases:

d

dt

(
∂L̄

∂θ̇1

)
− ∂L̄

∂θ1
= − d

dt

(
∂L̄

∂ω1

)
− ∂L̄

∂�1
= 0, (25)

d

dt

(
∂L̄

∂θ̇2

)
− ∂L̄

∂θ2
= − d

dt

(
∂L̄

∂ω2

)
− ∂L̄

∂�2
= 0. (26)

Keeping the lowest significant order terms and using the
linear relations (20)–(23), we get

d

dt

[
ω1k2

1(
ω2

1 − �2k2
1

)2 C2
10

]
= ε1C10 sin (�1), (27)

d

dt

[
ω2k2

2(
ω2

2 − �2k2
2

)2 C2
01

]
= ε2C01 sin (�2). (28)

Likewise, we can obtain from the variations with respect
to the first-order amplitudes [see Eqs. (B42)–(B47) in Ap-
pendix B]:(

k2
1

ω2
1 − �2k2

1

− 1 − k2
1

)
C10

= C2
10P(k1, ω1)C10 + C01C10Q(k1, ω1; k2, ω2)C01

+ ε1 cos (�1), (29)(
k2

2

ω2
2 − �2k2

2

− 1 − k2
2

)
C01

= C2
01P(k2, ω2)C01 + C01C10Q(k1, ω1; k2, ω2)C10

+ ε2 cos (�2), (30)

where the functions P(k1, ω1) and Q(k1, ω1; k2, ω2) are de-
fined in Appendix C.

Expanding around the linear ion acoustic dispersion rela-
tion ωi = ωa,i + �ωi (i = 1, 2), we get from Eqs. (29) and
(30) the following expressions:

�ω1 = −
(
ω2

1 − �2k2
1

)2

2ω1k2
1

P(k1, ω1)C2
10

−
(
ω2

1 − �2k2
1

)2

2ω1k2
1

Q(k1, ω1; k2, ω2)C2
01

−
(
ω2

1 − �2k2
1

)2

2ω1k2
1

ε1

C10
cos (�1), (31)

�ω2 = −
(
ω2

2 − �2k2
2

)2

2ω2k2
2

P(k2, ω2)C2
01

−
(
ω2

2 − �2k2
2

)2

2ω2k2
2

Q(k1, ω1; k2, ω2)C2
10

−
(
ω2

2 − �2k2
2

)2

2ω2k2
2

ε2

C01
cos (�2). (32)

The above expressions (31) and (32) show that due to the
nonlinear nature of the system, the waves acquire frequency
shifts (the first two terms), which can be adjusted to the
chirped driving frequencies continuously (see the last term),
yielding control of the wave amplitudes.

Assuming linear driving frequency chirps ωd,i = ωa,i + αit
(i = 1, 2) and defining

I1 = 2ω1k2
1(

ω2
1 − �2k2

1

)2 C2
10, I2 = 2ω2k2

2(
ω2

2 − �2k2
2

)2 C2
01, (33)

a =
(
ω2

1 − �2k2
1

)4

4ω2
1k4

1

P(k1, ω1), (34)

b =
(
ω2

1 − �2k2
1

)2

2ω1k2
1

(
ω2

2 − �2k2
2

)2

2ω2k2
2

Q(k1, ω1, k2, ω2), (35)

c =
(
ω2

2 − �2k2
2

)4

4ω2
2k4

2

P(k2, ω2), (36)

ε1 = 2
(
ω2

1 − �2k2
1

)
|k1| ε1, ε2 = 2

(
ω2

2 − �2k2
2

)
|k2| ε2, (37)

we can rewrite Eqs. (27), (28), (31), and (32) to obtain the
following system of weakly nonlinear evolution equations:

dI1

dt
= ε1

√
I1

2ω1
sin (�1), (38)

dI2

dt
= ε2

√
I2

2ω2
sin (�2), (39)

d�1

dt
= aI1 + bI2 + α1t + ε1

2
√

2ω1I1
cos (�1), (40)

d�2

dt
= bI1 + cI2 + α2t + ε2

2
√

2ω2I2
cos (�2). (41)

Here, in principle, the linear frequency chirps αit (i = 1, 2)
can be replaced by any other functions of time as long as
these functions are sufficiently slow. In fact, we use the arctan
frequency chirp drive defined in Eq. (5) in our simulations.

The numerical solution of the weakly nonlinear system
(38)–(41) is presented in Figs. 2–4. We use the drive and other
parameters identical to those used in the numerical solution of
the fully nonlinear system described in the previous section,
which is presented in Figs. 1(a) and 2. As can be seen in Fig. 2
and by comparison between Figs. 1(a) and 3, the analytically
derived weakly nonlinear system is indeed a good approxi-
mation of the fully nonlinear problem. We further observe in
Fig. 2 the absence of the low frequency modulation in the
weakly nonlinear solution after we stop driving at τ = 12.
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FIG. 3. The colormap of the electron density ne(x, τ ) as a function of slow time τ = √
α1t and coordinate x for a two-phase autoresonant

ion acoustic wave excited by two driving counter propagating traveling waves with k1 = −0.5 and k2 = 1 obtained by solving the weakly
nonlinear reduced dynamical equations (38)–(41). The red-vertical line indicates the termination of the drive at τ = 12. The parameters used
in the simulation are the same as in Figs. 1(a), 2, and 4.

FIG. 4. The effective actions I1, I2 (top subplot) and the phase
mismatches �1, �2 (bottom subplot) vs slow time τ = √

α1t
obtained by solving the weakly nonlinear reduced dynamical equa-
tions (38)–(41). The parameters used in the simulation are the same
as in Figs. 1(a), 2, and 3.

The reason is that in this case I1, I2 = const, as evident from
Eqs. (38)–(39), which implies that all the slowly evolving am-
plitudes are constant as well, while Eqs. (11)–(13) show that it
is the slowly evolving amplitudes that are directly responsible
for the low frequency modulation.

The nature of the autoresonant excitation and phase locking
is demonstrated in Fig. 4, which shows the effective actions
I1, I2 (top subplot) and the phase mismatches �1,�2 (bottom
subplot) as functions of slow time τ = √

α1t . We can clearly
see that as the system passes the linear resonance at τ = 0, the
phase mismatches are locked around zero, while the effective
actions I1, I2 both enter the autoresonant regime and grow
in amplitude. At τ = 12 we turn off the drives and so the
effective actions remain constant. In the absence of the drives,
the phase mismatches are not meaningfully defined, therefore
�1,�2 are shown in the figures only until τ = 12.

We can explicitly test whether our assumption regarding
the form of the ansatz used [see Eqs. (11)–(13)] is justified
by performing the spectral analysis. Figure 5 shows the spec-
tral distribution of the harmonics of the ion fluid velocity
u(x, τ ) in k space at two moments of time: τ = 3 (pink line)
and τ = 12 (blue line), both in linear scale (top subplot)
and in logarithmic scale (bottom subplot). We can see that
the spectrum falls off dramatically with the increase in |k|;
only a handful of harmonics have a noticeable weight and
can be considered excited. At τ = 3 the excited harmon-
ics correspond to the ones used in the ansatz, so we see a
very good agreement between the weakly nonlinear and the
fully nonlinear solutions, as evident in Fig. 2. At τ = 12 we
can see that harmonics with |k| = 2 and |k| = 2.5, which
are beyond the ones used in the ansatz, acquire some small
but not non-negligible weights, so the agreement between
the weakly nonlinear theory utilizing the ansatz given by
Eqs. (11)–(13) and the fully nonlinear theory is not as good
as at τ = 3, though it is still decent. Thus, by checking the
spectrum of the solutions, one can verify whether the ansatz
is adequate for the parameters used in the simulations, and
if necessary the ansatz can be extended to include more har-
monics and more precise weakly analytical theory can be
developed.
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FIG. 5. The spectrum of the harmonics of the ion fluid velocity
u(x, τ ) in k space obtained by solving the fully nonlinear equa-
tions (1)–(3) at τ = 3 (pink line) and τ = 12 (blue line) in linear (top
subplot) and logarithmic (bottom subplot) scales. The parameters
used in the simulations are the same as in Figs. 1(a), 2, 3, and 4.

IV. THE CONDITIONS FOR DOUBLE AUTORESONANCE

Equations (38)–(41) have the same form as a weakly non-
linear system studied in Ref. [73]. Such a system is described
by the following Hamiltonian for the effective action (I1, I2)
and angle (�1, �2) variables:

H = ω1I1 + ω2I2 + 1
2 aI2

1 + bI1I2 + 1
2 cI2

2

+ f (I1, I2,�1,�2, t ), (42)

where

f (I1, I2,�1,�2, t ) = ε1

√
I1

2ω1
cos (�1) + ε2

√
I2

2ω2
cos (�2).

(43)
As shown in Ref. [73], the possibility of double autoreso-

nance is determined by the signs of D = ac − b2 and α1α2:
for the double autoresonance to occur, they must have the
same sign. From Eqs. (38)–(41), we see that in the case of
the double autoresonance the asymptotic large t solutions for

FIG. 6. The curves D(k1, k2) = 0 for three values of the ion
thermal velocity: uth = 0 (solid-blue line), uth = 0.003 (dashed-
green line), and uth = 0.03 (dash-dotted-pink line), plotted in the
(ω1/|k1|, ω2/|k2|) plane assuming k1k2 > 0. D is negative inside the
curve D = 0 and positive outside the curve. For k1k2 < 0, D is always
positive. The double autoresonance is possible only in the regions
where D > 0.

the actions are given by

Ī1 = bα2 − cα1

D
t, Ī2 = bα1 − aα2

D
t . (44)

Thus, in addition, for the double autoresonance to actually
happen the asymptotic actions Ī1, Ī2 defined above must be
positive.

There are two possible situations, depending on whether k1

and k2 have the same sign: (1) If k1k2 > 0, we have b < 0,
a < 0, c < 0. In this case D can have both positive and neg-
ative values. Figure 6 shows the lines for D = 0 in the plane
formed by the absolute values of the phase velocities of the
driving waves (ω1/|k1|, ω2/|k2|) for different values of the ion
thermal velocity uth. We can see that the ion thermal velocity
uth, though not an extremely sensitive parameter, nevertheless
determines the regions of positive and negative values of D.
Thus the cold ion model should be used carefully and the
thermal ion velocity should in general be taken into account.
In the region where D > 0, for the double autoresonance to
occur α1α2 must be positive. In addition, for positive Ī1, Ī2 we
must have |b|/|a| < α2/α1 < |c|/|b|. In contrast, if D < 0, we
must have α1α2 < 0. However, in this case it is impossible
for both Ī1 and Ī2 to be positive at the same time. Thus, if
k1k2 > 0, the double autoresonance is possible only in the re-
gion where D > 0; in this region we also must have α1α2 > 0
and |b|/|a| < α2/α1 < |c|/|b|. (2) The second possibility is
k1k2 < 0, then we have b > 0, a < 0, c < 0. In this case D is
always positive, and, consequently, for double autoresonance
we must have α1α2 > 0. In addition, to have positive Ī1, Ī2

only the case when both α1, α2 are positive works. Thus, in
the case where k1k2 < 0, the double autoresonance is possible
when α1, α2 > 0. We do not deal with the degenerate case of
k1 = k2 in this paper.

023150-7



MUNIROV, FRIEDLAND, AND WURTELE PHYSICAL REVIEW RESEARCH 4, 023150 (2022)

FIG. 7. Melting of a two-phase quasicrystal into a single phase
quasicrystal around the threshold in the fully nonlinear model. The
colormaps show the electron density ne(x, τ ) in the (x, τ ) plane
for a two-phase ion acoustic wave excited by two driving counter
propagating traveling waves with k1 = −0.5 and k2 = 1 obtained
by solving the fully nonlinear equations (1)–(3) for various values
of ε̄2: just above the threshold (ε̄2/ε̄1 = 0.338, top subplot), just
below the threshold (ε̄2/ε̄1 = 0.337, middle subplot), and below the
threshold (ε̄2/ε̄1 = 0.32, bottom subplot). The parameters used in the
simulations are otherwise the same as in Figs. 1(a), 2, and 3. The
red-vertical line indicates the termination of the drive at τ = 12.

Thresholds

The important dynamical characteristic of the autoreso-
nance is that when starting from zero, the chirped-driven
system is captured into resonance only if the driving ampli-
tudes exceed a certain threshold [73]. Thus, if we increase the
amplitudes of the drives, the autoresonant excitation of the
quasicrystals occurs abruptly, resembling a phase transition.

The thresholds can be analyzed by reducing the problem
to the motion of pseudoparticles in an anharmonic slowly
varying potential well, similar to the way it was done in
Ref. [74] for the single phase weakly nonlinear theory. How-
ever, unlike the threshold for the autoresonance of a single
phase ion acoustic wave (see Ref. [67]), the general analytical
result for the double autoresonance thresholds is difficult to
obtain and the thresholds are complicated functions of α1, α2,
a(k1), b(k1, k2), c(k2). Nonetheless, it is possible to find the
thresholds numerically. As an example let us use the same
parameters as in Figs. 1(a), 2, 3, and 4, fix the value of ε̄1,
and solve numerically both the fully and weakly nonlinear
equations while sweeping through values of ε̄2. The results
of these simulations are presented in Figs. 7 and 8. Figure 7

FIG. 8. Melting of a two-phase quasicrystal into a single phase
quasicrystal around the threshold in the weakly nonlinear model.
The colormaps show the electron density ne(x, τ ) in the (x, τ ) plane
for a two-phase ion acoustic wave excited by two driving counter
propagating traveling waves with k1 = −0.5 and k2 = 1 obtained by
solving the weakly nonlinear reduced dynamical equations (38)–(41)
for various values of ε̄2: just above the threshold (ε̄2/ε̄1 = 0.339, top
subplot), just below the threshold (ε̄2/ε̄1 = 0.338, middle subplot),
and below the threshold (ε̄2/ε̄1 = 0.32, bottom subplot). The param-
eters used in the simulations are otherwise the same as in Figs. 1(a),
2, and 3. The red-vertical line indicates the termination of the drive
at τ = 12.

shows a colormap of the electron density ne(x, τ ) ≈ eϕ(x,τ )

obtained by solving the fully nonlinear equations (1)–(3) for
various values of ε̄2: just above the threshold at ε̄2 = 0.338ε̄1

(top subplot), just below the threshold at ε̄2 = 0.337ε̄1 (mid-
dle subplot), and below the threshold at ε̄2 = 0.32ε̄1 (bottom
subplot), while Fig. 8 shows a colormap of the electron density
ne(x, τ ) ≈ eϕ(x,τ ) obtained by solving the weakly nonlinear
equations (38)–(41) for various values of ε̄2: just above the
threshold (ε̄2/ε̄1 = 0.339, top subplot), just below the thresh-
old (ε̄2/ε̄1 = 0.338, middle subplot), and below the threshold
(ε̄2/ε̄1 = 0.32, bottom subplot). We can see from these fig-
ures that the crystallization is indeed an abrupt phenomenon
akin to a phase transition. For the fully nonlinear simulations
the threshold lies between ε̄2/ε̄1 = 0.337 and ε̄2/ε̄1 = 0.338,
while for the weakly nonlinear simulations the threshold
lies between ε̄2/ε̄1 = 0.338 and ε̄2/ε̄1 = 0.339. Such a good
agreement for the value of the threshold is another proof
that our weakly nonlinear theory is applicable. To better il-
lustrate the threshold nature of the double autoresonance we
also produced an animation showing the crystallization of a
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FIG. 9. The effective actions I1, I2 (top subplots) and the phase mismatches �1, �2 (bottom subplots) vs slow time τ = √
α1t obtained by

solving the weakly nonlinear reduced dynamical equations (38)–(41). The parameters used in the simulations are the same as in Figs. 1(a), 2,
and 3 except for parameter ε̄2, which is equal to ε̄2 = 0.338ε̄1 (left side) and ε̄2 = 0.339ε̄1 (right side).

single phase structure into a two-phase structure around the
threshold as we sweep ε̄2 from ε̄2 = 0.32ε̄1 to ε̄2 = 0.35ε̄1.
The animation is available in the Supplemental Material [75].

The necessity of the phase locking for the autoresonance is
demonstrated in Fig. 9, which shows the effective actions I1, I2

and the phase mismatches �1,�2 as functions of slow time
τ = √

α1t just below the threshold (ε̄2/ε̄1 = 0.338, left side)
and just above the threshold (ε̄2/ε̄1 = 0.339, right side). One
can clearly see that just below the threshold the second action
I2 does not enter the autoresonant regime and the growth of the
amplitude saturates, while the phase mismatch �2 increases
with time signifying the absence of phase locking. In contrast,
just above the threshold both phases are locked and the am-
plitudes I1, I2 increase in time similar to the case shown in
Fig. 4.

V. CONCLUSIONS

We have demonstrated by means of nonlinear numerical
simulations that it is possible to create quasicrystalline spa-
tiotemporal structures in plasma by exciting large amplitude

two-phase ion acoustic waves nonlinearly phased locked into
the corresponding small amplitude traveling wave drives with
chirped frequencies. We have used the Lagrangian formula-
tion and Whitham’s averaged variational method to derive
analytical results describing the weakly nonlinear evolution
of the system. We have applied the weakly nonlinear ana-
lytical theory to determine the parameters necessary for the
successful excitation and control of multiphase waves. The
nonlinearly excited quasicrystalline structures remain even
after we turn off the drive. Thus, the space-time quasicrys-
talline structure in plasma can be excited and then used
independently for the purpose of plasma photonics experi-
ments. While our warm fluid model does not have dissipation
or noise due to collisions or Landau damping, for example,
and, generally speaking, its long-time stability must be ad-
dressed by kinetic or particle-in-cell (PIC) simulations, it is
apparent that, depending on the time scales of the problem,
this structure can be considered as at least a dissipative space-
time crystal. We also note that we do not address in this
paper whether the driven space-time crystal is a “true” time
crystal in the sense of spontaneous symmetry breaking as
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proposed in Refs. [76,77]; for more discussion regarding this
see Refs. [35,78,79].

It is expected that, using our technique, similar structures
can be driven in other systems, for example dust acoustic
waves in complex plasmas [80]. We expect that multiphase
solutions when the number of drives exceeds two are also
possible; however, it will be harder to analyze such a system
analytically. Finally, we point out that beyond any practical
application as a plasma photonic (or accelerating) structure,
the possibility of exciting multiphase solutions for in general
non-integrable warm ion acoustic waves system is in itself an

important fundamental result in the field of nonlinear dynam-
ics. These techniques developed for the excitation of large
amplitude ion acoustic waves may be applied to other par-
tial differential equation systems that can support multiphase
nonlinear waves.
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APPENDIX A: THE AVERAGED LAGRANGIAN DENSITY

The averaged Lagrangian density

L̄ = 〈L(θ1, θ2, t )〉θ1,θ2
=

∫
L(θ1, θ2, t )

dθ1

2π

dθ2

2π
(A1)

is equal to the sum of the following terms:〈
1

2
ϕ2

x

〉
θ1,θ2

= 1

4
k2

1C2
10 + 1

4
k2

2C2
01 + 1

4
(k1 + k2)2C2

11 + 1

4
(k1 − k2)2C2

1,−1 + k2
1C2

20 + k2
2C2

02, (A2)

〈ϕ〉θ1,θ2
= C00, (A3)〈

1

2
ϕ2

〉
θ1,θ2

= 1

2
C2

00 + 1

4
C2

10 + 1

4
C2

01 + 1

4
C2

11 + 1

4
C2

1,−1 + 1

4
C2

20 + 1

4
C2

02, (A4)〈
1

6
ϕ3

〉
θ1,θ2

= 1

4

(
C00 + 1

2
C02

)
C2

01 + 1

4

(
C00 + 1

2
C20

)
C2

10 + 1

4
(C1,−1 + C11)C01C10, (A5)〈

1

24
ϕ4

〉
θ1,θ2

= 1

64
C4

01 + 1

16
C2

01C
2
10 + 1

64
C4

10, (A6)〈
−1

2
(ψtσx + ψxσt )

〉
θ1,θ2

= 1

2
ω1k1B̃10Ã10 + 1

2
ω2k2B̃01Ã01 + 2ω1k1B̃20Ã20 + 2ω2k2B̃02Ã02

+ 1

2
(ω1 − ω2)(k1 − k2)B̃1,−1Ã1,−1 + 1

2
(ω1 + ω2)(k1 + k2)B̃11Ã11, (A7)〈

−
(

1

2
ψ2

x + ϕ

)
(1 + σx )

〉
θ1,θ2

= −C00 − 1

4
k2

1 B̃2
10 − 1

4
k2

2 B̃2
01 − k2

1 B̃2
20 − k2

2 B̃2
02 − 1

4
(k1 + k2)2B̃2

11 − 1

4
(k1 − k2)2B̃2

1,−1

− k1

(
1

2
C10Ã10 + C20Ã20

)
− k2

(
1

2
C01Ã01 + C02Ã02

)

− 1

2
(k1 + k2)C11Ã11 − 1

2
(k1 − k2)C1,−1Ã1,−1

− 1

2
k3

2

(
Ã01B̃01B̃02 + 1

2
Ã02B̃2

01

)
− 1

2
k3

1

(
Ã10B̃10B̃20 + 1

2
Ã20B̃2

10

)

− 1

4
k1k2(k1 − k2)(Ã01B̃10B̃1,−1 + Ã1,−1B̃01B̃10 + Ã10B̃01B̃1,−1)

− 1

4
k1k2(k1 + k2)(Ã01B̃11B̃10 + Ã10B̃01B̃11 + Ã11B̃01B̃10), (A8)〈

−�2

2
σ 2

x

(
1 + 1

3
σx

)〉
θ1,θ2

= −�2

4
k2

1 Ã2
10 − �2

4
k3

1 Ã2
10Ã20 − �2k2

1 Ã2
20 − �2

4
k2

2 Ã2
01 − �2

4
k3

2 Ã2
01Ã02 − �2k2

2 Ã2
02

− �2

4
k1k2(k1 − k2)Ã01Ã10Ã1,−1 − �2

4
k1k2(k1 + k2)Ã01Ã10Ã11

− �2

4
(k1 − k2)2Ã2

1,−1 − �2

4
(k1 + k2)2Ã2

11, (A9)

〈ϕϕd〉θ1,θ2
= ε1

2
C10 cos (�1) + ε2

2
C01 cos (�2). (A10)
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APPENDIX B: THE VARIATIONS AND THE AMPLITUDES

In this Appendix we calculate the variations of the aver-
aged Lagrangian with respect to the various amplitudes and
express all the second-order amplitudes Ã20, Ã02, B̃20, B̃02, C20,
C02, Ã11, Ã1,−1, B̃11, B̃1,−1, C11, C1,−1 through the first-order
amplitudes C10 and C01.

To express the second-order amplitudes through C10 and
C01 let us first calculate the variations of the averaged La-
grangian density with respect to the second-order amplitudes:

∂L̄

∂C00
= C00 + 1

4
C2

01 + 1

4
C2

10 = 0, (B1)

∂L̄

∂C20
= 2k2

1C20 + 1

2
C20 + 1

8
C2

10 − k1Ã20 = 0, (B2)

∂L̄

∂C02
= 2k2

2C02 + 1

2
C02 + 1

8
C2

01 − k2Ã02 = 0, (B3)

∂L̄

∂C11
= 1

2
(k1 + k2)2C11 + 1

2
C11 + 1

4
C01C10

− 1

2
(k1 + k2)Ã11 = 0, (B4)

∂L̄

∂C1,−1
= 1

2
(k1 − k2)2C1,−1 + 1

2
C1,−1 + 1

4
C01C10

− 1

2
(k1 − k2)Ã1,−1 = 0, (B5)

∂L̄

∂Ã20
= 2ω1k1B̃20 − k1C20 − 1

4
k3

1 B̃2
10 − �2

4
k3

1 Ã2
10

− 2�2k2
1 Ã20 = 0, (B6)

∂L̄

∂Ã02
= 2ω2k2B̃02 − k2C02 − 1

4
k3

2 B̃2
01 − �2

4
k3

2 Ã2
01

− 2�2k2
2 Ã02 = 0, (B7)

∂L̄

∂Ã11
= 1

2
(ω1 + ω2)(k1 + k2)B̃11 − 1

2
(k1 + k2)C11

− 1

4
k1k2(k1 + k2)B̃01B̃10 − �2

4
k1k2(k1 + k2)Ã01Ã10

− �2

2
(k1 + k2)2Ã11 = 0, (B8)

∂L̄

∂Ã1,−1
= 1

2
(ω1 − ω2)(k1 − k2)B̃1,−1 − 1

2
(k1 − k2)C1,−1

− 1

4
k1k2(k1 − k2)B̃01B̃10 − �2

4
k1k2(k1 − k2)Ã01Ã10

− �2

2
(k1 − k2)2Ã1,−1 = 0, (B9)

∂L̄

∂B̃20
= 2ω1k1Ã20 − 2k2

1 B̃20 − 1

2
k3

1 Ã10B̃10 = 0, (B10)

∂L̄

∂B̃02
= 2ω2k2Ã02 − 2k2

2 B̃02 − 1

2
k3

2 Ã01B̃01 = 0, (B11)

∂L̄

∂B̃11
= 1

2
(ω1 + ω2)(k1 + k2)Ã11 − 1

2
(k1 + k2)2B̃11

− 1

4
k1k2(k1 + k2)(Ã01B̃10 + Ã10B̃01) = 0, (B12)

∂L̄

∂B̃1,−1
= 1

2
(ω1 − ω2)(k1 − k2)Ã1,−1 − 1

2
(k1 − k2)2B̃1,−1

− 1

4
k1k2(k1 − k2)(Ã01B̃10 + Ã10B̃01) = 0. (B13)

From Eq. (B1) we obtain

C00 = − 1
4C2

01 − 1
4C2

10. (B14)

From Eqs. (B2), (B3), (B6), (B7), (B10), and (B11) we obtain

Ã20 = k3
1

(
4k2

1 + 1
)
B̃2

10 + 2ω1k2
1

(
4k2

1 + 1
)
Ã10B̃10 − k1C2

10 + �2k3
1

(
4k2

1 + 1
)
Ã2

10

8
[(

ω2
1 − �2k2

1

)(
4k2

1 + 1
) − k2

1

] , (B15)

Ã02 = k3
2

(
4k2

2 + 1
)
B̃2

01 + 2ω2k2
2

(
4k2

2 + 1
)
Ã01B̃01 − k2C2

01 + �2k3
2

(
4k2

2 + 1
)
Ã2

01

8
[(

ω2
2 − �2k2

2

)(
4k2

2 + 1
) − k2

2

] , (B16)

B̃20 = ω1k2
1

(
4k2

1 + 1
)
B̃2

10 + 2k3
1 Ã10B̃10 − ω1C2

10 + �2ω1k2
1

(
4k2

1 + 1
)
Ã2

10 + 2�2k3
1

(
4k2

1 + 1
)
Ã10B̃10

8
[(

ω2
1 − �2k2

1

)(
4k2

1 + 1
) − k2

1

] , (B17)

B̃02 = ω2k2
2

(
4k2

2 + 1
)
B̃2

01 + 2k3
2 Ã01B̃01 − ω2C2

01 + �2ω2k2
2

(
4k2

2 + 1
)
Ã2

01 + 2�2k3
2

(
4k2

2 + 1
)
Ã01B̃01

8
[(

ω2
2 − �2k2

2

)(
4k2

2 + 1
) − k2

2

] , (B18)

C20 = k4
1 B̃2

10 + 2ω1k3
1 Ã10B̃10 − ω2

1C2
10 + �2k4

1 Ã2
10 + �2k2

1C2
10

4
[(

ω2
1 − �2k2

1

)(
4k2

1 + 1
) − k2

1

] , (B19)

C02 = k4
2 B̃2

01 + 2ω2k3
2 Ã01B̃01 − ω2

2C2
01 + �2k4

2 Ã2
01 + �2k2

2C2
01

4
[(

ω2
2 − �2k2

2

)(
4k2

2 + 1
) − k2

2

] . (B20)

From Eqs. (B4), (B5), (B8), (B9), (B12), and (B13) we obtain

Ã11 = k1k2(k1 + k2)[(k1 + k2)2 + 1]B̃01B̃10 − (k1 + k2)C01C10

2{[(ω1 + ω2)2 − �2(k1 + k2)2][(k1 + k2)2 + 1] − (k1 + k2)2}

+ (ω1 + ω2)k1k2[(k1 + k2)2 + 1](Ã01B̃10 + Ã10B̃01)

2{[(ω1 + ω2)2 − �2(k1 + k2)2][(k1 + k2)2 + 1] − (k1 + k2)2}
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+ �2k1k2(k1 + k2)[(k1 + k2)2 + 1]Ã01Ã10

2{[(ω1 + ω2)2 − �2(k1 + k2)2][(k1 + k2)2 + 1] − (k1 + k2)2} , (B21)

Ã1,−1 = k1k2(k1 − k2)[(k1 − k2)2 + 1]B̃01B̃10 − (k1 − k2)C01C10

2{[(ω1 − ω2)2 − �2(k1 − k2)2][(k1 − k2)2 + 1] − (k1 − k2)2}

+ (ω1 − ω2)k1k2[(k1 − k2)2 + 1](Ã01B̃10 + Ã10B̃01)

2{[(ω1 − ω2)2 − �2(k1 − k2)2][(k1 − k2)2 + 1] − (k1 − k2)2}

+ �2k1k2(k1 − k2)[(k1 − k2)2 + 1]Ã01Ã10

2{[(ω1 − ω2)2 − �2(k1 − k2)2][(k1 − k2)2 + 1] − (k1 − k2)2} , (B22)

B̃11 = (ω1 + ω2)k1k2[(k1 + k2)2 + 1]B̃01B̃10 − (ω1 + ω2)C01C10 + k1k2(k1 + k2)(Ã01B̃10 + Ã10B̃01)

2{[(ω1 + ω2)2 − �2(k1 + k2)2][(k1 + k2)2 + 1] − (k1 + k2)2}

+ �2k1k2[(k1 + k2)2 + 1][(ω1 + ω2)Ã01Ã10 + (k1 + k2)(Ã01B̃10 + Ã10B̃01)]

2{[(ω1 + ω2)2 − �2(k1 + k2)2][(k1 + k2)2 + 1] − (k1 + k2)2} , (B23)

B̃1,−1 = (ω1 − ω2)k1k2[(k1 − k2)2 + 1]B̃01B̃10 − (ω1 − ω2)C01C10 + k1k2(k1 − k2)(Ã01B̃10 + Ã10B̃01)

2{[(ω1 − ω2)2 − �2(k1 − k2)2][(k1 − k2)2 + 1] − (k1 − k2)2}

+ �2k1k2[(k1 − k2)2 + 1][(ω1 − ω2)Ã01Ã10 + (k1 − k2)(Ã01B̃10 + Ã10B̃01)]

2{[(ω1 − ω2)2 − �2(k1 − k2)2][(k1 − k2)2 + 1] − (k1 − k2)2} , (B24)

C11 = k1k2(k1 + k2)2B̃01B̃10 − (ω1 + ω2)2C01C10 + (ω1 + ω2)k1k2(k1 + k2)(Ã01B̃10 + Ã10B̃01)

2{[(ω1 + ω2)2 − �2(k1 + k2)2][(k1 + k2)2 + 1] − (k1 + k2)2}

+ �2(k1 + k2)2(C01C10 + k1k2Ã01Ã10)

2{[(ω1 + ω2)2 − �2(k1 + k2)2][(k1 + k2)2 + 1] − (k1 + k2)2} , (B25)

C1,−1 = k1k2(k1 − k2)2B̃01B̃10 − (ω1 − ω2)2C01C10 + (ω1 − ω2)k1k2(k1 − k2)(Ã01B̃10 + Ã10B̃01)

2{[(ω1 − ω2)2 − �2(k1 − k2)2][(k1 − k2)2 + 1] − (k1 − k2)2}

+ �2(k1 − k2)2(C01C10 + k1k2Ã01Ã10)

2{[(ω1 − ω2)2 − �2(k1 − k2)2][(k1 − k2)2 + 1] − (k1 − k2)2} . (B26)

Finally, by using Eqs. (20)–(23), we can express all the second-order amplitudes through C10 and C01:

Ã20 = k1

8

k2
1

(
3ω2

1 + �2k2
1

)(
4k2

1 + 1
) − (

ω2
1 − �2k2

1

)2

(
ω2

1 − �2k2
1

)2[(
ω2

1 − �2k2
1

)(
4k2

1 + 1
) − k2

1

]C2
10, (B27)

Ã02 = k2

8

k2
2

(
3ω2

2 + �2k2
2

)(
4k2

2 + 1
) − (

ω2
2 − �2k2

2

)2

(
ω2

2 − �2k2
2

)2[(
ω2

2 − �2k2
2

)(
4k2

2 + 1
) − k2

2

]C2
01, (B28)

B̃20 = ω1

8

k2
1

(
ω2

1 + 3�2k2
1

)(
4k2

1 + 1
) + 2k4

1 − (
ω2

1 − �2k2
1

)2

(
ω2

1 − �2k2
1

)2[(
ω2

1 − �2k2
1

)(
4k2

1 + 1
) − k2

1

] C2
10, (B29)

B̃02 = ω2

8

k2
2

(
ω2

2 + 3�2k2
2

)(
4k2

2 + 1
) + 2k4

2 − (
ω2

2 − �2k2
2

)2

(
ω2

2 − �2k2
2

)2[(
ω2

2 − �2k2
2

)(
4k2

2 + 1
) − k2

2

] C2
01, (B30)

C20 = k4
1

(
3ω2

1 + �2k2
1

) − (
ω2

1 − �2k2
1

)3

4
(
ω2

1 − �2k2
1

)2[(
ω2

1 − �2k2
1

)(
4k2

1 + 1
) − k2

1

]C2
10, (B31)

C02 = k4
2

(
3ω2

2 + �2k2
2

) − (
ω2

2 − �2k2
2

)3

4
(
ω2

2 − �2k2
2

)2[(
ω2

2 − �2k2
2

)(
4k2

2 + 1
) − k2

2

]C2
01, (B32)

Ã11 = k1k2[(ω1ω2 + �2k1k2)(k1 + k2) + (ω1 + ω2)(k2ω1 + k1ω2)][(k1 + k2)2 + 1]

2
(
ω2

1 − �2k2
1

)(
ω2

2 − �2k2
2

){[(ω1 + ω2)2 − �2(k1 + k2)2][(k1 + k2)2 + 1] − (k1 + k2)2}C01C10

− k1 + k2

2{[(ω1 + ω2)2 − �2(k1 + k2)2][(k1 + k2)2 + 1] − (k1 + k2)2}C01C10, (B33)

Ã1,−1 = k1k2[(ω1ω2 + �2k1k2)(k1 − k2) + (ω1 − ω2)(k2ω1 + k1ω2)][(k1 − k2)2 + 1]

2
(
ω2

1 − �2k2
1

)(
ω2

2 − �2k2
2

){[(ω1 − ω2)2 − �2(k1 − k2)2][(k1 − k2)2 + 1] − (k1 − k2)2}C01C10

− k1 − k2

2{[(ω1 − ω2)2 − �2(k1 − k2)2][(k1 − k2)2 + 1] − (k1 − k2)2}C01C10, (B34)
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B̃11 = k1k2{[(ω1 + ω2)(ω1ω2 + �2k1k2) + �2(k1 + k2)(k2ω1 + k1ω2)][(k1 + k2)2 + 1] + (k1 + k2)(k2ω1 + k1ω2)}
2
(
ω2

1 − �2k2
1

)(
ω2

2 − �2k2
2

){[(ω1 + ω2)2 − �2(k1 + k2)2][(k1 + k2)2 + 1] − (k1 + k2)2} C01C10

− ω1 + ω2

2{[(ω1 + ω2)2 − �2(k1 + k2)2][(k1 + k2)2 + 1] − (k1 + k2)2}C01C10, (B35)

B̃1,−1 = k1k2{[(ω1 − ω2)(ω1ω2 + �2k1k2) + �2(k1 − k2)(k2ω1 + k1ω2)][(k1 − k2)2 + 1] + (k1 − k2)(k2ω1 + k1ω2)}
2
(
ω2

1 − �2k2
1

)(
ω2

2 − �2k2
2

){[(ω1 − ω2)2 − �2(k1 − k2)2][(k1 − k2)2 + 1] − (k1 − k2)2} C01C10

− ω1 − ω2

2{[(ω1 − ω2)2 − �2(k1 − k2)2][(k1 − k2)2 + 1] − (k1 − k2)2}C01C10, (B36)

C11 = k1k2(k1 + k2)[(k1 + k2)(ω1ω2 + �2k1k2) + (ω1 + ω2)(k2ω1 + k1ω2)]

2
(
ω2

1 − �2k2
1

)(
ω2

2 − �2k2
2

){[(ω1 + ω2)2 − �2(k1 + k2)2][(k1 + k2)2 + 1] − (k1 + k2)2}C01C10

− (ω1 + ω2)2 − �2(k1 + k2)2

2{[(ω1 + ω2)2 − �2(k1 + k2)2][(k1 + k2)2 + 1] − (k1 + k2)2}C01C10, (B37)

C1,−1 = k1k2(k1 − k2)[(k1 − k2)(ω1ω2 + �2k1k2) + (ω1 − ω2)(k2ω1 + k1ω2)]

2
(
ω2

1 − �2k2
1

)(
ω2

2 − �2k2
2

){[(ω1 − ω2)2 − �2(k1 − k2)2][(k1 − k2)2 + 1] − (k1 − k2)2}C01C10

− (ω1 − ω2)2 − �2(k1 − k2)2

2{[(ω1 − ω2)2 − �2(k1 − k2)2][(k1 − k2)2 + 1] − (k1 − k2)2}C01C10. (B38)

Note that in the limiting case of cold ions (� = 0) and with two identical counter propagating traveling waves (i.e., a standing
wave with k1 = −k, k2 = k, ω1 = ω2 = ω, ε1 = ε2 = ε) the above amplitudes coincide with the amplitudes derived in Ref. [60],
as expected. In particular, the amplitudes a1, a2, A, b1, b2, c0, c1, c2, C from Ref. [60] are related to the amplitudes in this paper
as follows:

Ã10 = −a1

2
, Ã01 = a1

2
, Ã20 = −a2

2
, Ã02 = a2

2
, Ã1,−1 = −A, (B39)

B̃10 = −b1

2
, B̃01 = −b1

2
, B̃20 = −b2

2
, B̃02 = −b2

2
, (B40)

C00 = c0

2
, C11 = c0

2
, C10 = c1

2
, C01 = c1

2
, C1,−1 = C, C20 = c2

2
, C02 = c2

2
. (B41)

To derive weakly nonlinear equations we also need to calculate the variations of L̄ with respect to the first-order
amplitudes:

∂L̄

∂C10
= −1

2
k1Ã10 + 1

2

(
1 + k2

1

)
C10 + 1

2
C10

(
1

8
C2

10 + 1

4
C2

01 + C00 + 1

2
C20

)
+ 1

4
C01(C1,−1 + C11) + ε1

2
cos(�1) = 0, (B42)

∂L̄

∂C01
= −1

2
k2Ã01 + 1

2

(
1 + k2

2

)
C01 + 1

2
C01

(
1

8
C2

01 + 1

4
C2

10 + C00 + 1

2
C02

)
+ 1

4
C10(C1,−1 + C11) + ε2

2
cos(�2) = 0, (B43)

∂L̄

∂B̃10
= −1

2
k2

1 (1 + k1Ã20)B̃10 − 1

4
k1k2[(k1 − k2)Ã1,−1 + (k1 + k2)Ã11]B̃01

+ 1

2
k1

(
ω1 − k2

1 B̃20
)
Ã10 − 1

4
k1k2[(k1 − k2)B̃1,−1 + (k1 + k2)B̃11]Ã01 = 0, (B44)

∂L̄

∂B̃01
= −1

2
k2

2 (1 + k2Ã02)B̃01 − 1

4
k1k2[(k1 − k2)Ã1,−1 + (k1 + k2)Ã11]B̃10

+ 1

2
k2

(
ω2 − k2

2 B̃02
)
Ã01 − 1

4
k1k2[(k1 − k2)B̃1,−1 + (k1 + k2)B̃11]Ã10 = 0, (B45)

∂L̄

∂Ã10
= −1

2
k1C10 + 1

2
k1

(
ω1 − k2

1 B̃20
)
B̃10 − 1

4
k1k2[(k1 − k2)B̃1,−1 + (k1 + k2)B̃11]B̃01

− �2

2
k2

1 (1 + k1Ã20)Ã10 − �2

4
k1k2[(k1 − k2)Ã1,−1 + (k1 + k2)Ã11]Ã01 = 0, (B46)

∂L̄

∂Ã01
= −1

2
k2C01 + 1

2
k2

(
ω2 − k2

2 B̃02
)
B̃01 − 1

4
k1k2[(k1 − k2)B̃1,−1 + (k1 + k2)B̃11]B̃10

− �2

2
k2

2 (1 + k2Ã02)Ã01 − �2

4
k1k2[(k1 − k2)Ã1,−1 + (k1 + k2)Ã11]Ã10 = 0. (B47)
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APPENDIX C: FUNCTIONS P(k1, ω1) AND Q(k1, ω1; k2, ω2 )

Function P(k1, ω1) is defined through

C2
10P(k1, ω1) = −1

8
C2

10 + 1

2
C20 − 2ω1k4

1(
ω2

1 − �2k2
1

)2 B̃20 − k3
1

(
ω2

1 + �2k2
1

)
(
ω2

1 − �2k2
1

)2 Ã20, (C1)

or, equivalently due to symmetry, through

C2
01P(k2, ω2) = −1

8
C2

01 + 1

2
C02 − 2ω2k4

2(
ω2

2 − �2k2
2

)2 B̃02 − k3
2

(
ω2

2 + �2k2
2

)
(
ω2

2 − �2k2
2

)2 Ã02, (C2)

while Q(k1, ω1; k2, ω2) is defined through

C01C10Q(k1, ω1; k2, ω2) = 1

2

{
C1,−1 + C11 − k1k2(ω1ω2 + �2k1k2)(

ω2
1 − �2k2

1

)(
ω2

2 − �2k2
2

) [(k1 − k2)Ã1,−1 + (k1 + k2)Ã11]

− k1k2(k1ω2 + k2ω1)(
ω2

1 − �2k2
1

)(
ω2

2 − �2k2
2

) [(k1 − k2)B̃1,−1 + (k1 + k2)B̃11]

}
. (C3)

Here, the amplitudes Ã20, Ã02, B̃20, B̃02, C20, C02, Ã11, Ã1,−1, B̃11, B̃1,−1, C11, C1,−1 should be expressed through C10, C01, k1,
k2, ω1, ω2, � using Eqs. (B27)–(B38), so that P(k1, ω1), Q(k1, ω1; k2, ω2) are functions of k1, k2, ω1, ω2, � only.
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