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ABSTRACT

The dynamics of a water column at the surface of the ocean on the rotating spherical Earth forced by zonal wind stress is analyzed by
substituting the angular momentum for the zonal velocity as one of the system’s dependent variables. This substitution results in a model of
the column’s trajectory as a quasiparticle in a time dependent potential well. Explicit solutions are derived for the temporal changes in the
angular momentum and the associated minima of the potential well as well as for the oscillations about these minima. The analytic results
are confirmed by numerical solutions of the fourth-order nonlinear system of ordinary differential equations. For the eastward directed wind
stress, our results provide exact formulas for the time it takes a column to reach the equator, where the dynamics is trivially described by the
non-rotating paradigm of a particle subject to a constant force. In mid-latitudes, the analysis underscores the pivotal role played by the lati-
tude where the wind-stress changes sign. Columns originating north or south of this latitude either converge to it or diverge away from it
depending on whether the latitudinal change of the wind stress at this latitude is positive or negative. The oscillatory motion about this lati-
tude is linearly unstable, and the growth rate of the amplitude is proportional to the gradient of the wind stress at that latitude.

VC 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0151488

I. INTRODUCTION

The fundamental theory describing the circulation in the ocean
upper layer forced by the wind blowing over the ocean was developed
by Ekman in 19051 in Cartesian coordinates and for constant Coriolis
frequency, a setup termed today—the f-plane. This concise and elegant
linear theory employs the Lagrangian form of the vertically averaged
fluid dynamical equations to calculate the trajectory of a water column
of height h at the ocean surface. Ekman showed that the trajectory of
the column consists of a steady flow at right (left, in the southern
hemisphere) angle to the wind direction compounded by linear oscilla-
tions at the (constant) Coriolis frequency.

The addition of the latitudinal gradient of the Coriolis frequency,
known as the b-effect, introduces nonlinear terms in the equations
and introduces a latitude where the Coriolis frequency vanishes—the
equator. The changes in the water column trajectory caused by the
b-effect were examined in Ref. 2 who showed that a (slow) drift paral-
lel to the wind direction is added to the f-plane trajectory when the b
term is added to the governing equations. This drift of water columns
parallel to the wind direction was never shown to prevail in spherical
coordinates.

Though rarely employed, the Lagrangian form of fluid dynamics
was successfully used in geophysical fluid dynamics (GFD) to elucidate
subtle aspects in some particular problems, such as the westward drift
of inertial flows on the b-plane3,4 and on the sphere.5,6 In this context,
the extension of Ekman’s f-plane theory to spherical coordinates fol-
lows the procedure employed in previous extensions of the inertial
dynamics to spherical coordinates.

Prior studies of the wind-driven ocean dynamics in spherical
coordinates were primarily numerical7 or employed nonlinear
Eulerian formulation to establish a unified view of the equatorial and
mid-latitude dynamics.8 In contrast, in the present study, we present a
dynamical system view of the wind-driven circulation in spherical
coordinates. As in all previous studies on the subject of wind-driven
transport in the upper ocean, the analysis in the present spherical
setup is restricted to zonal wind-stress forcing (of different forms) as
in the climatological winds on Earth. The analysis of the less frequent,
meridional, stresses is left to future works. The title of this paper
deserves an explanation. Though spherical coordinates are used, the
centrifugal acceleration in the momentum equations is ignored. This is
justified because Earth’s surface is closer to an oblate spheroid than to
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a prefect sphere (which is the origin of the “equatorial bulge”). The
slight deviation from a perfect sphere induces a poleward directed tan-
gential component of the gravitational acceleration that balances the
outward (relative to Earth’s axis of rotation) directed centrifugal accel-
eration. The term “rotating spherical Earth” is used here to denote a
rotating sphere, in which the centrifugal acceleration is neglected along
with the slight eccentricity of the oblate spheroid.

Our theory focuses on the case of weak zonal stress, which intro-
duces a small parameter in the problem that allows the use of a pertur-
bative analysis. Using the Wentzel–Kramers–Brillouin (WKB) method
for oscillatory systems with slow parameters (see, for example, Ref. 9),
we show that in spherical coordinates, a water column forced by zonal
stress undergoes a slow monotonic time evolution with superimposed
small amplitude, large frequency, modulations. The resulting water
column trajectories vary qualitatively from those forced with the same
wind forcing on the b-plane.

This paper is organized as follows. We develop the model nondi-
mensional equations including the use of the angular momentum as a
state variable in Sec. II. In Sec. III, we formulate the equations describ-
ing the temporal evolution of the potential of the meridional dynam-
ics, including the evolution of the angular momentum. The dynamics
is separated into the temporal changes in the slow (mean) variables
and the fast oscillations about them. This is followed in Sec. IV by a
WKB analysis and solution of the combined angular-momentum and
meridional dynamics system. The longitudinal dynamics is formu-
lated, and solution for the averaged motion is developed in Sec. V. In
Sec. VI, we solve the problem for additional meridional structures of
the overlying wind-stress forcing, including the case of a wind stress
that changes sign at a certain latitude. The paper is concluded with a
summary and discussion in Sec. VII.

II. MODEL EQUATIONS

The horizontal, vertically averaged, Lagrangian dynamics of a
water column at the ocean surface forced by the overlying zonal wind
stress is determined by the rotating shallow water equations (RSWE),
in which a suitable forcing term is added to the zonal momentum
equation.7,10,11 Denoting the latitude-dependent zonal wind stress by
sx and the surface layer thickness by h, the zonal wind forcing is given
by sx

qh, where q is the water density. The natural scales of the RSWE in
spherical coordinates are time on 2X (where X is the frequency of
Earth’s rotation), velocity on 2ReX (where Re is Earth’s mean radius—
the obvious length scale), and acceleration on ð2XÞ2Re. These scales
yield the following nondimensional system:

du
dt
¼ v sinu 1þ u

cosu

� �
þ C; (1)

dv
dt
¼ �u sinu 1þ u

cosu

� �
; (2)

dk
dt
¼ u

cosu
; (3)

du
dt
¼ v; (4)

where u and v are the vertically averaged velocity components in the
zonal (angle—k) and meridional (angle—u) directions, respectively,
and CðuÞ ¼ sxðuÞ

hqð2XÞ2Re
is the nondimensional zonal wind forcing. For

realistic values of sx (0.1 Pa) and h (50m), C � 1:5� 10�5, so the the-
ory developed here assumes C� 1.

Equations (1) and (4) imply that the rate of change of the nondi-
mensional total angular momentum (defined as D ¼ 1

2 cos
2u

þu cosu) is given by

dD
dt
¼ C cosu: (5)

Since the wind stress appears only in this equation where it determines
the rate of temporal change in D, in the numerical examples here we
use larger values of wind stress [i.e., Oð10�3Þ] to expedite the time of
integration. The inverse of the D(u) relation, u ¼ D

cosu� 1
2 cosu, can

be employed to eliminate u from the system so it transforms to

dv
dt
¼ 1

2
sin ð2uÞ 1

4
� D2

cos4u

� �
; (6)

dk
dt
¼ D

cos2u
� 1
2
; (7)

du
dt
¼ v: (8)

The substitution ofD for u enables a novel physical interpretation
of the u-dynamics, which greatly simplifies the analysis in the rest of
this work.

III. THE EVOLUTION OF u

We proceed with the examination of the u (i.e., meridional) part
of the dynamics described by Eqs. (5), (6), and (8), rewritten as

d2u
dt2
¼ 1

2
sin ð2uÞ 1

4
� D2

cos4u

� �
; (9)

dD
dt
¼ CðuÞ cosu; (10)

where the zonal wind stress is a function of u. The initial conditions to
be employed are uð0Þ ¼ u0 (with an arbitrary �p=2 � u0 � p=2),
vð0Þ ¼ v0 is small, and Dð0Þ ¼ D0 ¼ 1

2 cos
2u0 þuð0Þ cosu0, where

uð0Þ is small.
The analysis in the rest of the paper focuses on the case of suffi-

ciently small zonal wind forcing C ¼ GFðuÞ, where G� 1 and FðuÞ
is O(1). The smallness of G suggests a perturbative analysis. For zeroth
order, i.e., for G¼ 0, Eq. (10) implies that the angular momentum, D,
remains constant in time and the dynamics of u is described by

d2u
dt2
¼ � @U

@u
; (11)

where

U ¼ 1
2

D
cosu

� 1
2
cosu

� �2
: (12)

In other words, the evolution of u can be interpreted as the motion of
a quasiparticle in the potential well U. This motion is determined by
the form of the potential well and the initial conditions. The extrema
of this potential are given by the roots of

D
cosu

� 1
2
cosu

� �
D

cos2u
þ 1
2

� �
sinu ¼ 0: (13)
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Thus, for 0 < D < 1=2, two minima exist, which are located at
cosum ¼ 6

ffiffiffiffiffiffi
2D
p

(the solution with cosum ¼ �
ffiffiffiffiffiffi
2D
p

is not accept-
able in our model where �p=2 � u � p=2), and the local maximum
is located at um ¼ 0. In contrast, for D> 1=2, the single extremum
is a global minimum located at u ¼ 0. We illustrate this potential in
Fig. 1 for ten values of D ¼ 0:1i (where i ¼ 1; 2;…; 10). The figure
clearly demonstrates the transition from two minima for D< 1=2
(blue lines) to a single minimum for D> 1=2 (red lines).

Turning to the initial conditions, we note that uð0Þ ¼ u0 and
small u(0) imply that D ¼ 1

2 cos
2u0 þ uð0Þ cosu0 � 1

2 cos
2u0.

Therefore, u0 is located near the local minimum of U, as described
above. Consequently, to lowest order in the small parameter G, the
solution for u is made up of small oscillations du around the mini-
mum of the potential, um, i.e., u ¼ um þ du. This inertial dynamics
was studied in depth in spherical coordinates by Refs. 12–14, and the
highly chaotic nature of slight deviations from this idealized case is
highlighted in Refs. 6 and 15.

To first order in G� 1, we seek solutions of the (u;D) system in
the form D ¼ DmðtÞ þ dD and u ¼ umðtÞ þ du where dD and du
are small. The definition of umðtÞ is the location of the minimum of
the potential U, in which D is replaced by DmðtÞ, i.e.,
cos2umðtÞ ¼ 2DmðtÞ, whileDmðtÞ evolves according to

dDm

dt
¼ GFðumÞ cosum: (14)

With these definitions, this equation implies that DmðtÞ, and hence
umðtÞ, varies slowly with time (on 1=G� 1 timescale). Furthermore,
by expanding Eqs. (9) and (10) to first order in dD and du and
neglecting the OðG2Þ term d2um=dt

2 in Eq. (9), we get

d2du
dt2
¼ �x2

mdu� QdD; (15)

ddD
dt
¼ GPðumÞdu; (16)

where Q ¼ 2Dm sinum= cos
3um; P ¼ @½FðumÞ cosum�=@um, and

for um > 0 (i.e., Dm < 1=2),

x2
m ¼ 1� 2Dm ¼ sin2um: (17)

[Note: The case um ¼ 0, where the potential has a single minimum
(see Fig. 1), is discussed below.] Equations (14)–(16) comprise a com-
plete set describing the evolution of u and D to first order in our per-
turbation scheme. The qualitative change in the potential when um
reaches the equator, which is clearly demonstrated in Fig. 1, mandates
that the off-equatorial dynamics (i.e., short times) be analyzed sepa-
rately from the equatorial (longtime) dynamics. We conclude this sec-
tion by discussing the slow time evolution of Dm for the simple case of
constant C ¼ G and postpone the analyses of the evolution of dD and
du in Sec. IV.

In the simple, C ¼ G, case and when um > 0, the temporal
changes in D can be found by solving Eq. (14), i.e., dDm=dt
¼ G

ffiffiffiffiffiffiffiffiffi
2Dm
p

, which yields solution

DmðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Dmð0Þ

p
þ Gtffiffiffi

2
p

� �2

: (18)

Thus, for G> 0, the value of Dm increases initially from its initial value
of Dmð0Þ � 1

2 cos
2u0 <

1
2 until it reaches the critical value of Dcr ¼ 1

2
near the equator (i.e., u ¼ 0). Substituting 1

2 on the LHS of Eq. (18)
yields an expression for the (critical) time for the minimum um (and
the column) to reach the equator

tcr ¼
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dmð0Þ

p
G

¼ 1� cosumð0Þ
G

: (19)

For t < tcr ; u evolves around the minimum umðtÞ > 0 of the poten-
tial. In contrast, for t > tcr; DmðtÞ > 1=2 and uðtÞ oscillates about
the equator (um ¼ 0) so

x2
m ¼ D2

m �
1
4
; (20)

Dm ¼
1
2
þ Gðt � tcrÞ: (21)

We illustrate this evolution in Fig. 2. The left panel in Fig. 2 shows the
temporal evolution of uðtÞ obtained numerically for C ¼ 0:005 and
initial conditions uð0Þ ¼ p=4; uð0Þ ¼ 0; vð0Þ ¼ 0:02 and kð0Þ ¼ 0,
and the right panel presents the geographical, ðk;uÞ, trajectory until k
reaches the value of 0.1 (at time t¼ 60.13, a tad above tcr¼ 58.6).
These results show that as predicted above, the character of evolution
changes qualitatively when time passes the critical time tcr¼ 58.6.
Figure 2 also demonstrates that the trajectory oscillates around um,
while the location of this minimum moves (toward the equator when
C > 0) in response to the time variation of D.

Many of the flow characteristics under non-uniform CðuÞ pro-
files are also encountered in the highly idealized case of constant C.
The evolution of DmðtÞ in these cases is determined similarly by solv-
ing Eq. (14), where cosum ¼

ffiffiffiffiffiffiffiffiffi
2Dm
p

for t < tcr and um ¼ 0 for
t > tcr . Examples of nonuniform CðuÞ are discussed in detail in
Sec. VI.

IV. WKB ANALYSIS OF THE ðdD; duÞ SYSTEM

The dynamics of oscillations of du and dD around the slowly
varying mean variables um and Dm is described by the linear system
(15) and (16) with known and slowly varying coefficients ðQ; P; x2

mÞ,
as described in Sec. III. To solve these equations, we employ the WKB
method, seeking the eikonal ansatz

FIG. 1. Snapshots of the potential well Uðu;DÞ for ten values of D ¼ 0:1iði
¼ 1; 2;…; 10Þ. The potential has two minima for D< 0.5 (blue lines) and a single
minimum at u ¼ 0 for D> 0.5 (red lines). The black line corresponds to the critical
transition value of Dcr¼ 0.5.
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du ¼ Re aei
Ð

xdt

� �
; dD ¼ Re bei

Ð
xdt

� �
; (22)

where x is O(1), and the small amplitudes a and b and x vary slowly
with time. For this form of solution, Eqs. (15) and (16) yield

i
d a2xð Þ

dt
¼ ðx2 � x2

mÞa2 � Qab; (23)

ixbþ db
dt
¼ GPa; (24)

where we have neglected the OðG2Þ term ad2a=dt2 in Eq. (23). Next,
we neglect the relatively small term db/dt in Eq. (24) and combine the
result with Eq. (23) into a single equation,

i
d a2xð Þ

dt
¼ x2 � x2

m � i
GQP
x

� �
a2: (25)

Since in our WKB representation, Eq. (22), the single function du is
defined by two functions a and x, we are free to choose one of these
functions at our will. We use this freedom to define x by

x2 � x2
m � i

GQP
x
¼ 0; (26)

which yields the solution

x � xm þ �; (27)

where the small imaginary part of the frequency is

� ¼ �i GQP
2x2

m
: (28)

In addition, for the solution described by Eq. (26), Eq. (25) yields the
usual adiabatic invariant of a linear oscillator with slowly varying
frequency,

I ¼ a2xm � const: (29)

Thus, the full solutions for du and dD are

du ¼ A cos
ð

xmdt; dD ¼ GP
xm

A sin
ð

xmdt; (30)

where A is the slowly varying amplitude given by

A ¼
ffiffiffiffiffiffiffi
I

xm

r
e
G
Ð

QP
2x2

m
dt
: (31)

As an example, we apply this theory to the simplest case of uniform
C ¼ G. In this case, for t < tcr ,

Q ¼ 2Dm sinum

cos3um
¼ tanum; P ¼ �sinum ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2Dm
p

;

and for t > tcr; Q ¼ P ¼ 0. Thus, the power of the exponent in Eq.
(31) is either negative or vanishes. In the examples of Figs. 2 and 3, we
can see the slow evolution of um (red lines), the oscillation du as pre-
dicted in Eq. (30), as well as the adiabatic variation of the oscillations’
amplitude (the green lines) that decreases in accordance with the
increase in frequency anticipated by Eqs. (20) and (21). Note that the
adiabaticity assumption of the theory breaks down when the frequency
of oscillation approaches zero, i.e., near t ¼ tcr . Indeed, we observe the
nonadiabatic jump in the amplitude at this critical time. We will ana-
lyze other cases of nonuniform C in Sec. VI, but first we discuss, in
Sec. V, the zonal drift.

FIG. 3. Summary of numerical results for C ¼ G cosu with G¼ 0.005 and the
same initial conditions as in Fig. 2. Left panel: the temporal evolution of uðtÞ; the
red line shows the evolution of /m. The green line shows the predicted time varia-
tion of the amplitude of oscillations of u from the action conservation formula [see
Eq. (29) with I¼ I¼ 0.0049]. Right panel: geographical (k, u, trajectory for
k � 0:1, i.e., during the time when the trajectory is away from the equator). For the
values of C and u0 used here, Eq. (38) yields a critical time of tcr¼ 69.3. Each of
the panels contains two blue curves, one obtained from numerical integration of
system 1–4 and the other from the approximate analytic solutions, in which D is
replaced by Dm.

FIG. 2. Results of constant C case with C ¼ 0:005; uð0Þ ¼ p=4; uð0Þ ¼ 0;
vð0Þ ¼ 0:02, and kð0Þ ¼ 0. Left panel: the temporal evolution of uðtÞ (blue
curves), and the red line shows the evolution of /m. The green line shows the pre-
dicted time variation of the amplitude of oscillations of u from the action conserva-
tion formula [see Eq. (29) with I¼ 0.01]; right panel: the geographical, (k;u)
trajectory (blue curves). The trajectories on the right panel terminate when k
reaches the value of 0.1 at time t¼ 60.13, right above tcr¼ 58.6, the critical time
for these parameters according to Eq. (19). Each panel includes two blue curves,
one derived from exact numerical simulations and the other using the approximate
formula, in which D is replaced by Dm. The numerical and analytic curves can
barely be distinguished from one another.
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V. THE EVOLUTION OF k (ZONAL DRIFT)

The zonal part of the dynamics is determined by Eq. (7),

dk
dt
¼ D

cos2u
� 1
2
: (32)

As in the meridional analysis of Sec. IV, we let u ¼ um þ du and
D ¼ Dm þ dD and expand the RHS in powers of du and dD keeping
only terms of second order or lower in the amplitudes a and b. For the
case t < tcr , the result is

dk
dt
¼ c1duþ c2dDþ c3du2 þ c4dudD; (33)

where

c1 ¼
1

2Dm
� 1

� �1=2

; c2 ¼
1

2Dm
;

c3 ¼ �1þ
3

4Dm
; c4 ¼

1
Dm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2Dm
� 1

r
:

At this point, Eq. (33) has to be averaged over an oscillation period to
obtain an expression for the averaged zonal drift velocity. The averag-
ing requires the inclusion of the Oða2Þ shift, ZA2=2, where

Z ¼ � 3
4x2

m
ð 1
2Dm
� 1Þ1=2 in the solution for du (see Ref. 16). This inclu-

sion yields
	
dk
dt



¼ c3 þ c1Zð Þ

A2

2
¼ �A2

2
: (34)

Thus, the averaged zonal drift velocity is governed by the OðA2Þ non-
linearity in the problem. Finally, a similar expansion around Dm and
um ¼ 0 for t > tcr yields

dk
dt
¼ � 1

2
þ Dm þ dDþ Dmdu2; (35)

instead of Eq. (33). Thus, averaging over one period of oscillations
yields

	
dk
dt



¼ � 1

2
þ Dm þ Dm

A2

2
: (36)

Therefore, for t > tcr , the averaged zonal drift velocity is mostly gov-
erned by the monotonic increase in the angular momentum DmðtÞ
beyond its critical value 1/2 predicted by Eq. (18).

VI. ADDITIONAL FORMS OF WIND-STRESS FORCING

The analysis of the constant C case presented above is extended
now to several cases of variable C using the same procedure.

A. CðuÞ 6¼ 0 at all u

Similar expressions can be derived for C ¼ G cosu, in which
case dDm=dt � G cos2um ¼ 2GDm so the temporal evolution of D is
given by

Dm ¼ D0e
2Gt : (37)

Here, only G> 0 is relevant since for G< 0, the value of D decreases
with time so the column moves toward the pole, i.e., away from the

equator. This equation yields the critical time for reaching the equator
(D¼ 1/2) in this, G> 0, case,

tcr ¼ �
ln ð cos2u0Þ

2G
: (38)

As an illustration, Fig. 3 shows the C ¼ G cosu case with the same G
and initial conditions as in Fig. 2. Note the similar qualitative features
of the dynamics in the two forms of C. The obvious difference is
the value of tcr that equals 59 when C ¼ G (Fig. 2) and 69 when
C ¼ G cosu (Fig. 3). The higher value of tcr in the latter case probably
results from the lower mean strength of the wind forcing along the
equatorward directed trajectory that implies lower speeds. Similar
results, but with a different value of tcr, were also obtained for
C ¼ G cos2u (results not shown).

B. CðuÞ changes sign

In this subsection, we analyze a particular case that quantifies the
dynamical consequences of the existence of a latitude where the wind
stress vanishes. The CðuÞ structure we examine is

CðuÞ ¼ Gðcosu� cos ûÞ; (39)

for which C vanishes at latitude û.
The approximate analytic solution ofDmðtÞ in this case is obtained

by solving dDm=dt ¼ G cosumðcosum � cos ûÞ. Substituting
cosum ¼

ffiffiffiffiffiffiffiffiffi
2Dm
p

and integrating the resulting equation yields

j cosum � cos ûj ¼ j cosu0 � cos ûjeGt : (40)

This equation shows that for G< 0, /m converges to û at large
times for any initial /0, while for G> 0, the trajectory always diverges
away from û, i.e., for /0 > /̂; /m moves toward the pole, while for
/0 < /̂; /m moves toward the equator, reaching it at the critical time,
tcr, of

tcr ¼
1
G
ln

cosu0 � cos û
1� cos û

(41)

and staying there at all t > tcr . This equatorial approaching case is
similar to the scenario encountered in previous examples where C
does not pass through 0. We illustrate all these possibilities in Figs. 4
and 5, which show the evolution of / and k in the numerical simula-
tion for G ¼ �0:005 and G¼ 0.005, respectively. The initial condi-
tions in both figures are uð0Þ ¼ 0; vð0Þ ¼ 0:02; kð0Þ ¼ 0, and the
blue and red curves in the figures show the cases uð0Þ ¼ 1:2û and
uð0Þ ¼ 0:8û, respectively.

The upper panel in Fig. 4 (G< 0) illustrates the convergence of u
to û and the onset of instability as the amplitude of oscillations around
the slowly varying um increases. The lower panel in this figure illus-
trates the increase in the zonal drift with the increase in oscillations’
amplitude [see Eq. (34)]. All these results are predicted by the analysis
presented above. The evolution shown in Fig. 5 (G > 0) confirms the
expected divergence of u from û, when the wind forcing is directed
eastward. The red lines in the two panels of this figure (/0 < û) are
similar to those in the example of Fig. 3, as described by the analysis.
For instance, one observes the change in the character of evolution at
tcr¼ 230.
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VII. SUMMARY AND DISCUSSION

The theory developed in this work is constructed based on the
substitution of the angular momentum, D, for the zonal velocity, u, as
a dependent variable of the system. This substitution yields a dynami-
cal system view of the wind driven ocean flow, in which the trajectory
of a water column is described by the motion of a quasiparticle in a
time-dependent potential well. The potential’s minima, um, are deter-
mined by the corresponding value of the angular momentum, Dm,
both of which vary slowly with time since the nondimensional ampli-
tude of the wind forcing is Oð10�5Þ. The rate of temporal variation of
D and um by the wind stress is several orders of magnitude slower
than the (nondimensional) frequency of inertial oscillations around
um that equals sinum, which is O(1) except for the immediate vicinity
of the equator. The application of the adiabaticity theorem to the wind
driven dynamical system ensures that u remains near um (including
the global minimum, um ¼ 0, at large times) at all times provided
uðt ¼ 0Þ is near um. The solution of the simple evolution equation
dDm=dt ¼ C cosum for the prescribed CðumÞ forcing then completes
the elements required to close the theory.

The new theory yields explicit expressions for the time it takes a
column that originates at an arbitrary latitude uð0Þ to reach the equa-
tor. In addition, it quantifies the rate of zonal drift, which has never
been quantified before. Though the same equations were also simu-
lated in Ref. 7, no analysis was attempted in that work (that included
friction) and this is corrected in the present work. In particular, the
present work relies on the small order of magnitude of the

nondimensional wind stress that is over four order-of-magnitude
smaller than the O(1) frequency of inertial oscillations.

The forcing in the present theory is a latitude dependent zonal
stress, while its time and longitude dependence are neglected. The
theory also ignores the dynamical consequences of meridional
stresses. With the timescale of 1=2X ¼ 6=p hours, one week corre-
sponds to less than 90 nondimensional time units in the present the-
ory. In contrast, data recorded by buoys in various parts of the open
ocean reveal mean (over several years) fairly large daily variations of
wind speed and direction.17,18 Thus, at the long times [Oð102–103Þ]
examined here, the temporal and zonal variations of the zonal wind
speed, as well as the meridional wind, should be incorporated in the
theory prior to its application to any particular observation. Such a
qualitative agreement with observations of three drifter trajectories
in the Pacific Ocean is described in Ref. 7 where the Lagrangian
model includes a zonal wind stress that varies with both longitude
and latitude. Clearly, the present theory is only the first step in the
challenging attempt to develop an analytic model of wind-driven
transport in the ocean.

The theory and numerical results of Subsection VIB highlight
the importance of the existence of latitude û where the wind stress
changes sign. A consideration based on the classical steady f-plane
results1 suggests that the wind-driven flow should diverge (converge)
when C changes from positive to negative (from negative to positive)
when it crosses û. However, as shown in Subsection VIB, the spheri-
cal counterpart of the theory yields an instability at that latitude so the
amplitude of the (inertial) oscillations increases with time. This result

FIG. 5. The results of numerical simulation for C passing zero at û ¼ p=4 for the
same parameters and initial conditions as in Fig. 4, but with G¼ 0.005. The blue
and red lines again show the cases uð0Þ ¼ 1:2û and uð0Þ ¼ 0:8û, respectively.
Upper panel: the evolution of uðtÞ. Both blue and red trajectories diverge from û
at later times. Lower panel: the evolution of k. The evolution of the red line is similar
to that in Fig. 3 as u reaches the equator and develops oscillations after the critical
time, while k increases rapidly after the critical time due to the monotonic increase
in Dm for t > tcr .

FIG. 4. The results of numerical simulation for C passing zero at û ¼ p=4 with
G ¼ �0:005; uð0Þ ¼ 0; vð0Þ ¼ 0:02; kð0Þ ¼ 0. The blue and red lines show
the cases uð0Þ ¼ 1:2û and uð0Þ ¼ 0:8û, respectively. Upper panel: the tempo-
ral evolution of uðtÞ. The blue and red trajectories merge at û at later times, and
the growing amplitude instability develops. Lower panel: the evolution of k. The
zonal drift increases with the increase in the amplitude of u oscillations as pre-
dicted by the theory.
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has observational consequences that can (and should) be verified in
future dedicated field campaigns.

Though the wind stress forces the moving column at all t> 0, the
(kinetic) energy of the column only oscillates when the Coriolis force
does not vanish, i.e., as long as the column remains away from the
equator. Once the column reaches the equator (which occurs at t ¼ tcr
for G> 0), the non-rotating dynamics applies, i.e., the column’s zonal
velocity, u, increases linearly with time so the longitude coordinate, k,
increases quadratically with time. These conclusions are evident in the
numerical results shown by the red curve in the lower panel of Fig. 5.

The results derived in the present spherical theory for uniform C
can be compared with those derived recently on the b-plane.2 As evi-
dent from Eqs. (20) and (21), the fundamental difference between the
two theories originates from the different temporal evolution of D,
which is linear with C on the b-plane, while on the sphere, it is related
to (and determines) um. This mutual dependence of Dm and um on
the sphere results in the highly nontrivial dynamics (including linear
instability) on the sphere. According to Eq. (34), on a sphere the zonal
drift is directed westward as in inertial oscillations5 since OðG2Þ terms
(i.e., the direct effect of the wind stress) were neglected, which agrees
with the results derived on the b-plane.

The time-dependent potential paradigm employed here by
substituting the angular momentum for the zonal velocity can also be
employed in a future theory that focuses on the effect of non-zonal, u-
dependent, wind stress. This setup is more challenging than the one
employed here since a forcing term should be added to the RHS of the
meridional momentum equation, Eq. (2) [and hence to Eq. (6) as
well], which greatly complicates the expression of the potential in
Eq. (12).
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