
PHYSICAL REVIEW RESEARCH 6, 023054 (2024)

Spacetime quasicrystals in Bose-Einstein condensates
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An autoresonant approach for exciting spacetime quasicrystals in Bose-Einstein condensates is proposed by
employing two-component chirped frequency parametric driving or modulation of the interaction strength within
Gross-Pitaevskii equation. A weakly nonlinear theory of the process is developed using Whitham’s averaged
variational principle yielding reduction to a two-degrees-of-freedom dynamical system in action-angle variables.
Additionally, the theory also delineates permissible driving parameters and establishes thresholds on the driving
amplitudes required for autoresonant excitation.
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I. INTRODUCTION

Quasicrystals in materials are structures ordered in space,
but not exactly periodic [1–3]. By analogy, time or spacetime
quasicrystals are ordered systems in spacetime, but not ex-
actly periodic in space and/or time. By now, these systems
have been studied in periodically driven magnon condensates
[4,5] and ultracold atoms [6,7], where temporal symmetry
was destroyed due to subharmonic response. In this study, we
explore a different path to spacetime quasicrystals. It is well
known that a number of so-called integrable nonlinear partial
differential equations (PDE’s) have multiphase solutions [8]
of the form f (θ1, θ2, . . . , θN ; λ1, λ2, . . . , λN ), where N phase
variables θi = kix − ωit have wave numbers ki, which are
multiples of some k0 (the solution is spatially periodic), λi

are constants, while frequencies ωi are functions of ki and
λi. By choosing some set of λi, one can make some or all
of these frequencies incommensurate, forming an ideal space-
time quasicrystalline structure, which is periodic in space and
aperiodic in time, still having a complex long-range time
ordering. Examples of such PDEs are the Korteweg-de-Vries
(KdV), sine-Gordon (SG), and nonlinear Schrödinger (NLS)
equations, which find multiple application in physics [8].
However, why are these ideal spacetime quasicrystals not
yet realized in experiments? The answer lies in complexity,
as their analysis typically requires advanced mathematical
methods, such as the inverse scattering transform (IST) [9],
while experimental realization depends on forming compli-
cated spacetime dependent initial conditions, which is an
unrealistic task.

In this work, we suggest a different approach to real-
izing spacetime quasicrystals based on autoresonance [10].
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Autoresonance is an important nonlinear phenomenon, where
a system phase locks to a chirped frequency driving perturba-
tion and remains phase locked continuously for an extended
period of time, despite variations of the driving frequency. As
the driving frequency varies in time, so does the frequency of
the excited solution, leading to formation of a stable highly
nonlinear state. We will focus on autoresonant formation and
control of two-phase excitations of the Gross-Pitaevskii (GP)
equation describing Bose-Einstein condensates (BECs). The
excitation proceeds from trivial initial conditions and uses
a combination of two independent small amplitude wave-
like driving perturbations. In contrast to existing applications
using large amplitude pulsed drives or optical crystalline
structures for containing BEC’s, we can remove the driving
perturbation after some time, remaining with a free, slightly
perturbed, but stable nonlinear two-phase GP solution. These
excited quasicrystalline structures are controlled by two in-
dependently chirped driving frequencies, thus exploring a
continuous range of parameters λi, i.e., a continuous set
of spacetime quasicrystals. The autoresonance approach has
been used previously in excitation of multiphase waves in
different applications with the theory based on the IST method
[11–13]. Here we will apply a simpler analysis of the process
of capture into a double autoresonance in the system using
two chirped frequency drives, similar to recent studies on the
formation of two-phase waves in plasmas [14,15].

Our presentation will be as follows. In the next sec-
tion, we illustrate the formation of spacetime quasicrystals
in BECs through numerical simulations. Section III presents
the quasilinear theory of formation of GP quasicrystals using
Whitham’s averaged variational approach [16]. Section IV
addresses the problem of the allowed parameter space for
autoresonant excitations and with the associated threshold
phenomenon on the driving amplitudes. Finally, Sec. V
presents our conclusions.

II. QUASICRYSTALS IN A BEC VIA SIMULATIONS

The basic model for studying nonlinear dynamics of BECs
is GP equation [17], written in dimensionless form

iϕt + ϕxx − U(x, t )ϕ + g(x, t )|ϕ|2ϕ = 0. (1)
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Here, time is measured in units of the inverse transverse
trapping frequency ω−1

⊥ , while space and density are measure
in units of l⊥ = [h̄/(2mω⊥)]1/2 and mω⊥/2π h̄|a0|, respec-
tively, where m represents the atomic mass. In Eq. (1), g =
2a(x, t )/|a0| is the normalized, spacetime modulated interac-
tion strength, where a represents the s-wave scattering length
of interacting particles in the BEC. For condensates with
repulsive interactions of particles a < 0 and for attractive
interactions a > 0. U(x, t ) denotes the longitudinal potential.
We will assume that our system is perturbed by a combination
of independent, small amplitude waves

f = ε1 cos[k1x − ψ1(t )] − ε2 cos[k2x − ψ2(t )], (2)

where ψi(t ) = ∫
ωdi(t )dt and ωdi(t ) = ω0i − αit are slowly

chirped driving frequencies, with αi � ω2
di. We consider

two driving options. The first is a parametric-type driving
U(x, t ) = f , | f | � 1, while the interaction strength is not
perturbed, i.e., g = 2σ and σ = ±1. The second driving sce-
nario is a modulation of the interaction strength by external
magnetic field,for example, near Feshbach resonance [18]. In
this case, we assume U = 0,

g(x, t ) = 2σ (1 + f ), (3)

and again | f | � 1. For both driving options we can rewrite
Eq. (1) as a weakly perturbed NLS equation

iϕt + ϕxx + 2σ |ϕ|2ϕ = Fϕ, (4)

where F is either − f or −2σ |ϕ|2 f . In computer simulations
below, we will use the parametric driving, assume periodic
boundary conditions ϕ(x, t ) = ϕ(x + l, t ), thus k1,2 are mul-
tiples of k0 = 2π/l . Nevertheless, in Secs. III and IV, we
will discuss both driving options. It should be mentioned that
periodic boundary conditions are usually assumed in numer-
ical simulations of an infinite domain for a spatially periodic
driving as well as in one-dimensional (1D) modeling along
the toruslike BEC (ring-trap geometry) [19,20]. A special
case when the driving (3) is a standing wave, i.e., ε1 = ε2,
ψ1 = ψ2, and k1 = −k2 was studied recently [21], so the
present investigation is a generalization to two independent
driving components.

In the periodic case, the unperturbed ground state of a BEC
is a spatially homogeneous solution of Eq. (4)

ϕ(x, t ) = U0e2iσU 2
0 t (5)

with constant amplitude |ϕ| = U0. The frequency of a pertur-
bation of the homogeneous state is [22]

ω0 = k
√

k2 − 4σU 2
0 . (6)

Condensates with repulsive interaction of particles, when
σ = −1, are stable. In this case, frequency (6) is known as
the Bogoliubov frequency. Dark solitons are typical structures
in these condensates. In the opposite case (σ = 1), bright
solitons exists. In this case ω0 can be imaginary, leading
to modulational instability. This instability is well known in
plasma physics and nonlinear optics [23,24]. If a condensate
has a length l , then the wave number of the main mode
is k0 = 2π/l and the stability condition restricts the density
of the condensate to U 2

0 < π2/l2. If the condensate has a
cigarlike shape with the transverse dimension l⊥, then, in
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FIG. 1. Maximum of |ϕ|2 over x versus time. The top line cor-
responds to nonzero driving amplitudes ε1,2. The middle and the
bottom lines describe the cases when either ε1 = 0 or ε2 = 0, respec-
tively. In all cases the drives are switched off at t = 250.

physical variables, the stability condition can be written as a
restriction on the number of particles, n < (l⊥/l )(l⊥/|a0|). We
proceed to numerical simulations of autoresonant formation
of a spacetime GP quasicrystal by focusing on the case of
σ = −1 and using the ground state (5) with U0 = 1 as ini-
tial condition. The driving parameters are ε1,2 = 0.01, k1,2 =
1,−3, the driving frequencies are chirped through ω0i given
by Eq. (6) for each ki, and chirp rates α1,2 = 0.0012, 0.0024.
The simulation begins at t0 = −300 and both components of
the drive pass the corresponding Bogoliubov resonances at
t = 0. Furthermore, we switch off the drives at t = ts = 250.
The corresponding time dependence of the maximum (over
x) |ϕ|2 is shown in Fig. 1 by the upper blue line. One can
observe that the excitation amplitude increases continuously
until the drive is turned off, and the maximal amplitude re-
mains nearly stationary afterwards. We also show the excited
quasicrystalline structure in the time interval 380 < t < 400
(after the driving is switched off) using a color map in the
top panel of Fig. 2. Furthermore, the ratio of the two driving
frequencies at t = ts in this example is approximately 1 : 5.
The second panel from the top in Fig. 2 shows |ϕ|2 versus time
in the same example at x = 0. One can see the short and long
driving periods in the panel illustrating 1 : 5 quasiperiodicity
and the two-phase locking with the drives.

To further illustrate the characteristics of autoresonant ex-
citation in the system, we show, by the lower two lines in
Fig. 1, the cases when only one of the two drives is present
in the same example and illustrate the color maps of the
associated excitations in the lowest two panels in Fig. 2. A
single-phase parametric autoresonant excitation in this system
was analyzed in Ref. [25]. In this case, one forms a growing
amplitude nonlinear wave traveling with the phase velocity
ωdi/ki of the corresponding drive. The directions of these
propagation velocities are clearly seen in Fig. 2. We observe
the same two characteristic directions in the top panel in
Fig. 2 corresponding to the two-phase autoresonant excitation,
illustrating again the continuing phase locking with the two
driving components.

One of the most important issues associated with the au-
toresonance is the threshold on the driving amplitudes for the
continuing phase locking in the system. Figures 1 and 2 show
that the two-phase autoresonant excitation (where both drives
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FIG. 2. Two- and one-phase autoresonant excitations in simula-
tions. The top panel shows the color map of a two-phase solution
|ϕ|2 in spacetime for driving parameters ε1,2 = 0.01, k1,2 = 1, −3,
chirp rates α1,2 = 0.0012, 0.0024. The second panel from the top
shows |ϕ|2 versus time at x = 0, illustrating 1:5 quasiperiodicity of
the solution. The lowest two panels show color maps of autoresonant
single-phase excitations |ϕ|2 for the same parameters and initial
conditions as in the top panel, but when only one of the diving
components is applied.

are present) is very different from that with a single drive. This
means that the driving amplitudes must be sufficiently large
to obtain a two-phase quasicrystalline structure, leading to the
problem of thresholds for the transition to autoresonance. We
illustrate this sudden transition in Fig. 3, showing the maximal
|ϕ|2 versus time in three cases with the same parameters as
in Fig. 1, but ε2 = 0.006, 0.005, and 0.004, while keeping
ε1 = 0.01. One observes a sharp transition when passing from
ε2 = 0.005–0.004. The color maps of |ϕ|2 in spacetime in
these three cases are shown in Fig. 4. One can see that the
quasicrystalline structure in the top two panels in the figure is
similar to that shown in the top panel in Fig. 2, but the
structure changes significantly as one passes to ε2 = 0.004.
The lowest panel in Fig. 4 has smaller amplitude and is closer
to the lowest panel in Fig. 2, corresponding to the single-
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FIG. 3. The passage through threshold. The figure shows the
color maps of max(|ϕ|2) over x versus time for three values of
ε2 = 0.006, 0.005, 0.004. In all cases ε1 = 0.01, α1 = 0.0012 and
α2 = 0.0024.

FIG. 4. The passage through threshold. The colormaps of |ϕ|2
over x in spacetime in three examples shown in Fig. 3.

phase excitation. We interpret this transition as the loss of the
phase locking when ε2 is below some threshold value between
ε2 = 0.004 and 0.005. We discuss this threshold phenomenon
in Sec. IV and show that the transition is indeed very sharp,
yielding BEC quasicrystals when driving amplitudes are just
10% above some critical values (see an example in Fig. 8).

As in all single-phase autoresonant interactions, the double
autoresonant phase locking in the driven GP system starts in
the initial excitation stage, as the two drives simultaneously
pass through the linear (Bogoliubov) frequencies in the prob-
lem. We also find that this initial autoresonant phase locking
is a weakly nonlinear phenomenon, which can be described
using second-order approximation of the solution in terms
of the wave amplitudes. The next section is devoted to such
quasilinear theory of two-phase GP autoresonance.

III. WEAKLY NONLINEAR THEORY

In developing the weakly nonlinear theory of autoresonant
two-phase solutions of the GP equation, we will focus pri-
marily on the parametric-type driving scenario. The case of
driving by modulation of the interaction strength is obtained
similarly and will be briefly discussed at the end of this sec-
tion. Therefore, we proceed from Eq. (4) for the parametric
drive case

iϕt + ϕxx + 2σ |ϕ|2ϕ = −ϕ(ε1 cos θd1 − ε2 cos θd2), (7)

where θdi = kix − ψdi(t ) and seek solution of form ϕ =
U exp(iV ) governed by the following set of real equations:

Ut + VxxU + 2VxUx = 0, (8)

VtU − Uxx + V 2
x U − 2σU 3 = U (ε1 cos θd1 − ε2 cos θd2).

(9)

The Lagrangian density for this problem is

L = 1

2

[
U 2

x + U 2
(
V 2

x + Vt
)] − σ

2
U 4

−U 2

2
(ε1 cos θd1 − ε2 cos θd2). (10)

This Lagrangian representation suggests using Whitham’s av-
eraged variational approach [16] to analyze our problem. The
first step in this direction is to assume constant frequency
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drives, ψdi = ωdit , and seek phase-locked solutions of the
linearized problem of form

U = U0 + U1 cos θd1 − U2 cos θd2, (11)

V = 2σU 2
0 t + V1 sin θd1 + V2 sin θd2, (12)

[note that our unperturbed solution is ϕ0 = U0 exp(2iσU 2
0 t )].

Then, by linearization, and neglecting products of linear
amplitudes Ui and εi, Eqs. (8) and (9) become

ωdiUi − k2
i U0Vi = 0, (13)

−ωdiViU0 + (
k2

i − 4σU 2
0

)
Ui = εiU0, (14)

yielding solutions

Vi = εωdi(
ω2

0i − ω2
di

) , (15)

Ui = k2
i U0

ωdi
Vi, (16)

where the linear resonance frequencies

ω0i = |ki|
√

k2
i − 4σU 2

0 . (17)

Note that the case ω0i = ωdi in this constant frequencies
driving case corresponds to the linear resonance and the sin-
gularity in Eq. (15) can be removed by adding dissipation, for
example.

Now, we proceed to chirped-driven problem, where ψi =∫
ωdi(t )dt and extend Eqs. (11) and (12) to next nonlinear

order

U =U0 + U1 cos θ1 − U2 cos θ2 + u0 + u11 cos(2θ1)

+ u22 cos(2θ2) + u12p cos(θ1 + θ2) + u12m cos(θ1 − θ2),
(18)

V = 2σU 2
0 t + V1 sin θ1 + V2 sin θ2 + ξ + v11 sin(2θ1)

+ v22 sin(2θ2) + v12p sin(θ1 + θ2) + v12m sin(θ1 − θ2).
(19)

Here Ui and Vi are small (viewed as first-order perturbations),
while all other amplitudes are assumed to be of second or-
der in Ui and Vi. In these solutions θi = kix − ψi and ψi =∫

ωi(t )dt is a new fast independent variable. At this stage,
we do not assume phase locking in the system, but view the
difference i(t ) = ψi − ψdi as slow function of time (recall
that the chirp rates αi of the driving frequencies are small).
Similarly, all the amplitudes are also assumed to be slowly
varying functions of time. The reason for choosing the second-
order ansatz of this form is consistent with the form of the
Lagrangian density containing either different powers of U or
products of derivatives of V and powers of U . The auxiliary
phase ξ = ∫

γ (t )dt in Eq. (19) is necessary because V is
the potential (it enters the Lagrangian density via derivatives
only [16]).

The next step is to replace θdi = θi + i(t ) in the driv-
ing part of the Lagrangian density (10), substitute the above
ansatz into the Lagrangian density, and average it over θi ∈
[0, 2π ]. This averaging is done via the Mathematica package
in the Appendix. The resulting averaged Lagrangian density
� = �(U1,2,V1,2, u0, u11, u22, u12p, u12m, v11, v22, v12p, v12m,

1,2, ξ ) is a function of all 13 slow first- and second-order

amplitudes and 1,2 and ξ . The Lagrange’s equations for all
these 16 variables form a system describing slow autoresonant
evolution in the problem. Reducing this problem to a smaller
set of evolution equations involves tedious algebra, which,
nevertheless, can be performed using the Mathematica pack-
age. The details of this reduction are given in the Appendix,
and here we present the final closed system of four equa-
tions for U1,U2,1, and 2 [see Eqs. (A24), (A25), (A27)
in the Appendix]:

dUi

dt
= −εiU0k2

i

2ω0i
sin i. (20)

(
ω2

01 − ω2
1

)
U1 − 24U 2

0 U 3
1 + 4k2

1σU1
(
2U 2

1 + U 2
2

)
− ε1U0k2

1 cos 1 = 0. (21)

(
ω2

02 − ω2
2

)
U2 − 24U 2

0 U 3
2 + 4k2

2σU2
(
2U 2

2 + U 2
1

)
− ε2U0k2

2 cos 2 = 0. (22)

All remaining dependent variables in the problem, i.e., V1,2,
u0, u11, u22, u12p, u12m, v11, v22, v12p, v12m, 1,2, ξ are related
to U1,U2 [see Eqs. (A12)–(A21) in the Appendix]. Before
proceeding to the analysis of this system, we rewrite Eqs. (21),
(22) explicitly as differential equations for 1,2. Assum-
ing αit � ω0i, we approximate ω2

0i − ω2
i ≈ 2ω0i(ω0i − ωi ) =

2ω0i(ωdi − ωi + αit ) = −2ω0i(
di
dt − αit ), which allows us to

write these equations as

d1

dt
= α1t + 4σ

( − 3σU 2
0 + k2

1

)
ω01

U 2
1 + 2k2

1σ

ω01
U 2

2

− ε1U0k2
1

2ω01U1
cos 1, (23)

d2

dt
= α2t + 4σ

( − 3σU 2
0 + k2

2

)
ω02

U 2
2 + 2k2

2σ

ω02
U 2

1

− ε2U0k2
2

2ω02U2
cos 2. (24)

Equations (20), (23), and (24) comprise a complete set of
differential equations for studying the dynamics in our prob-
lem. By solving this system, and calculating all second-order
objects as described above, we obtain a full quasilinear two-
phase solution (18), (19) of the chirped-driven GP equation.
As an illustration, Fig. 5 shows the color maps obtained via the
quasilinear theory for the three examples of full simulations in
Fig. 2. One can see a good agreement between the two figures.

Next, we show in Fig. 6 the quasilinear dynamics of U1,2

and 1,2 for two cases with the same parameters as in the two
bottom panels in Fig. 4. The figure illustrates the loss of phase
locking with one of the components of the drive as one passes
from ε2 = 0.005–0.004. The top two panels in Fig. 6 show
double phase locking of 1,2 at π [mod(2π )] and a continuous
autoresonant growth of U1,2, while in the bottom two panels
only U1 continues to grow, while U2 saturates as 2 escapes.
Thus, one requires both driving amplitudes to be above some
minimal values for a persisting double autoresonance in the
system. Note also that the averaged evolution of the phase-
locked mode U1 is nearly the same in the top and bottom
panels, because the averaged autoresonant evolution is nearly
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FIG. 5. Comparison with full simulations. Color maps of space-
time quasicrystals obtained via the quasilinear theory for the
examples of full simulations in Fig. 2.

independent on the driving amplitudes. We discuss all these
effects in the next section.

We conclude this section by discussing the case of driving
via the modulation of the interaction strength (see the com-
ments at the beginning of Sec. II). It is shown at the end of
the Appendix that the reduced system of equations describing
two-phase autoresonant formation of spacetime GP quasicrys-
tals in this case is the same as for the ponderomotive drive
[see Eqs. (20), (23), (24)], but U0 in the driving terms must be
replaced by 2σU 3

0 . We present an example of such a case in
Fig. 7, where the parameters are the same as in the bottom two
panels in Fig. 6, but the driving is via the interaction strength
in the GP equation, as discussed above. One can see two
differences between between Fig. 6 and 7. One is that in the
case of the interaction strength drive the double phase locking
is restored. This is because effectively the driving amplitude
increased by a factor of two, and passed the threshold. The
second difference is that the phase mismatches 1,2 in Fig. 7
are locked near 0. The reason is that in this case, there is a
new factor of σ in the driving perturbation, which for σ = −1
in this example changes the phase-locking location, as will be
discussed in the next section.

IV. AUTORESONANCE CONDITIONS AND THRESHOLD
PHENOMENON

In this section, we discuss conditions for the autoresonant
evolution of spacetime quasicrystals in BECs. We proceed by
defining new (action) variables

I1,2 = ω01,2U 2
1,2

k2
1,2

. (25)

Then the system of Eqs. (20), (23), (24) describing two-phase
BECs can be rewritten as

dI1

dt
= −η1

√
I1 sin 1, (26)

dI2

dt
= −η2

√
I2 sin 2, (27)

d1

dt
= σ (aI1 + bI2) + α1t − η1

2
√

I1
cos 1, (28)

d2

dt
= σ (bI1 + cI2) + α2t − η2

2
√

I2
cos 2, (29)

where

a = 4

ω2
01

(
k2

1 − 3σU 2
0

)
k2

1 = 1

ω2
01

(
k4

1 + 3ω2
01

)
,

b = 2k2
1k2

2

ω01ω02
,

c = 4

ω2
02

(
k2

2 − 3σU 2
0

)
k2

2 = 1

ω2
02

(
k4

2 + 3ω2
02

)
,

η1,2 = ε1,2|k1,2|U0√
ω01,2

. (30)

The action-angle Hamiltonian of this system is

H (I1,2,1,2, t ) = σ

(
a

2
I2
1 + bI1I2 + c

2
I2
2

)
+ (α1I1 + α2I2)t

−η1
√

I1 cos 1 − η2
√

I2 cos 2. (31)

Note that as mentioned at the end of Sec. III, in the case
of two-phase driving via the modulation of the interaction
strength, the system of Eqs. (26)–(29) remains the same,
but in the expression for η1,2, U0 must be replaced by
2σU 3

0 . Finally, a similar system of equations was derived
recently in application to Langmuir and ion acoustic waves in
plasmas [14,15].

By definition, the autoresonance is a continuous phase
locking between the drives and the driven solution. In our
case, the autoresonant evolution corresponds to double phase
locking in the system as phase mismatches 1,2 remain
bounded continuously at all times (negative and positive) sub-
ject to small initial conditions I1,2 at large negative times. In
the initial stage (large negative times), the pairs of variables
(I1,1) and (I2,2) decouple and are described by

dIi

dt
= −ηi

√
Ii sin i (32)

di

dt
= αit − ηi

2
√

Ii
cos i. (33)

The phase locking di
dt ≈ 0 in each of these decoupled systems

is guaranteed at large negative times (see Ref. [26] for a
detailed analysis) and yields

α1t − η1

2
√

I1
cos 1 ≈ 0, α2t − η2

2
√

I2
cos 1 ≈ 0 (34)

and phase locking at either 1,2 ≈ 0 or π if α1,2 is negative or
positive, respectively, and in both cases

√
I1,2 ≈ − η1,2

2|α1,2|t .

Next, assuming that the phase locking ( di
dt ≈ 0) continues

as the system reaches large positive times, in double autores-
onance, the actions I1,2 are given by the solution of

σ (aI1 + bI2) + α1t ≈ 0, σ (bI1 + cI2) + α2t ≈ 0. (35)

Since coefficients a, b, c are all positive, for having positive
solutions for I1,2 chirp rates α1,2 must have the sign of −σ , i.e.,
can be written as α1,2 = −σ |α1,2|. This yields autoresonant
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FIG. 6. Threshold phenomenon. The top two panels illustrate double phase locking in the system for ε2 = 0.005, while in the bottom two
panels, where ε2 = 0.004, the phase locking with one of the driving components is lost. All other driving parameters in the two cases are the
same as in Fig. 4, i.e., ε1 = 0.01, α1,2 = 0.0012, 0.0024.

solutions varying linearly in time

I1 = c|α1| − b|α2|
D

t, I2 = a|α2| − b|α1|
D

t, (36)

where

D = ac − b2 = 4k2
1k2

2

ω2
01ω

2
02

[
4
(
k2

1 − 3σU 2
0

)(
k2

2 − 3σU 2
0

) − k2
1k2

2

]
.

(37)

For positiveness of both I1,2 at large t (large excitations) we
must have c/b > |α2/α1| > b/a or

2ω01
(
k2

2 − 3σU 2
0

)
k2

1ω02
> |α2/α1| >

k2
2ω01

2ω02
(
k2

1 − 3σU 2
0

) . (38)

Then D = ac − b2 must be positive. This is obviously the case
for σ = −1, so we can always find some ratio |α2/α1| in this
case for having positive I1,2, linearly increasing in time. The
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FIG. 7. Double phase locking in the system driven by modulation of the interaction strength. The parameters are the same as in the bottom
two panels in Fig. 6, but U0 in the driving term is replaced by 2σU 3

0 .
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case σ = 1 is more complex. Since we still need D > 0 for
having increasing I1,2 at large positive times, we must satisfy

4
(
k2

1 − 3U 2
0

)(
k2

2 − 3U 2
0

) − k2
1k2

2 > 0 (39)

or

(1 − X )(1 − Y ) > 1/4, (40)

where X = 3U 2
0 /k2

2 and Y = 3U 2
0 /k2

1 . The last inequality
yields the condition

Y < 1 − 1

4(1 − X )
. (41)

The region S in the (Y, X ) plane satisfying this inequality (the
allowed region) is shown in Fig. 7. Note that in this region
X,Y < 3/4, which guarantees the positivity of ω2

r1,2. How-
ever, U 2

0 can not be too large to satisfy X,Y < 3/4 and can
be chosen as follows. Let k2

2 > k2
1 . Then, X < Y and we can

choose some value Y0 < 3/4 yielding U 2
0 = k2

1
3 Y0 and X0 =

k2
1

k2
2
Y0 <

k2
1

k2
2
. This guarantees that the point (X0,Y0) is inside the

allowed region if Y0 < 1/2. However, if 1/2 < Y0 < 3/4, for
having (X0,Y0) ∈ S we have a restriction

k2
1

k2
2

<
1

Y0

(
1 − 1

4(1 − Y0)

)
. (42)

The inequalities (41) and (42) above are based on the
analysis at large positive times and comprise only neces-
sary conditions for synchronized (autoresonant) evolution. We
have already discussed the phase locking at large negative
times. However, for synchronized passage through the vicinity
of t = 0, i.e., for having bounded 1,2 at all times, in addition
to the above, it requires η1,2 be large enough (for both σ = +1
and −1). In dealing with this issue, we choose some value
of‘|α1|, η1 and r = |α2/α1| [r must satisfy (38) as described
above], which defines |α2|. We also fix ratio q = η2/η1, which
defines η2, and we are left with the problem of finding the
critical value of η1th for autoresonant transition through the
vicinity of t = 0 for this |α1|. Now we return to our original
system (26)–(29) and rewrite it as

dJ1

dτ
= −μ

√
J1 sin 1 (43)

dJ2

dτ
= −qμ

√
J2 sin 2 (44)

d1

dτ
= σ [(aJ1 + bJ2) − τ ] − μ

2
√

J1
cos 1 (45)

d2

dτ
= σ [(bJ1 + cJ2) − rτ ] − qμ

2
√

J2
cos 2, (46)

where slow time τ = √|α1|t , J1,2 = I1,2/
√|α1|, and μ =

η1/|α1|3/4. Therefore, for a given r and q, we are left with
a single additional parameter μ, and there may exist some
minimal value of μth in the problem, which still guaran-
tees a continuous phase locking in the system as it passes
from large negative times through t = 0, to large positive
times. This value can be found numerically, yielding the
minimal (threshold) driving amplitude ε1th for autoresonance
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FIG. 8. Allowed double phase-locking region for BECs in the
case σ = −1 is below the blue line in the figure. The red line
corresponds to |k1| = |k2|. The circle and the square points corre-
spond to parameters k1 = 2, k2 = −3,U0 = 0.775 and k1 = 1, k2 =
−2,U0 = 0.447, respectively. The examples of spacetime quasicrys-
tals for these two sets of parameters are shown in Fig. 9.

in the system:

ε1th = μth

√
ω01

|k1|U0
|α1|3/4. (47)

In the case of driving via modulation strength, the threshold
formula remains the same, but U0 is replaced by 2U 3

0 .
We illustrate the characteristic 3/4 power scaling of ε1th

with |α1| in Fig. 9, for the parametric driving case, σ = −1,
and two sets of parameters: set A: k1 = 2, k2 = −3,U0 =
0.775, r = 1.08, q = 0.7 (red line) and set B: k1 = 1,

10-4 10-3 10-2

1

10-3

10-2

th

FIG. 9. Threshold ε1th versus α1 for autoresonant double phase
locking of BECs in the case σ = −1 and two sets of parame-
ters, set A: k1 = 2, k2 = −3,U0 = 0.775, r = 1.08, q = 0.7, μth =
0.403 (red line) and set B: k1 = 1, k2 = −2,U0 = 0.447, r =
0.805, q = 1.3, μth = 0.277 (blue line). The circles and squares
show the results of full numerical simulations.
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FIG. 10. Color map of spacetime BEC quasicrystals for the same
two sets of parameters as in Fig. 9, top panel: set A; bottom panel:
set B. In both cases α1 = 0.001 and the driving amplitudes are 10%
above the threshold.

k2 = −2,U0 = 0.447, r = 0.805, q = 1.3 (blue line). The
values of k1,2 and U0 in these two examples correspond to
the two points in the allowed autoresonance region in Fig. 8.
The circles and squares in Fig. 9 show the results of numerical
simulations. Finally, Fig. 10 shows color maps of |ϕ|2 in
spacetime autoresonant spacetime quasicrystals for the same
two sets of parameters (the top and bottom panels correspond
to sets A and B, respectively). In both cases, α1 = 0.001, and
the driving amplitudes are 10% above the thresholds in Fig. 9.

V. CONCLUSIONS

We have shown that a combination of two independent,
small amplitude, and chirped frequency parametric-type driv-
ings or modulations of the interaction strength in the GP
equation allows controlled nonlinear two-phase excitation of
BECs via the process of autoresonance. The amplitude of
these excitations grows continuously as the phases of the
excited solution follow those of the driving perturbations.
The phase-locked excitation process starts from trivial ground
state at large negative times and continues as the system passes
linear resonances with both driving components at t = 0 and
moves to large positive times. If both driving components
are switched off at some large positive time, an ideal, stable
spacetime quasicrystal is formed, which is periodic in space
and aperiodic in time, but preserves long time ordering (see
examples of numerical simulations in Figs. 2, 4, 5, and 10).

We have developed a weakly nonlinear theory for these
two-phase excitations using Whitham’s averaged variational
principle, yielding a two degrees of freedom dynamical
problem in action-angle variables [see Eqs. (26)–(29)]. The

analysis of this system at large positive times limits the param-
eter space for autoresonant excitations [see inequalities (41)
and (42)]. However, these are only necessary conditions for
autoresonance in the system. A continuing phase locking by
passage through the linear resonance near t = 0 requires the
driving amplitude to surpass a certain threshold, yielding the
sufficient condition for autoresonant excitation. These thresh-
olds scale with the driving frequency chirp rate α as ∼|α|3/4

[see Eq. (47)], a relationship corroborated by numerical sim-
ulations (see Fig. 9).

Experimental application and verification of the ideas of
this study seems important. For example, one can envision
experiments with BECs driven by modulation of the inter-
action strength by modulation of the magnetic field near
Feshbach resonance [18]. Furthermore, since the GP equa-
tion yields a generic description of wave packets in nonlinear
dispersive media [8], we hope that autoresonant generation
a single wave function of many phase variables, where each
phase is controlled independently, can be observed experi-
mentally in superfluids, Bose gases, and magnon condensates.
In addition, given that numerous integrable nonlinear PDEs
(such as KDV, Sine-Gordon, and more) describing various
physical systems allow multiphase solutions, investigating
autoresonant formation of spacetime quasicrystals in these ad-
ditional systems through two or more drivings using a similar
approach seems interesting. Finally, previous investigations
[27,28] have demonstrated that a sufficiently small dissipation
in other applications did not destroy single-phase autoreso-
nant synchronization, but modified the threshold for transition
to autoresonance. Investigating the effects of dissipation on
autoresonant two-phase BECs is also an important goal for
future research.
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APPENDIX: REDUCTION TO TWO DEGREES
OF FREEDOM

We proceed from the Lagrangian density (10) for the pon-
deromotive drive case

L = 1

2

[
U 2

x + U 2
(
V 2

x + Vt
)] − σ

2
U 4 − U 2

2
[ε1 cos(θ1 − 1)

− ε2 cos(θ1 − 1)]. (A1)

The case of driving via the modulation of the interaction
strength will be discussed at the end of the Appendix. We
average the Lagrangian over θ1 and θ2 between 0 and 2π

using the weakly nonlinear ansatz (18) and (19). The resulting
averaged Lagrangian density � consists of the following five
terms:

�1 =
〈

1

2
U 2

x

〉
= 1

4

(
k2

1U 2
1 + k2

2U 2
2

) + 1

4

[
2k1k2

(
u2

12m − u2
12p

) + k2
1

(
4u2

11 + u2
12m + u2

12p

)

+ k2
2

(
u2

12m + u2
12p + 4u2

22

)]
, (A2)
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�2 =
〈

1

2
U 2

x

〉
= U 2

0

4

(
k2

1V 2
1 + k2

2V 2
2

)+ 1

16

[
k2

1

(
8u0U0V

2
1 +3U 2

1 V 2
1 + 4U0u11V

2
1 + 2U 2

2 V 2
1 + 16U0U1V1v11 + 16U 2

0 v2
11

− 8U0(U2V1(v12m − v12p) + (u12mV1 + u12pV1 + U1(v12m + v12p))V2)
) + k2

2

((
2U 2

1 + 3U 2
2

)
V 2

2

+ 4U0V2(−2U1v12m + 2U1v12p + 2u0V2 + u22V2) + 4U 2
0

(
v2

12m + v2
12p + 4v2

22

))]
, (A3)

�3 =
〈

1

2
U 2Vt

〉
= σU 4

0 + 1

4

(
2γU 2

0 + 2U0
(
σU0

(
4u0U0 + U 2

1 + U 2
2

) − ω1U1V1 − ω2U2V2
))

+ 1

4

[
γ
(
4u0U0 + U 2

1 + U 2
2

) + 2σU 2
0

(
2u2

0 + u2
11 + u2

12m + u2
12p + u2

22

)
+ U1U2(v12m(ω1 − ω2) + v12p(ω1 + ω2))ω1

(− (2u0 + u11)U1V1 + (u12m + u12p)U2V1 − U 2
1 v1

− 2U0(u12mv12m + u12pv12p + 2u11v11)
) + ω2

(− (2u0 + u22)U2V2 + (u12m + u12p)U1V2 − U 2
2 v22

− 2U0(u12mv12m − u12pv12p − 2u22v22)
)]

(A4)

�4 =
〈
−σ

2
U 4

〉
= σ

2
U 4

0 − σ

2
U 2

0

(
4u0U0 + 3

(
U 2

1 + U 2
2

)) − 3σ

16

[
16u2

0U 2
0 + U 4

1 − 16U0U1(u12m + u12p)U2 + U 4
2

+ 16u0U0
(
U 2

1 + U 2
2

) + 4U 2
1

(
2U0u11 + U 2

2

) + 8U0
(
U 2

2 u22 + U0
(
u2

11 + u2
12m + u2

12p + u2
22

))]
, (A5)

�5 =
〈
−U 2

2
[ε1 cos(θ1 − 1) − ε2 cos(θ1 − 1)]

〉
= −U0

2
(ε1U1 cos 1 + ε2U2 cos 2), (A6)

where we have expanded to fourth order in amplitudes in Eqs. (A2)–(A5) and to first order in Eq. (A6), assuming ε1,2 are
sufficiently small. Note that except in �5, the averaged Lagrangian density � includes only second- and fourth-order terms in
the square brackets. Also note that � does not include the time derivatives with respect to the amplitudes, and therefore, the
variations with respect to each of these 13 amplitudes are simply ∂�/∂Ai = 0, where Ai is the set of these amplitudes.

As the next step, we consider the linearized problem, i.e., neglect all fourth-order terms in �. Then the variations with respect
to U1,2 and V1,2 yield

(
k2

i − 4σU 2
0

)
Ui − ωiU0Vi − εiU0 cos i = 0 (A7)

k2
i U0Vi − ωiUi = 0 (A8)

with solutions

Vi = εωi(
ω2

0i − ω2
i

) cos i,Ui = k2
i U0

ωi
Vi, (A9)

which is a generalization of Eqs. (15) and (16) for the case of ideal phase locking, (ωi = ωdi and i = 0).
The next step is the inclusion of nonlinearities and taking variations of the full averaged Lagrangian density � with respect

to u0 and ξ yielding

∂�

∂u0
= γU0 − σ

(
4u0U

2
0 + 3U0

(
U 2

1 + U 2
2

)) − 1

2

(
ω1U1V1 − k2

1U0V
2

1 + ω2U2V2 − k2
2U0V

2
2

) = 0, (A10)

d

dt

(
∂�

∂γ

)
= d

dt

(
4u0U0 + U 2

1 + U 2
2

) = 0. (A11)

Then

u0 = −
(
U 2

1 + U 2
2

)
4U0

, (A12)

γ = 2σ
(
U 2

1 + U 2
2

) + 1

2

(
ω1

U1V1

U0
− k2

1V 2
1 + ω2

U2V2

U0
− k2

2V 2
2

)
. (A13)

In these second-order results, assuming proximity to the linear resonances, we replace ω1,2 with the linear resonance frequencies
ω01,02 [see Eq. (17)] and Vi with its linear relation V0i = ωi

k2
i U0

Ui. Then, the term in the brackets in the last equation vanishes and
one gets:

γ = 2σ
(
U 2

1 + U 2
2

)
. (A14)
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Next, we take variations with respect to the remaining second-order amplitudes, make the same replacements for ω1,2 and Vi

as above and obtain

uii = −k2
i + 8σU 2

0

4U0k2
i

U 2
i , (A15)

vii = −
√

k2
i − 4σU 2

0

(
k2

i − 2σU 2
0

)
2k3

i U 2
0

U 2
i , (A16)

u12p =
(
4σU 2

0 +
√

k2
1 − 4σU 2

0

)√
k2

1 − 4σU 2
0 U1U2

2k1k2U0
, u12m = −u12p, (A17)

v1p =
k2

1

√
k2

2 − 4σU 2
0 − k2

2

√
k2

1 − 4σU 2
0 + (

k1k2 + 4σU 2
0

)(√
k2

1 − 4σU 2
0 −

√
k2

2 − 4σU 2
0

)
2k1k2(k1 − k2)U 2

0

U1U2, (A18)

v1m =
−k2

1

√
k2

2 − 4σU 2
0 + k2

2

√
k2

1 − 4σU 2
0 + (

k1k2 − 4σU 2
0

)(√
k2

1 − 4σU 2
0 −

√
k2

2 − 4σU 2
0

)
2k1k2(k1 − k2)U 2

0

U1U2. (A19)

At this stage, we take variations with respect to Vi, solve the resulting algebraic equation for Vi, and replace again ω1,2 and Vi in
the nonlinear part of the solution by ω01,02 and V0i = ωi

k2
i U0

Ui. This results in:

V1 =
k1ω1U 2

0 U1 − (
3σU 2

0 U 3
1 − k2

1U1
(

5
8U 2

1 + 3
4U 2

2

))√
k2

1 − 4σU 2
0

k3
1U 3

0

, (A20)

V2 =
k2ω2U 2

0 U2 + (
3σU 2

0 U 3
2 − k2

2U2
(

3
4U 2

1 + 5
8U 2

2

))√
k2

2 − 4σU 2
0

k3
2U 3

0

. (A21)

Note that these solutions involve first-order linear parts and
third-order nonlinear corrections.

Finally, we take variation with respect to Ui to get

(
k2

1 − 8σU 2
0

)
U1 − ω1U0V1 + Q1 − ε1U0 cos 1 = 0, (A22)

(
k2

2 − 8σU 2
0

)
U2 − ω2U0V2 + Q2 − ε2U0 cos 2 = 0, (A23)

where Qi are third-order nonlinear corrections [similar to
those in Eqs. (A20), (A21)]. The last two equations can be
simplified as follows: In the nonlinear part of these equations,
we again replace ω1,2 and Vi by ω01,2 and V0i = ωi

k2
i U0

Ui. Addi-
tionally, we replace Vi in the linear parts of (A22) and (A23)
by the expressions in (A20), (A21). The algebra involved
in these manipulations is done via Mathematica package
yielding two equations:

(
ω2

01 − ω2
1

)
U1 − 24U 2

0 U 3
1 + 4k2

1σU1
(
2U 2

1 + U 2
2

)
− ε1U0k2

1 cos 1 = 0. (A24)

(
ω2

02 − ω2
2

)
U2 − 24U 2

0 U 3
2 + 4k2

2σU2
(
2U 2

2 + U 2
1

)
− ε2U0k2

2 cos 2 = 0. (A25)

Finally, we need additional two equations for our reduced
system describing Ui and i. These equations are obtained
by variation with respect to θi. Since i(t ) = θi − θdi, and

dθi/dt = ωi, we get

d

dt

∂�

∂ωi
= ∂�

∂i
, (A26)

which to lowest significant order yields

dUi

dt
= −εiU0k2

i

2ω0i
sin i. (A27)

We conclude this Appendix by discussing the case of driv-
ing via the interaction strength in the GP equation. In this
case, the driving term in the Laplacian (A1) changes (see
the discussion at the beginning of Sec. II) and the Laplacian
becomes

L = 1

2

[
U 2

x + U 2
(
V 2

x + Vt
)] − σ

2
U 4

− σU 4

2
[ε1 cos(θ1 − 1) − ε2 cos(θ1 − 1)]. (A28)

This change affects only the driving term �5 [see Eq. (A6)] in
the averaged Laplacian, transforming it to

�5 = −σU 3
0 (ε1U1 cos 1 + ε2U2 cos 2). (A29)

Formally, this is a replacement of U0 in the coefficient
from the ponderomotive drive case by 2σU 3

0 . The same
replacement should be done in the case of driving via inter-
action strength in all driving terms in the reduced system of
Eqs. (A24), (A25), (A27).
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