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9The similarity of Fig. 1 to a phase diagram is ob-
vious. If |x,| is considered (formally) to be the “order
parameter”, then the transition S~~Z corresponds

to a second-order phase transition, while S=—P and
Z - P correspond to first-order phase transitions.
Nonequilibrium phase transitions involving cooperative
atomic behavior of two-level systems are discussed
by D. F. Walls, P. D. Drummond, S. S. Hassan, and
H. J. Carmichael, Prog. Theor. Phys. (Japan). Suppl.
64, 307 (1978), who also give additional references.
Voseillatory approaches to equilibrium are found
also in driven cooperative two-level systems. See
L. Narducci e al., Phys. Rev. A 18, 1571 (1978), and
papers in Ref. 6. That of Drummond and Carmichael
contains additional recent references.
The apparent-seemingly puzzling—stability of P and
S in the limit w0 is due to the fact that relaxation in
the (1,3) transition has been ignored. The present
model is applicable only when the effect of this relaxa-
tion is small compared to that of the pump. Otherwise,
sufficiently small w leads to a fourth stable state, to
be described in detail elsewhere, which is irrelevant
to the effects presently considered. With a more com-
plex model (beyond the scope of the present discussion),
it can be shown that this state is a weakly excited steady
state of two-level systems involving only levels 1 and
3.
2The idealizations and approximations used may
limit the time during which the present theory is valid.
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A small-signal theory is given for gain in a free-electron laser comprising a cold
relativistic electron beam in a helical periodic transverse, and a strong uniform axial,
magnetic field. Exact finite-amplitude, steady-state helical orbits are included. If
perturbed, these orbits oscillate about equilibrium, so that substantial gain enhancement
can occur if the electromagnetic perturbations resonate with these oscillations. This
gain enhancement need not be at the cost of frequency upshift.

PACS numbers: 42.55.—f, 41.70.+t, 41.80.Dd

Intensive activity is underway to exploit the
gain properties of a relativistic electron beam
undulating in a periodic transverse magnetic field.
Such free-electron laser (FEL) configurations
have provided oscillation at 3.4 (Ref. 1) and 400
pm,? and amplification at 10.6 um.®> Theory has
advanced apace,® and elaborate schemes have
been proposed for obtaining high FEL efficiency.’
A factor which limits the practical application of
this interaction at wavelengths shorter than per-
haps a few microns is the rapid decrease in
small-signal gain G, as the electron energy in-
creases. This is shown explicitly in the well-
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known result® for G, in the single-particle limit
(i.e., when collective effects are negligible)

Go=(wy &/ (RoL/2y)F ' (8). 1)

Here w, and y are the beam plasma frequency
Ne®/me, and normalized energy W/mc?, k, and &
are the helical transverse magnetic field wave
number 27/! and normalized strength e B, /mck,,

L is the interaction length, and F’(8) = (d/d6)(sinf/
6)? is the line-shape factor, with 6 =[kp,, - w(1
~v,0/c)](L/2¢c), where v, is the unperturbed elec-
tron axial velocity. The peak gain occurs at 4
=1.3, where F’(9) =0.54. For example, with y

© 1980 The American Physical Society



VOLUME 44, NUMBER 22 PHYSICAL REVIEW LETTERS 2 JuNE 1980
=10, 1=1.05 cm, w,=5X10" sec™?, £=1 (B, =10.2  netic field
kG), and L =130 cm, the peak gain is G,, =0.002 47 BG)=B,2,+B.¢, cosky +8, sink,z). @)

at a wavelength of 105 um. For y =100, 1=10.5
cm, w,=2x10°sec™!, £=1 (B, =1.02 kG), and L
=260 cm, the peak gain is G, =0.003 16 at a wave-
length of 10.5 um. These gain values may be
large enough to sustain oscillations if highly re-
flecting mirrors are judiciously added but the
strong helical fields required (particularly the
10.2-kG case) may be beyond the capability of
present superconducting coil technology.”

A suggestion has appeared for enhancing the
small-signal gain above values given by Eq. (1)
(or for achieving comparable gains with smaller
B,) by employing a strong axial magnetic field so
as to exploit resonance between the cyclotron fre-
quency and the undulatory frequency.® The pres-
ent Letter presents a single-particle derivation
for the small-signal gain of a FEL in a uniform
axial magnetic field B,. We shall demonstrate
that careful adjustment of the system parameters
will allow enhancement of the FEL small-signal
gain by an order of magnitude or more (for the
above examples) without incveasing the undulatory
velocity. This result goes beyond that predicted
by Sprangle and Granatstein® who have suggested
that the only effect of the axial magnetic field
would be to add a multiplicative factor (1 -8/
kycy) 2 to Eq. (1), due to the aforementioned res-
onance giving an enhanced undulatory velocity v ,
where Q =eB,/m. This result is in fact predicted
by our analysis as a limiting case. Of course,
any mechanism which increases the undulatory
velocity v, would increase the gain, but this
would also reduce the relativistic frequency up-
shift, since

w=kic(l =vy/c) t =2y%,c(1 +y2 ,2/c?) 1.

If, for example, yv,/c =1 without the axial mag-
netic field, then a given gain enhancement 7
achieved through this resonance alone would re-
sult in a reduction in frequency upshift by a fac-
tor (1 +m)/2. The process we describe in this
Letter will be shown to permit significant gain
enhancement without undue sacrifice in frequency
upshift. The gain enhancement originates when
the electromagnetic perturbations resonate with
the natural frequency of oscillation of electrons
on finite amplitude equilibrium helical orbits.
Prior workers have not considered this effect.

A full derivation of our result will be presented
elsewhere.’ Exact unperturbed relativistic orbits
are considered in the customary FEL model mag-

These orbits, which have been the subject of re-
cent study,'® can possess more than one steady
state, depending upony, B,, B,, and k,. These
steady states are characterized by the normalized
velocity components (i.e., u; =v;/c)

u10=0, uy =ko§u30/(kou307 -Q/c),

3)
Ugo = (1 —tye® =y 2)"2,
where the basis vectors é,(z) =-¢&, sinkz +é,
X coskz, &,() ==&, coskz —&,sinkz, and é,(z)
=¢, have been introduced to track the symmetry
of the transverse magnetic field. Figure 1 shows
Uz, vs Q/c for k;=6.0 cm™', £=1.0, and y =10.
For @ >Q =kcll?-1)"% - £22]3/2 it is seen
that only one branch exists (branch C). But for
Q< Q. two additional branches (4 and B) are al-
lowed: Branch B has been shown to be unstable,
in that the orbits exhibit nonhelical, highly an-
harmonic motions, while branches A and C have
orderly helical orbits. Stability is insured if p®
=a? —bd >0, where a =k Cuzot/Yilyg, b =Quyy/vity,,
and d =k,c&/y. The quantity 4 is the natural res
onance frequency in response to small perturba-
tions of the orbit: We shall show that strong res-
onance response of the electrons to electromag-
netic perturbation can lead to enhanced FEL gain
for small y, i.e., for @ close to Q.

The derivation of FEL gain proceeds by solving
the single-particle equations of motion, subject
to weak electromagnetic perturbing fields E
=8,E,cos(kz —wt) and B =& ,(kc/w)E, cos(kz — wt),
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FIG. 1. Steady-state normalized axial velocity u ;,
as a function of normalized axial magnetic field &/c.
For this example &, = 6.0 cm™!, £=1.0, and y= 10.
Gain enhancement discussed in this work is for orbits
on either branch A or branch C.
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about the equilibrium orbits on either branch A or C as discussed above. These equations are

u, = (eocu, —Q/V)uz = (BoCt/YIus— v /v)u, +(E /mcy)kcu,/w 1), (4)
sy == (koCtts) = /Yy = G /Yy + @E /mey) ecuy/w = 1), ‘ (5)
1:‘3 =(k0C£/’}’)u1 +(kC/C!) _ua)(';’/‘y), (6)

where y =— (/mc)w,E, +u,E,) and
2(E, +iE,) =~ E exp{il (b, +k)usct — wt +a ]}

with a the random initial electron phase. When time variations and electromagnetic fields are absent,
Eqgs. (4)—-(6) lead to the exact steady states given by Eq. (3). To linearize Egs. (4)-(6), we introduce
the velocity perturbations w; =u; —u;,<<u;, and retain only the lowest-order quantities. This results in
W, +uPw, =AE  cos(Bt +a), or

w, =H‘24—fg3 [cos(Bt +a) — cospt cosa + (B/u) sinut sina | +u~ Y4, (0) sinut, (7

where

A= +B)A —uzy) +buyy, B=clk +kJuso—w, w=kc, w, (0)=EE,/2ymc)(l —u,,) sina,
and w,(0) =0. The other components follow from

Wy ==—aw, +@E ,/2mcy)(l —uz, —u,2) cos(Bt +a), w,(0)=0; (8)
and

Wy =dw, +©€E /2mcyYuy(1 —uy,) cos(Bt +a), w,(0)=0. 9)

Equation (7) for w, exhibits the aforementioned natural resonance at frequency u, while the electromag-
netic perturbation drives the transverse motion at frequency 8. Gain enhancement can be expected
when u is close to 8.

The energy gain for an electron is calculated from (nc/e)dy/dt = —w E ;= w,E; ~tsE, . The first-
order variation in electric field E,, originates from small phase variations as u, changes. Thus this
becomes

(nc/e)dy/dt =—=w,E o =w,E 5 — SE o(f +ko)cuy, sin(Bt +a) [, dt'w,(¢"). (10)

The third term in Eq. (10) is much larger than the other two on account of the factor % +%,. The domi-
nant single-particle energy transfer in the FEL (even with an axial magnetic field) is seen to be by
work ecu,E, done along the transverse undulatory motion, enhanced by the strong variation in E, as its
phase varies through w,. The energy variation [Eq. (10)] is averaged over random phase a to give
(dy/dt), which in turn leads to the gain through G =2(e,E?)" ‘Nmc?]; dt{dy/dt), where N is the beam
electron density and T =L/c is the total interaction time for the electrons in a system of length L.

The final result is

=‘_"ﬁ9£u202:p3 {[1 +2 (a +B +_“_zob_>] [F'(e) _FO+9)-F(@® -<P):|

16y 2 1-u,, 2¢
FO+9)-F~-9¢) _a J_, PO +9)=P@ -9¢)
¥ 20 ~ T [P ©)- 29 ] ! an

where 6 =BT /2, ¢ =uT/2, F(x)=(sinx/x)?, and |
P(x) =xF (x)/2; and where we have approximated
(e +ky)(1 —uy,) ~k,. We shall examine Eq. (11) in

mation we may write

several limits. G > B)=Z(w,2/16p)k,cu, > T°F'(6) , (12)
For u>> B, only the terms involving F’(6) and where Z =2+ p ?[aB+bd(1 — u,,)"!]. In the case

P’(6) in Eq. (11) are significant, and on branch where the axial magnetic field is absent, 2=0,

A the latter of these is smaller than the former L=a=kyClsy> B, and Uy, = £/y. Thus, Z =2 and

by at least a factor 2¢. Thus to a good approxi- Eq. (12) goes over to Eq. (1). When 20 and pu
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> B, gain enhancement can be achieved as claimed
by the prior workers,® due to resonant enhance-
ment of u,,, but not without sacrificing frequency
upshift, as discussed above.

However a more attractive possibility exists
when p is small, and approaches 8. Here one
can approximate Z = y~2bd(1 - u,,) "' > 1; this re-
sults from resonance between the electromagnetic
perturbation which gives oscillatory motion to the
electron at a frequency B3, close to its natural
oscillation frequency p. Gain enhancement due
to large Z is seen to be possible without simul-
taneously increasing u,,, so that the desirable
frequency upshift property of the FEL need not
be sacrificed.

We define a gain enhancement factor n=G/G,
to compare two free-electron lasers, identical
except that one has a strong axial magnetic field,
while the second does not. In the first laser, the
transverse magnetic field B, is reduced so that
Uy, is the same for both lasers. (This assures
that both enjoy the same frequency upshift.) Then

n=2{1-[F(6+¢) - F(6-¢)]/2¢F'(6)}. (13)

We have evaluated Eq. (13) for two examples with
the parameters cited in the first paragraph of this
Letter, holding | 6|=1.3 where | F’(6)| has its
maximum value. The results are shown in Fig. 2
for the y=10 example. In Fig. 2(a) we plot the
gain enhancement factor 7 as a function of the
transverse magnetic field normalized strength £
for the FEL with the axial guide magnetic field.
The solid curves are for steady-state orbits on
branch C; the dashed curves for branch A. On
branch A, gain occurs for 6>0, while on branch
C gain occurs for 6 <0, Two transverse magnetic
fields for the FEL without axial field correspond-
ing to £,=1 and 0.5 are shown. Figure 2(b) shows
the required values of axial guide field. One sees
a gain enhancement of 31 (on branch C) at £=5
x10-3 for an axial guide field of 102 kG. The
transverse magnetic field required is reduced to
51 G, and the gain is increased to 0,0766 at A
=105 pym. Higher gain is predicted on branch A.
For the =100 example at A=10.5 um, we find a
gain enhancement of 16 (on branch A) at £=3x10"2
for an axial guide field of 99.5 kG. The trans-
verse magnetic field required is reduced to 30.6
G, and the gain is increased to 0.0506.

Of course when the predicted single-pass gain
is large (say >0.1) this theory must be modified.
Furthermore, finite electron momentum spread
(neglected here) will mitigate against gain, as
for a FEL without a guide field. These effects
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FIG. 2. (a) Gain enhancement |7 and (b) correspond-
ing normalized axial magnetic field &/c, vs transverse
magnetic field parameter £. The values £, = 0.5 and
1.0 are for the FEL without axial field, and provide
the same u,, as do the indicated (smaller) values of
¢ for the FEL with the indicated axial field strength.
Example is for y= 10, ;= 6.0 cm™!, and L = 130 cm.
Solid curves, orbits on branch C; dashed curves,
orbits on branch A. For high enhancement values,
such as on the £, = 1.0 branch A example, the numeri-
cal precision required to compute accurate results
suggests that the phenomenon is very sensitive to the
system parameters.

deserve careful study. However, to the extent
that these effects are negligible, our theory
shows that provision of a strong uniform axial
magnetic field can allow significant small-signal
gain enhancement, and significant reduction in the
required transverse magnetic field strength in a
FEL, without undue compromise in operating fre-
quency below that given by the idealized upshift
value 2y%k,c.
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