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The linearized theory of a free-electron-laser amplifier consisting of a relativistic electron beam transported along
the axis of a helical wiggler in the presence of an axial guide field is solved exactly. With suitable re-identification of
parameters, the theory also applies to the case where the wiggler is replaced by a circularly polarized subluminous
radio-frequency pump. The dispersion relation is derived and numerical examples of solutions are presented. These
indicate (a) that the use of an axial field permits operation of a laser of given high frequency and undulatory
transverse velocity of the unperturbed electron beam at lower values of the pump field, (b) that the gain can be
enhanced by approaching the condition of resonance between the effective frequency of the pump and the cyclotron
frequency, and (c) that the breadth in frequency of the region corresponding to spatially exponentially growing

operation can be much extended.

I. INTRODUCTION

The theory of a free-electron laser (FEL), con-
sisting of a relativistic electron beam transported
along the axis of a helical pump magnetic field,
has been given by Bernstein and Hirshfield.! Their
analysis was valid for arbitrary pump strength but
weak rf fields, since it involved linearization in
the amplitudes of the high-frequency quantities.
Here we present the extension of that work to the
case where, in addition, there is an axial magnetic
field, conventionally present for beam collimation.
It is also shown that with a suitable reinterpreta-
tion of parameters, the same theory applies when
the magnetostatic pump is replaced by a circularly
polarized subluminous rf pump. The axial field is
shown to yield the additional benefits of permitting
the use of weaker pumps, providing enhanced gain
and yielding broader domains of spacial instability.
This is discussed in detail in Sec. VI.

The work proceeds as follows. The general
mathematical description is developed in Sec, II
where the continuity and momentum equations de-
scribing the relativistic beam, and those govern-
ing the electromagnetic fields are presented.
Section III describes the properties of a helical
pump magnetostatic field, and Sec. IV those of a
circularly polarized subluminous rf pump. The
linearized equations governing the high-frequency
fields are derived in Sec. V. Section VI is devoted
to a brief discussion of the relation of this work to
its predecessors, to a description of the numerical
examples worked out, and conclusions concerning
the effects of the axial field.

II. GENERAL MATHEMATICAL DESCRIPTION

Consider a cold relativistic electron beam de-
scribed by the continuity equation

N
g +V. (N";) =0 (1)
and the momentum equation
o . . -~ . B
<8—t +V~V)(myv)——e(E+vX—C—) , (2)

where m is the rest mass of the electron, and
y=(1-v2/c)/2 ®3)

If one forms the scalar product of (2) with ¥¥ and
uses (3) to express v in terms of v, there results
the energy equation

o . o = .
<a—t+v-V)mc =—¢E-V. (4)

Let B be a constant. It is con\ienient to introduce
the electromagnetic potential A and ¢ via

+VxA, (5)

50,

Then with £ =el§/mc one can write (2) in the form

9 L = -
<—5; +V- V> (my¥)

B=B%

z

E=-v®-

—(%)(—CV@ -% +¥ X (VX R)+ BV x E,)

1]

=mQe, % ‘7+<—i-> <0V<I> +% +%-VA—(vA). x*/) )

or on rearranging terms
3 . =\( . €A )
(a—ﬁ""’><w";rc
PO e - -
- 08,7+ () leve - (vR) - 7. (®)
It follows from the Maxwell equations
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cVXB=4nj+ ;3 . 9)
v.E=4r%, (10)
on employing (5) and (6), that
47T - 9P - -
2 = 1 B
v2A - ¢ at2 +< )J—V(c 7+t A) , (11)

V2o +4rE=—c V. % (12)
Thus if we adopt the canonical model of FEL the-

ory, viz.
A=A(z,1)8,+A (2,18, , (13)
& =%(z,1) (14)

(note that the vector potential is written in the
Coulomb gauge) and assume that the only charged
particles present are electrons, whence =~ =-Ne
and J==Ne¥, then (11) and (12) yield

0%A 0% _ (41!Ne>

522 ¢ 3 "\ (V-82,7), (15)
2

2—2—411Ne. (16)

III. MAGNETOSTATIC PUMP

Consider the case of a free-electron laser in"’
which the pump magnetostatic field is generated
by helical windings and the self-fields of the elec~
tron beam are negligible. Then in cylindrical co-
ordinates p,0,z the vacuum magnetic scalar po-
tential x will be helically invariant, viz.

x =x(p,0 - k), 1m
where 27/k, is the pitch, and will satisfy Laplace’s
equation

109 [ &y 8%y _
2, =2 2, 0.

VX=5%p (pap> (k )892 (18)
The general solution of (18), regular at p=0, on
separation of variables is readily shown to be

x=—-Bz+ Z X udm(mEy ) coslm (6 = Eoz)+1, ],
' (19)

where the x,, and ), are constants determined by
the details of the helical windings. Recall that the
Bessel function

I(6)= Z Gom:_ (20)

stm+s)

Thus if a is the radius of the windings and p<< 27/
k,, the potential is well approximated by the term
with m =1 alone, with I, approximated by the lead-
ing term in the series. The resulting expression

for the associated magnetic field is, on choosing
the coordinate system so that A, =0 and zkgx,
==B,,

B=-Vx=B%,+B,(§,coskyz +8, sinkz).  (21)

The nonconstant part of (21) can be written as the
curl of the vector potential

A==(B,/k,)(8, cosk,z +8, sink.z) . (22)

Expression (22), valid only near the axis, is the
form conventionally taken for the magnetostatic
pump field. A corresponding solution for the ve-
locity and density can be obtained from (1) and (8)
by introducing the basis vectors

8, =8, sinkyz +8,coskyz , (23)
8,=—-8, coskyz - 8, sinkyz , (24)
&, =8,, (25)

when on writing
A =A1-é1 +A232 +A3.éa (26)
it follows that

8A _ (84, A, ) -
az ( ry" koA ) (a—z + koAl €,

9A
23,
+ 27

Thus (1) a.nd (8) imply

9 v,9 Nav
—_— 3 =
(at+ aZ)N (28)
v,9
(3_t 2)( ) (‘y’l)z )= —Q’Uz N
(29)
_3_+1}£ v—ﬁ + Byl yv _._1)=Q1)
3t 8z YU, P oVs 1 15
(30)
9 v,
(573 oo
_[ e \([cod 8A, 34,
—(;zz)(w-”la—z-%a o”zA1+ko”A)
(31)

Now on combining (22) and (25) one can write
R, =(mc?/e)t8, , (32)

where £, is a dimensionless constant. It is then
readily seen that if also &,=0, corresponding to
E,=-=V®,=0, then a solution is given by
V, =u &, +we, , (33)
N,=const, (34)

where » =const and w =const, satisfy (27)-(30)
provided that consequent to (29)

w=Rkycut,(kuy,— )™ : (35)
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where
yo=[1 - (WP +u?)/c?]/2 (36)

This solution and its experimental accessibility
has been analyzed in detail by Friedland.?

IV. RADIO-FREQUENCY PUMP

The solution given by (32), (33), and (34) with
Eo=0 can also be adapted to describe the case of
a free-electron laser with an electromagnetic
pump which in the laboratory frame has a phase
velocity less than the speed of light. One then
views the solution as given in the frame where the
pump wave is at rest. Equation (15) then requires,
on using (32) and (33), that

~KictE=wiw/c, : 37
which on using (35) can be written
~koC = whulkguy, - Q)™ (38)

where the plasma frequency, defined using the
rest mass, is

w, = (47N, /m)*'2 (39)

Let v, be the speed of the laboratory frame as
seen from the wave frame. Distinguish quantities
in the laboratory frame by a prime. Then on Lo-
rentz transformation z/=P(z = vyt), ' =P(t = v,2/
c?), and

W’ ==ky,? (40)

kt=ky7 , (41)
where

7=(1-03/c?)/2. (42)
Clearly

vy=—w /RS, (43)

is the negative of the phase velocity of the wave.
Moreover,

ﬁ(', =1§33 +Bi[e, cos(kiz’ - w't')+ &, sin(kiz’ — w't')],

(44)
where
B}=7B, (45)
and
B! =—(w!/kic)e, X B . (46)

Evidently the wave is transverse and circularly
polarized. The associated potentials are

$,=0, (47)
Al=All8, cos(klz’ - wt")+ 8, sin(kez’ - w't")],

(48)

where
B! B mc?
P 0= 0
R (49)
Clearly A} is a Lorentz invariant. Also
yr=yP(l-vqu/c?), (50)
N'=Ny(1-vqu/c?), (51)
S U=1 '
“ T=ou/c’ (52)
w/?

w’ =1—_;W . ‘ (53)
The inverse transformations to (50)-(53) can be
gotten by interchanging primed and unprimed vari-
ables and changing the sign of v,.

The counterpart of (35) is now

w' =tk - clvikiu—w') =011 . (54)

Equation (38) is carried into
(w0 = B2c?) = w(klu’ — ) yh(kin — w) - Q]
(55)

Equation (55) can be viewed as the dispersion re-
lation for the pump electromagnetic field, but it
is to be noted that the steady-state theory is not
restricted to weak pump fields and a linearized
theory.

V. STABILITY ANALYSIS

Let us work in the laboratory frame for the case
of the magnetostatic pump and in the wave frame
for the case of the radio-frequency pump. The
stability analysis is then common. Let

A=K, -Re{(mc?/e)[£,(2)8,(2) + £,(2)8,(2) et}

(56)
V=V, +Re[V(z)e iv?], (57)
®=0+Re[(mc?/e)(w/kc)E e it], (58)
y =y,+Re(T e %), (59)
N=N,+Re(N,e"?), (60)
Then (29) and (30) yield on linearization
. d
(—zwl-u;l;>(y0V1 +¢E) — ku(Tw+y,V,+ cky)
— BV, ly ot — CEy) =2V, (61)

(-iw+%§)(1"w +yo Vot &)+ kquly,V, +ct)=QV, .

Rather than use (31) it is convenient to employ the
linearized version of (4) which yields

d .
(—iw+%—z->1"=<-kwcﬂ)%gz§- +___tw1;2£2. (62)
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Linearization of (1) gives

. ud d

(—lw+a—z-)N1 + <-tE)(N°V3) =0, (63)
while linearization of (3) implies

THi=@V,+wV,)/c?. (64)
Equations (15) and (16) on using (27) yield
a3t dt, w?t w3V
T R 2 e (65)
dze dt, WPt W2 Naw\
T - Bk e (B )(v,+ 52) (o)
w d%t, w? N,
Te —--23'd = Ef- N_o . (67)

Note that Eqs. (60)-(67) are a system of eight lin-
ear ordinary differential equations with constant
coefficients for the eight quantities V,, V,, V,, T,
Ny, &, &, and £;. Thus we may seek solutions
where all these scalars vary with z as e, If we
write

E =Re[a(z)ei*t], (68)
then it follows from (6) that
A=—i(mcw/e)k. (69)

Equations (60) through (67) then imply
i(ku — W)y Vyi+cE)) = (ko = Q/7) oV, + cEy+ Tw)
=(Q/yo)ck,+ (Q/y)Tw+kVylyqw — &), (70)
(ot = /7o)y oV, + €&y)
+i(ku - W)y Vot ek + Tw)==(Q/y )ck, , (71)

JNT:, -, (13)

=03/ uV,+wV,), (74)
[1-c(R2+R2) /P g, — (2ikokC?/w?)E,

=—(wi/w?)(V,/c), (75)
(2kokc? /WP)E, + [1 = (B2 + B2) /P ),

= —(w}/P)(V,/c)+(w/c)(N,/N,) , (76)

N, /Ny==(kcw/wd)E, . (77)

It is convenient to express I', N,, V,, V,, and V,
in terms of £, £,, and £. The result can be rep-
resented in the form

e E=0, (78)
where the dielectric tensor.

€ =0+ (Wit fr o) (79)

and
T =(Q/y ) [(ku = WP = (kg — /v )2]™ . (80)
The components of 6 are

6,,=1— PR+ F?)/w? = Wi /y,w?,

0,3=05,=0,
0,5 = — 65y ==2iC%kok/w? |
0, =1 = (K2 + K?)/uf? (81)

=W}y o)1+ (2 /) (K2 c? = w?)(lu — w) 2],
B35 = O35 = =(wh/y o) (b = ) 2(w/w)(k = wu/c?),
033 =1 — (B /o) (ku — w)2(1 —u?/c?).
The elements of ) are

Py =Rt ~ Q/)’o B

, w? W
Pyp=—i(ku w)<1+?5 — ),

uw w

. &k, Cw
¢13="7’(k“—w)(? oo’ 2

Fu — w )
w2 ku—-R/v,)°
_ (RG2+u?) )
IPZI"(T“” ’ (82)

b =<k(u2+w2) _ w) ko —Q/y, (1 A ) ’

u ke - w ? khu—w

L= (k(u2+ w?) _ w) kot ~ /v,

u £ - @

x(uw w N1

uw . ku—w)
A Ry-w 2A ]’

kot — /v,
Py =W /U,

ww R -y W w
Y= Thi-w Fi-w)’

ww Rt — Q/yo(uw w EloCw

_ww uw ku - w
Pss = u Pu—w \C? Pu—w w? :

kg —Q/v,

In the limit & -0, 7 vanishes and € reduces to 8 ,
which apart from notation is the form found by
Bernstein and Hirshfield.!

Vi. THE DISPERSION RELATION AND NUMERICAL
EXAMPLES

In order that (78) have nontrivial solutions it is
necessary that the determinant

D=dete =0. (83)

This yields an eighth-order polynomial equation
for k. In practice, for the cases of interest

«< w? and u~c, and two of the roots are such that
w/k=~c, That is, they propagate in the negative-
z direction counter to the beam and are substanti-
ally unaffected by the tenuous beam. The remain-
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ing six roots correspond to waves which propagate
along the beam. When £ -0 the two of these which
can be associated with cyclotron waves in the limit
of no helical pump disappear, and one recovers
the result of Bernstein and Hirshfield.! These fea-
tures will be illustrated later when numerical ex~
amples are discussed.

Now Egs. (61)~(67) comprise a tenth-order sys-
tem of linear ordinary differential equations which
require for a unique solution the stipulation of ten
boundary conditions. Since usually there is negli-
gible reflection of waves at the output end of an
FEL amplifier of finite length, two conditions are
the requirement that the amplitudes of the waves
propagating counter to the beam be zero. This
requirement can be most easily dealt with via
solving the system of ordinary differential equa-
tions by means of a Laplace transform in z, as
was done in Ref. 1, instead of the normal mode
analysis. The dispersion relation, of course, de-
termines the poles of the transform in terms of
vhich the inversion can be readily accomplished.
“he resulting solution for %4(z) can be written in

~rms a(0), assuming that all other first-order
Juantities are zero at z=0 and involve linear com-
binations of the six modes corresponding to the
six roots with Rek>0. Since in general these roots
are nondegenerate, but differ by amounts of order
Ak much less than w/c, there will be interference
amongst their contributions to 4(z), which be-
comes evident after a distance of order 27/Ak,
This feature has been examined in detzail in Ref.

1. We will not pursue it further here, other than
to note that the single particle theory in which one
examines the second-order er-rgy change in a
distance z of an electron movi ., in the zero- and
first-order electromagnetic field, and identifies
this with the gain in energy of the high frequency
field, is valid only for zAk<1.

We now consider the dispersion relation (83) in
an FEL with guide magnetic field. Because of the
complexity of the dielectric tensor € [see Eq. (79)]
it is convenient to study the dispers_ion relation by
comparing two FEL’s, identical except that one
has an axial field while the second does not and
thus is characterized by the dispersion relation
D, =det(§)=0, the properties of which are well
understood. We make the comparison between the
two lasers by fixing the parameters of the FEL
without the guide field and adjusting the value of
the pump field parameter £, in the laser with the
guide field so that the axial velocities # (and there-
fore also w) in both lasers are identical. This
assures the same Doppler upshift of the frequen-
cies in the lasers. A similar comparison has been
made by Friedland and Hirshfield for the single
particle model of FEL.2

Let £ be the pump field parameter in the FEL
without the guide field. The unperturbed electron
velocity components are then given by w/c=£/y,
and u/c=[1-(1+£)/#2]*/2. Therefore, following
Eq. (35), with the guide field

t=83(1-5 ). (84)

Yokott

This equation demonstrates the intriguing possibil-
ity of reduction of the pump field in an FEL as one
approaches the cyclotron resonance condition Q/y,
- kqu. Accessibility of the resonance, however,

is not guaranteed, as was shown in the recent
study® of the unperturbed electron beam orbits in
an FEL with the guide field. It was demonstrated
that for given values of v, k,, &, and £ the elec-
trons can possess more than one steady state.

For example, Fig. 1 shows u/c versus Q/c for
ky=6 cm™, y,=3, and £,=0.5. For > 8, it is
seen that only one branch exists (branch C). But
when Q< 8., two additional branches (A and B) are
allowed. It was also shown that the necessary con-
dition for orbital stability of the steady-state solu-
tions against small perturbations is given by the
inequality

L (“’>3<1. (85)

ckyé, u

Branch C is always stable, since w<0 on this
branch. On branches A and B, w>0, but, as was
shown, only branch A satisfied (85) and thus may
be used in applications. Since the ratio w/u is
kept constant in our comparative study, one can
substitute the expression for &, found from (35)
into (85) and write the stability condition in the
following form:

__ Yokt
Q< Q, “Tx /P’ (86)
valid for branches A and B. In our sample case
(ro=3, k,=6 cm™, and £5=0.5) one has Q./c
=16.18 cm™, and, therefore, according to (84),

u/c

10 A

0.8} c

0.6: B

0.4}

0.2

i Qe,/c
o'o 11 1 1 L B I | 1 1 1 1 1 A
4 8 12 16 20 24 28

Q/c (em™)

FIG. 1. Steady-state normalized axial velocity u /c
as a function of normalized axial magnetic field Q/c.
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N
o
T

-2.0

FIG. 2. Dispersion function D’ on branch 4 for the
case vy=3, ky=6 cm~!, and w/c =40 cm~!, The dashed
curve represents the FEL without the guide magnetic
field and £)=0.5. The solid curve is for the FEL with
the guide field (2/c=6.5 cm™!), where smaller values
of £) are used so as to provide the same values of # and
w as for the dashed curve.

&, on branch A cannot become less than £, =1.562
X 1072,

We return now to the study of the dispersion re-
lation (83). The form of the dielectric tensor €
[Eq. (79)] suggests that for values of w, small”~
enough, the function D will differ significantly
from D, only in the regions where (ku — w)? — (kqu
~Q/y0)?=~0, as a result of the resonance in the
denominator in T [see Eq. (80)]. We demonstrate
a typical effect of the axial guide field on the dis-
persion function D in Fig. 2, where the function
D'=D[ku - w)/w,(1 —u?/c?)]?/y, (the full line) is
shown versus n=ck/w for branch 4 in the sample
case when w/c=40 em™, w?/c*=0.5 cm™, and
Q/c=6.5 cm™. In the same figure the dashed line
represents the case with no guide field.

It is well known! that the unstable regime in an
FEL without the guide field can be described as a
coupling between the transverse electromagnetic
modes with the dispersion relation n, , =12 ck,/w
and the electrostatic beam modes characterized
by n3'4=c/uicw,/yowu. One can see from Fig. 2
that these four roots are only slightly perturbed
by the presence of the axial field. There exist,
however, two additional roots in the neighborhood
of the resonance points n5'6=c/ut(ck0/w -Qc/
yuw). If the resonances are widely separated as
in the case of Fig. 2, the onset of the unstable
mode is roughly the same as without the guide
field, namely, as the frequency w increases, the
root n, moves to 1, passing the region n,<n<n,
(since n; 4~ c/u). The modes couple in this region,

0.03}
0.02}
0.01 n>
ooop—1—L 1 I
102 1.04 1.06
-0.01}

-0.02

/
oo3f (b
0.02
001 n

I T T
000152 104 106 1.08
-0.01

-0.02} /

/

D
0.03 (¢)

0.02-

0.01 ne Uns

] 1 | | 1 1 I 1 1
000452 704 106 1 N MO 112 114
-001 / N\ n
-0.02~ Y ~=

FIG. 3. Graphical representation of the dispersion
function on branch A for the case v =3, k=6 cm™?,
£3=0.5, w/c =50 cm™!, and increasing values of the
guide field (the solid curves): (a) Q/c=14 cm™!, ()
Q/c=15 cm™!, (c) 2/c=16 cm~!, The dashed curves
correspond to the FEL without the guide field. Two
pairs of roots of the dispersion relation become com-
plex as the real roots #n3 and », are squeezed by the

resonances at n; and #g.

and the roots of the dispersion relation are com-
plex. When w continues to increase, n, becomes
less than n,, the coupling diminishes, and one
again has a stable regime.

New effects may occur when the resonances 7; ¢
approach each other. This situation is shown in
Fig. 3, where the full line represents the disper-
sion function on branch A for increasing values of
. One can see in this example that even for w/c
=50 cm™ in our sample case (all the modes are
stable in this case if 2 =0) it is possible just by
changing 2 to squeeze the roots n3 4 by the reso-
nances #7; ¢ so that two pairs of the roots become
complex. For higher frequencies, when again the
FEL without the guide field is stable (r, <n,) one
can also get an unstable regime as is demonstrated
in Fig. 4 for w/c=100 cm™. Our numerical study
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0.003
0.002}-
0.001

m
0. 11
00015506 1.
-0.001 |-
-0.002

b
0.003 |- ®)

0.002 |-
0.001
0.000 —1—1
1.05 1.06
-0.001 |-

-0.002 -

T

l
|

/1.0‘8’ l]lm 110 1n
|

U 1
D | (o)
0.003
0.002 A
0.001 n \ I

1 1 1 )x

0.000 1.05 1.06 [ 107 1¢
1)

1

T

/
{

|
\ | |

|/
A

\

T

T

/n

* L 1 1
B

1
9 110 m
-0.001~
-0.002 |-

I

FIG. 4. Graphical representation of the dispersion
function on branch A for the case v, =3, k=6 cm™?,
£9=0.5, w/c =100 cm™!. The solid curves: (a) 2/c=14
cm", () 2/c=15 ecm~!; (c) 2/c=16 cm~!. The dashed
curves correspond to the FEL without the guide field.

shows that similar behavior is also characteristic
for branch C with the only difference that there is
only one pair of unstable modes in the low and the
high frequency ranges, respectively.

We finally summarize our comparison of the
FEL’s with and without the guide field in Figs. 5
and 6, where the imaginary part of & is shown as
a function of w/c for various values of the axial
field in our sample case (y,=3, k,=6 cm™, £
=0.5, w3/c®*=0.5 cm®). Figure 5 is for 0<Q/c
<14.5 ecm™ on branch A (the full lines) and 21<8/c
<28 ¢cm™ on branch C (the dashed lines). The
resonances #; , are relatively wide apart from
each other and formally the instability in this
range of § occurs similarly to the case of the las-
er without the guide field. Nevertheless, the
presence of the guide field increases the instability
on branch A and tends to decrease it on branch C.
In addition, the linewidth of the unstable regime is
seen to be significantly increased at lower fre-
quencies on branch A. Together with this, no in-
stability exists at frequencies higher than those

04}

o
w
I

o
N
I

Im (k) (cm'])

o
T

w/c (cm")

FIG. 5. Spacial growth rates Im(k) versus w/c on
branch A (solid curves) and C (dashed curves) for vari-
ous values of 9/c: (1) 2/c=0, (2) 2/c=12 cm~1, (3)
Q/c=14 cm™!, (4) Q/c=14.5 cm™!, (5) Q/c=28 cm™1,
6) @/c=23 cm™!, (7) @/c=21 cm~!. For all the cases
Yo=3, ko=6 cm™!, and £ =0.5.

characteristic of the FEL without the guide field.
As one approaches the resonance condition
=y uk, (further increasing € on branch A or de-
creasing it on branch C) a completely different
type of behavior is observed as is shown in Fig. 6
for /¢ =15.25 cm™ on branch A (the full line) and
Q/c=18 cm™ on branch C (the dashed line). The
unstable region extends over the entire low-fre-
quency range and there are two different unstable
modes on branch A, as was mentioned previously.
In addition there exist unstable modes in the high-
frequency region, which was totally stable before.
Note that the values of Imk in this high-frequency
regime are only weakly dependent on the frequency
itself.

Thus, in conclusion, we have demonstrated in

l.m (k) (cm’] )

1
ool 1 1 1 11 1 11
O 20 40 60 80 100

w /e (em™)

FIG. 6. Spatial growth rates Im(k) in the sample case
(v0=3, ko=6 cm™!, £=0.5) versus w/c in the regime,
where the cyclotron modes couple to the beam modes
(see Figs. 3,4). Branch A (solid curves): Q/c=15.25
cm™, Branch C (dashed curves): 2/c=18 cm~!. The
unstable modes are extended over the low- and high-
frequency regions. There exist two different growth
constants in this regime on branch A.
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our numerical examples that the presence of the =Rty . )

guide field in an FEL introduces the following de- (iii) The linewidth of the unstable modes can be

sirable features: widely extended to both low- and high-frequency
(i) One can operate the laser with much lower ranges.

magnitudes of the pump field without sacrificing
the undulatory velocity of the electrons. This al-
lows one to use shorter periods of the wiggler with

ACKNOWLEDGMENT
the same currents.
(ii) The laser can be operated in higher gain re- This work was supported by the Office of Naval
gime by approaching the resonance condition £ Research and by the National Science Foundation.
11, B. Bernstein and J. L. Hirshfield, Phys. Rev. A 20, 31.. Friedland and J. L. Hirshfield, Phys. Rev. Lett. 44,

1661 (1979). 1456 (1980).
%L. Friedland, Phys. Fluids 23, 2376 (1980).



