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A free-electron laser with the guide magnetic field operating as an amplifier is
analyzed. A simple dispersion relation, similar in form with or without the guide field, is
derived. The study of the solutions of the dispersion relation indicates that the guide al-
lows us to (a) enhance the spatial instability in the amplifier, and (b) significantly extend
the frequency range of the instability to lower and higher frequencies. This improved
operation of the amplifier with the guide field may be achieved at lower values of the
pump helical magnetic field. An expression for the power gain in the amplifier as a func-
tion of its length is derived and applied in numerical examples to demonstrate the effects

of the guide field.

I. INTRODUCTION

Free-electron lasers, in which the energy of a re-
lativistic electron beam is transferred into high-
frequency coherent radiation, have been studied ex-
tensively in recent years.! One can schematically
divide free-electron-laser experiments into two
groups. The first is characterized by low beam
densities (I ~1 A) and high relativistic factors y
for electrons (y>20).>® In these devices collective
plasma effects are usually unimportant and the
single-particle theory is used to describe the in-
teraction. The second group of experiments, for
example,““6 uses intense electron beams (I > 1 kA)
with relatively low energies (Y < 10). In such lasers
the collective interaction plays the major role. An
important feature of the latter group of experi-
ments is the presence of a strong axial guide mag-
netic field, primarily designed to collimate the high
current electron beam in the interaction region.

An analysis of the effects of the presence of the
guide field was recently carried out.”~® The
single-particle theory of such lasers® showed that
the addition of the guide field may provide a signi-
ficant increase of the small signal gain due to a
resonance effect between the frequency of the scat-
tered electromagnetic wave and the natural
response frequency of the steady-state electron or-
bits in the combined pump and guide fields. In
addition, the cold fluid, fully collective theory of
the laser’ predicted an extension of the frequency
range of the spatial instability.

In this paper we continue the study of the free-
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electron laser with a guide magnetic field and con-
sider a conventional amplifier problem. In con-
trast to Ref. 9, where only the mode stability
analysis was carried out, our aim will be to actual-
ly find the spatial development of the electromag-
netic wave along the amplifier. We shall employ a
number of physical approximations which will re-
sult in a much simpler dispersion relation than
that developed in Ref. 9. The problem is thereby
significantly simplified and leads to a clearer
understanding of the device.

The work proceeds as follows. In Secs. II and
III a system of transport equations for the ampli-
tude of the electromagnetic wave in the amplifier
is derived. Section IV deals with current sources
in the transport equations by considering the
momentum equation for the electrons described by
the cold fluid model. A simple dispersion relation
is derived in Sec. V and there its solutions are
analyzed both analytically and numerically. In
Sec. VI formulas for the z dependence of the am-
plitude of the electromagnetic wave in the amplif-
ier are obtained. We shall simplify these formulas
in several limiting cases in this section and present
numerical examples. Finally, conclusions are listed
and discussed in Sec. VIIL.

II. FIELD EQUATIONS

Consider a cold relativistic electron beam pro-
pagating along the z axis of combined helical
pump and axial guide magnetic fields described by

% (2)=B o€ coskoz +€,sinkoz) + B o€, , (1)
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where % 10 and & |o are constants. The helical
part of # represents the field on the axis of a
magnetic wiggler, commonly used in free-electron
lasers and ko =2m/A, where A is the pitch of the
wiggler.

In addition to the electron beam we introduce an
electromagnetic wave propagating in the same
direction as the electron beam. Our aim is to solve
the conventional amplifier, namely, to find the
electromagnetic field at a point z > 0 in the system
if this field is known at z =0.

We assume that the system is infinite and homo-
geneous in the direction perpendicular to the guide
field. Then the electromagnetic fields E(z,t), B(z,t)
are described by

9B, OE,

cezx—é—z-=—at———47reNVl, ()
_ 9E, 9B,
—c€, X 2 = o’ (3)
oE,
= —4meN , (4)
dz
B,=0, (5)

where the cold fluid description of the electron
beam is used and N (z,t) and V(z,t) are, respective-
ly, the electron density and the velocity field.
They satisfy the continuity equation

%—’tv+§—zuvv,>=o . ®)

The subscript L in (2) and (3) describes the com-
ponents of the corresponding fields which are per-
pendicular to the z axis. Since a stationary prob-
lem is considered here, we Fourier decompose in
time various time-dependent quantities and seek
solutions for E and B in the form

E(z,t):Re

2 .
_’_"_C_E(z)e —iwt ] ,
e

_ﬁ(z,t)=Re

2 A .
ﬁ’—c—B(z)e—'"”l .
e

E 0
w/

El(z)=fl(0)cos%z+

iE(0)

1A . .
=_2_El(o)(ex(w/c)z+e 1(m/c)2)_ /e

e (2 ER (£l @/Nz—6) _ ,—ilw/c)Nz—E)
_zwfodé-F(é—)exmcz g_etwcz §).

In addition, we assume that the electromagnetic
field is weak enough so that it only slightly per-
turbes the beam and one can write

N(z,t)=Ny+Re mzﬁ(z)e‘i“"l ) (®)
e
Viz,t)=V(z)+Re[ P(z)e ~i1] , )

where No=const and V(z) are the density and the
velocity field characterizing the beam without the
presence of the electromagnetic wave and Mand V
are small perturbations. Equations (2) and (3) are
then combined and yield on linearization

2p 2 A - A
TEG | 0 p (=i L {2012+ Vol @],

dz? c? ct

(10)

where w) =4me’No/m. The first term on the
right-hand side of the wave equation (10)
represents transverse currents induced by the elec-
tromagnetic wave, while the second term describes
the axial bunching of the electron density due to
the ponderomotive forces of the wiggler magneto-
static field and the magnetic component of the
wave. It is this bunching term which causes the
free-electron-laser instability’ and is the largest
part of the source in the wave equation. The
reason for the importance of the axial bunching is
the strong coupling between the transverse elec-
tromagnetic wave and the axial motion of the elec-
trons which travel with the velocities close to the
phase velocity of the wave. We shall demonstrate
this effect later. Nonetheless, for simplicity, al-
ready at this early stage, we neglect the first term
in the source in (10) and rewrite the wave equation
as

2 £ 2 A - A —
4 E\(z) +2 B (2)=i3VoM(2)=F() .
dz? ¢ c

(11)

The general solution of (11) is

. c L— )
—sinz 4+ = fo dEF(E)sin(z —§)

(ei(w/c)z__e —i(w/c)Z)

(12)

Thus, the full wave solution for the perpendicular component of the electric field becomes
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eﬁl(z,t) 1 N A lﬁl (O) ic z — . . z
=+R il(e/c)z —ot] _ _ [ —ilw/c) _ ,—2ilw/c)z s i(e/c) ]
———=1Re le E(0)——— = [, deF©e e [ deFe

+ e—-i[(m/c)z+wt] El(o)+i

In order to further simplify the problem we now
make the following assumptions. Firstly, con-
sistent with the amplifier conditions, we neglect in
(13) the term proportional to

exp[ —i(wz/c +wt)]

which represents a constant amplitude wave pro-
pagating in the negative z direction. Namely, we
set

N ()
E\(0+i——=0. (14)

w/C

Secondly, we assume that the frequency o of the
amplified electromagnetic wave is much larger
than any other characteristic frequency of the sys-
tem, such as the plasma frequency w,, the effective
undulation frequency ck of the wiggler, or the na-
tural response frequency cu of the electrons’ (see
also Sec. III). This assumption is common to
many treatments of free-electron lasers, where one
is usually interested in frequencies » of the order
of 29%koc with appreciable values of the relativistic
factor

y=[1—(v/c)?]"1/%.

Exploring this disparity. in frequencies we assume
that

E(Z)=3(z)ei(w/ﬂz ,

A - (15)
B(z)= b(z)ex(m/c)z ,

with amplitude @ and b varying on the scale much
slower than that described by the exponential fac-
tors in (15), namely, in orders of magnitude

dlna dlnb W
—_— —_ . 16
dz ' dz 7 (16)

Accordingly, one can also write ¥ and M and
therefore F in the form

A .
V(z) =c—v*(z)el(m/6)z ,

M(z)=n(z)e! @/ an

.o VoL n(2) iiw/erz
—— "¢ ,

ﬁ(z)=?(z)ei(m/f:)z= >
c ¢ c

where ¥, n, and f satisfy inequalities similar to

E(0)
w/c )

(13)

T
(16). Then, on using (14)—(17) in Eq. (13), one
gets

§D=3,0— 51— | [[dEf(©
._e—21'(a)/c)zfozdgf(é-)eZi(w/C)g .

(18)
Differentiation of this equation yields
da,
dz

Finally the equation for the z component of @ is
obtained from (4):

—e—2l@/c) fozdf F(g)ediron (19)

c

dz

n(z)

20
% (20)

a,=—

ITII. LAPLACE TRANSFORMATION OF THE
FIELD EQUATIONS

In order to solve the field equations (19) and (20)
we have to specify the unperturbed velocity V, of
the electrons in the beam. We will use here the re-
sults of a recent study’ of the unperturbed orbits in
free-electron lasers with the guide magnetic field.
There it was demonstrated that simple helical tra-
jectories, having the same pitch as the wiggler
magnetic field and described by

V0= —w (€,coskoz +€,sinkyz) +u€E, , (21)

are allowed in magnetic field configuration (1). In

Eq. 21),

u = const ,
qu/Y
== t, 22
w kou —Q /7 cons (22)

where 0, || =e® || /mc. There exists the possibili-
ty of several different solutions (22) for u and w
(and therefore several different orbits) for a given
set of the values of Q,, Q) ko, and y. As an ex-
ample, Fig. 1 shows the axial velocity u /c versus
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FIG. 1. Steady-state normalized axial velocity u /c vs
normalized axial magnetic field Q; /c.

/¢ for the case kg=3 cm™!, y=S5, and

Q,/yc =0.3 cm~!. It can be seen in the figure
that for Q> Qf‘ only one solution (branch c) ex-
ists. But when ), < (]| two additional branches
(A and B) are allowed. It was shown in Ref. 7
that only branches A and C are stable, against per-
turbations, while branch B is unstable and there-
fore cannot be used in applications.

We now proceed to the solution of Egs. (19) and
(20) for the fields. First, we use a more natural
coordinate system in which the components of the
magnetic field (1) and of the unperturbed electron
velocity (21) are constants. For this purpose let

€= —€,sinkoz +€,coskyz ,
€= —€,coskoz —€,sinkyz , (23)
€;=F, .

Then
B (2)=— B 10€1+ B 03 , (24)
Vo(z)=wé’2+ué'3 R (25)

and, on writing
E:a@’l +0232+a333 y

Eqgs. (19) and (20) become

da, “2ilw/c)z= 22 oy 2ilw/o)

o —komy=e @, | [XF(gedertag |
(26)

da, —2i(w/cz= 22y 2ilw/c)

—d—z~+koa|=e Ho/ezg,. [ fo f(§e'? cgdg] ,
(27

a3=—'—, (28)

This system of equations can be solved by means
of a Laplace transformation. Namely, if one de-
fines

ay = fowdza,-(z)e""", n= fomdzn(z)e—ik’,
(29)

where Imk is negative enough to ensure conver-
gence, then (26) —(28) transforms into

kg iowny
k§—[k +2w/c)]* c*

ika]k—koazk =01(0)+

’

(30)

[k +2(w/c)] owng
k3—[k +2w/c)]* c*

(31

ika2k+koa,k=a2(0)—

n
|2tk lay=——. (32)
c c

According to (15), k¢ /w,kogc /0 << 1, and therefore
we can write the field equations in the following
approximate form:

ika,k—kotIZk:a](O) » (33)
1 wng
ikazk+kodlk=‘—3—+az(0) ’ (34)
2 ¢
n
Gy =i— . (35)
wc

Equations (33) —(35) must be supplemented by
the equation for the electron density perturbation
n. This is obtained by taking the Laplace trans-
formation of the linearized continuity equation (6):

el @tck
k=7 ou/e —D+-ku 2k

—wz————L———v
P o(u/c —1)+ku *°

~

It is the factor
o/[o(1—u/c)—ku]>>1,

which makes the bunching in the electron beam
density so important and justifies the transition
from Eq. (10) to Eq. (11).
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IV. MOMENTUM EQUATION

In addition to Eq. (36) for the density one has to use the momentum equation

d d = e |V - = =
-— — |(W)=—— [—X[# B(z,t E(z,t
at+V’az (vV) ol X[ % (z2)+B(z,t)] +E(z,t1) (37)
in order to find vy in (36) and thus completely define the system of Egs. (33)—(35). The components of
(37) in the natural coordinate system (23) are
9 d
3 . o) o & et (v
_a'_t-+ 35 V]-——Vz k0V3—7 ——-—Y—V:;—Vl Tn‘;,‘ ”;“Bz—E] N (38)
3 3 | ot oz e v,
'a—t+V3§z‘ VZ"_'—'VI koV:;—'*— ——V2 y —‘};‘}7 _C—BI+E2 > (39)
d s
Evi £ el 14
By d |y My, 1% %] e \Vip Vap o, (40)
ar 332 |73 1— V3 y my | ¢ 2 ¢ Prths
[
Here, energy conservation yields r
4 y iAU3k= dU]k-—l.Ai_“k_
d 0 e Yo
—"+V3"_ ’}/=—’_‘5‘(V1E1+V2E2+V3E3) .
ot oz mc 1 |w
- —blk——a3k ’ (46)
. (41) Yo | €
Linearization of (41) gives
where
u d
I'=slio|——1|+u— |’'=—wa,—ua;,
¢ dz 2 A=2 | X 1| +kH
c|c c
(42)
where, similar to (7) and (15), we defined and
7=y0+Re[I‘(z)e‘i[“"“(“’/"”] , (43) a=kou/c —Q)/cyo=Qu/cyw, 47)
where ¥, is the unperturbed relativistic factor and b=kow/c —Q /cro=Qw/cvou , (48)
to orders of magnitude d(InI")/dz << w/c. d=Q./ (49)
Linearizing Eqs. (38) —(40) and taking the Laplace =/CY0
transformation we get g=wa/c+ub/c . (50)
PAv = avy +bvs +gﬂ‘— In order to eliminate b ; and b,; from (44)—(46)
Yo we use Eq. (3), which reduces to
4 2 —an |, (44) ic ..
Yo | ¢ b1k="02k+;['k02k+koalk_a2(0)] , (51)
r
. aow Lk )
iAvge= —avy—iA" "t b2k=a1k—%[z’ka,k—-kank-al(O)] . (52
-1 lb, k+ax |, (45) Further simplification is possible by using (33),
Yo | € (34), and (36):
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P "I S "

="t 3 %=1 3 A 3k »
(53)

by=ay . (54)

Finally the substitution of (53), (54), and (35) in
(44) — (46) gives

iA”1k=“”2k+bv3k+g%+ %—1 %
(55)

iBvy = "avlk—iAl*:‘%—F —?——1 %
i?g%%vn, (56)

Equations (55)—(57) for vy (i =1,2,3) are now
easily solved. First, we multiply Eq. (57) by iA
and eliminate i Au,; and iAuy in the resulting
equation and finally, on using Eqgs. (56) and (57),
we find

aik ark
(pr—A2vy, =iA [ H o1 | K g2k
k 4 Yo Yo
2
. Wp U3k
+i T—, (58)
Cz?’o A
where
ur=a*—bd , (59)
and
2
S=a— |a%—bp? |=a——L,
c c cd
Tepy |g8_pw | _p W (60)
IR T 2e%g

The frequency u is the natural response frequency
to external perturbations.® It also defines the sta-
bility of the orbits in the absence of the elec-
tromagnetic field.” In the limit of zero axial field,
p=Kkou, namely, u is in this case the undulation
frequency of the electron beam in the wiggler. The
addition of the guide field allows us to parametri-

cally change the value of p, and, for example, to
significantly decrease it. Then, as was demonstrat-
ed recently,® the response of the system to perturb-
ing electromagnetic waves becomes very strong,
with a consequent increase in the gain of the am-
plifier. This effect of increased response at lower
values of u on stable branches A and C (see Fig. 1)
is clearly seen in solution (58) for v ;.

Substitution of vy, from (58) into (57) results in

iRA % _d[1—(u/c)]A> i

V3=

A2—qn? yo  (E—ANAT—7) 1o
(61)
where
R=—2_ % |2 )
u'—A c c
and
2
, @ dT u?  w?
K cy | ur—A? cr 2c?

V. DISPERSION RELATION

Substitution of (61) into (34) allows us to write
the field equations (33) and (34) in the form

€110 1k +€12a2x=a;(0) , (64)

€11k + €202, =a;(0) , (65)
where

en=ik , (66)

€n=—ky, (67)

0pow  d[1—(u/c)]A

€1=ko— , (68)
21 0 2C4‘}’0 (“Z_AZ)(AZ__,',IZ)
2
W, 0OW R
ep=ik +i—t——— . (69)
2 2y, (A2—n?)

Note that the resonances of A2=pu? and A%?=17? ap-
pear in the present theory very naturally, in con-
trast to the previous results,” where these physical
effects were hidden by algebraic complexities of
the reduced dielectric tensor.

Solutions of Eqgs. (64) and (65) can be written

01(0)622—02(0)612

A= D 5 (70)
a,(0)e;;—a(0)e
dyp= 2 nD 1 21 ’ (71)
where
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D =€y 1€—€126

kod[1—(u/c)]A

=—k+ki———

In order to find the z dependence of the electric
field of the wave we take the inverse Laplace
transformation of (70) and (71). As a preparation
to this goal (which will be accomplished in Sec.
VI) we shall in this section study the dispersion re-
lation

D(w,k)=0, (73)

which defines the poles of the right-hand sides of
(70) and (71). We restrict ourselves to the case
where the term in (72) proportional to co,z, is much
less than k3. Then the zeros of (73) can be found
by using perturbation analysis. To the lowest ord-
er, namely, for w: =0, there are two roots k = +k,.
To the next order we seek solutions of the form
k =+ko+x, with | x| <<k.

First consider solutions of the form
k =—ko+x. Assume also that we are interested
in frequencies @ which satisfy

) %—1 +kou | <<kou (74)
or
kou u
~ = — kou = .
o= [l+c Vikou =w, (75)

that is, in frequencies which are close to the dou-
bly Doppler upshifted frequency wg, characteristic
of free electron lasers. In this case

A=2 ¥ _4 _kol+xlz—2kou/c,
c |c c (4

and therefore if u? <4(kou /c)* (this condition ex-
ists on branch A in Fig. 1, where p < kqu as well
as on branch C for /v, < 3kou then (73) yields

d{S —2[1—(u/c)lko(u/c)}
pl—akdu?/c?

2
) wo
X1=T 2 122
16¢ Yo kou

-4
c

(76)

v
[4

The solution is real and no instability exists for
this mode. Moreover, the resonance condition
p?=4k%u?® in (76) cannot be easily achieved, so
that the values of x; are usually so small that they
hardly affect the vacuum mode at k = —k,,.

.UZ—AZ

l : (72)

[
Now let k =ky+x. Assuming again the ex-
istence of (74), we then have

A=B+xu/c <<kqu/c , (77)
where
B=2 L 1|4k, % (78)
clc c

is the mismatch frequency, characterizing the
difference between w and wq [see (75)]. Thus, in
this case,

w,z,ww koR

D~—2kox —
0 2c4,yo A2—772

, (79)

where we neglected the second term in the large
parentheses in Eq. (72), which is proportional to A.
The dispersion relation then becomes

2
Op uww

R =0. 8
yOm (80)

(A—B)A*—n?)+
This dispersion relation can be easily analyzed for
the case

wr>>A?, (81)

Only this case will be considered in this paper.
Note that the inequality (81) still allows us to use
values of pu? significantly lower than (kqu)? and
thus explore the possibility of an enlarged electron
response to perturbations.® Consistent with (81) we
have

2 9 [ w? bd|_ @ (1 bd
== "=t 2 |=a |2t 2
% ¢ u CY |Yz M
(82)
and
R=SE W v w i+b—‘f'. (83)
T N R L
Finally the dispersion relation (80) becomes
(A—BXA2—n?)+a’n*=0, (84)
where
2
o= cﬁ : (85)



2700 L. FRIEDLAND AND A. FRUCHTMAN 25

Note, that the form of Eq. (84) is exactly the same
as the well-known and studied cubic dispersion re-
lation for the case without the guide field. In the
latter case b =Qw /you =0 and

2

@
=2 L1 (86)

e %o 7
Properties of the roots of (84) in this case are well
understood. For example, when 17 << ko <<, two
roots of (84) are complex in the interval'®

1/3
27a*y}

—a*<B<

~T o~

(87)

At B=0 the unstable roots of (84) have a max-
imum imaginary part and the three roots are ap-
proximately

22173 [‘/3 WL

x,=—(an3)'3, x34=(a’ng D)

(88)

The presence of the guide magnetic field adds
several new effects. Here the behavior of the solu-
tions of the dispersion relation depends on the
branch of the steady-state orbits (branches A and
C in Fig. 1). In order to demonstrate the effect of
the guide field we shall make the comparison sug-
gested in Refs. 8 and 9, between two free-electron
lasers identical except that one has an axial guide
field, while the second does not. In the first laser
the pump magnetic field is reduced so that

m__Wro (89)

u kou —-—QH‘}/()
is the same in both lasers. If without the guide
field w/c =&/, then the latter condition defines
the value of the pump field for a given value of
the axial field

= (ko — 0y /70) (90)

In our comparison the guide field affects only the
parameter 1% in (93). Thus, if 7> 0, the use of
different values of the field is equivalent to the use
of different beam densities. This means that for
77> 0 the general properties of the solutions of (84)
for k [(87) and (88), for example] remain the same
as in the case without the guide field. This effect
is demonstrated in Fig. 2, where the imaginary
part of the solution of (84) for k is shown as a
function of w/c for various values of the guide
field in a sample case y,=5, ko=3 cm™!, £=0.5,
a); /c¢?=2 cm™2 (this set of parameters is charac-

90 100 10 120 130

w/clcm™)

FIG. 2. Spatial growth rates Imk vs normalized fre-
quency @/c on branch A (dashed lines) and C (solid
lines) for various values of 7 = /kouy,: Curves 1,
r=0; 2, r=0.5; 3, r=0.8; 4, r =0.9; 5, r =2.0; 6,
r=1.5;7,r=1.3; 8 r=1.26. In these calculations
Y0=5, k=3 cm™!, £=0.5, and co,z,/c'2=2.0 cm~2,
Note that in all the cases in the figure 5°> 0.

teristic to the Naval Research Laboratory VEBA
accelerator conditions). It can be seen in the figure
that the parametric behavior of Imk on different
branches (A or C) is different. On branch A

bd >0 (since Q) /o< kou) and therefore 7 on this
branch is always larger than 13 [Eq. (86)]. When
u? decreases, 7% increases and so does Imk. A
similar effect of an increased response was also
found in the single-particle theory.® Consistent
with (87) the upper frequency bound of the insta-
bility remains fixed in Fig. 2 and the lower fre-
quency bound decreases with an increase of 2. In
contrast, on branch C, bd <0 (Q)/yo> kou) and
therefore 7? decreases as ),,/v0 approaches kou,
until 72 vanishes at Q) /v0=1.25kou. At this
point the coupling between the modes in (84)
disappears and so does the instability. In order to
understand this effect let us again consider Eq. (57)
for vy; which, as we already know, defines the
bunching in the electron density, responsible for
the free-electron-laser instability. The first three
terms in this equation are important to the discus-
sion that follows. The parts of these terms propor-
tional to a,; describe (a) the effect of the pondero-
motive force on the electrons due to the pump
field, (b) the relativistic effect of the change of v
due to the force a, in the perpendicular direction,
and (c) the ponderomotive force of the electromag-
netic wave. It can be checked that these three fac-
tors lead to the appearance of the quantity
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1/7%+bd /u? in the expression (82) for 5. On
branch C the ponderomotive forces act in opposite
directions. This leads to a competition and to the
possibility that 52 vanishes. By simple algebra, we
find that this happens when

U0 _pou (146 1)
Yo

or in our sample case when €,o/yo=1.25ku.

This is consistent with the results in Fig. 2. At
this point 7?=0 on branch C.

A new and important effect appears if one
further decreases ()),/7, on branch C, thus forcing
7% to become negative. The formulas for the roots
of a cubic then indicate that the region of 8 where
(84) has complex roots is now defined by

27a2 2 173
Bx | = . 92)
B<—a?, (93)

which is the region on the 8 axis complementary
to the interval defined in (87). Thus the possibility
of getting negative values of 1? on branch C allows
one to extend the range of the instability to both
lower and higher frequencies. This effect for our
sample case is demonstrated in Fig. 3, where Imk
on branch C is plotted versus w/c for several
values of )| <. Note that in both regions (92)
and (93) Imk approaches approximately the same

0,22 e

|
|
1

— S |
80 100 120 140 160

wre (em™)

FIG. 3. Spatial growth rates Imk vs /c on branch
C in the sample case (yo=S5, ko=3 cm~}, £=0.5,
®}/c?*=2 cm~?) in the regime Q) < Q0(n*<0). Each
curve corresponds to different value of r = /kou vy
Curves 1, r=1.2; 2, 1.15; 3, r=1.1.

value for large enough values of 8. This property
of the solution can be seen directly from the
dispersion relation (84) which at large B is approxi-
mately

—BA?—p?)+a*p*=0.

The solutions
12

a2
A=B+ku=1 |n’ 1+

become purely imaginary for S large enough when
7% <0 and Imk approaches +( | 7%])!/2.

VI. INVERSION OF LAPLACE
TRANSFORMATION

The z dependence of the amplitude of the trans-
verse electric field of the wave in the amplifier can
be found on applying the inverse Laplace transfor-
mation to Eqgs. (70) and (71). We write the result-
ing expressions in the form

a,(z)=—[a,(0)+ia,(0)]4,(2)+a,(0)Cy(z) , (94)
a,(z)=i[a,(0)+ia;(0)]4,(z)+a,(0)C;,(z) , (95)

where
1 €12
A(2)=—— [ dk—=e'
2w D (96)
1 €2 ks
A2(Z)=; fdk'Fe' ,
and
€ntiepn .
C1(z)=?1— I dki_;—ne'k’,
i 97)
1 €n—i€n g4,
Cole)=—— [ ak——F e,

and the integration in (96) and (97) is carried out
in the upper half of the complex plane (Imk > 0)
and the path of the integration is taken to be above
all possible poles of corresponding integrands. We
will concentrate now on evaluation of the integrals
Ay, A,, Cy, and C, in terms of the residues of the
integrands.

The poles of the integrands in (96) and (97) are
defined by the roots of the dispersion relation
D =0. It was shown in Sec. V that four such roots
are of interest. One of these roots k; = —kg+x,
is located near the point —k,. The remaining
three roots k; =k +x; (i =2,3,4) are all in the
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neighborhood of the point kg, so that they are well where
separated from k;. Consider first the residues as- _ .
sociated with the roots k, ; 4. In this case in the Ar=B+xu/e (i=2,3,4)

neighborhood of these roots we write k =k +x, are the roots of the cubic (84). Thus
with |x | <<kq and thus [see (66)—(69), (82), and
(85)] €12 €1 u(A—n?)
€ =iko+ix , (98) D D 2c(A—ANA—ANA—A,) ]
€p=—kq, (99) (103)
€1=~kq , (100) €ntiep ixu (A’ —n?)+2ia*n’c
22 D 2cko(A—A)A—A)A—A,)
en=iko-+ix +i—2TE_ (101) 2ekolf = Al A=A)A A
u(A*—n?) (104)
Here, we have neglected ad'dltlonal tt':rm‘m €, [see €11—i€ ixu (A _le )
(68)] as we also have done in the derivation of the D - 2k A—A)A—A)BA—A)
dispersion relation (84). The determinant D then NETMARTAIART T
becomes [see Eq. (84)]: (105)
De— (ifoc 5 [(A—B)NA2—n?)+a’n?] On employing the equality
u 2k"’ x;ju(A?—p?) = —a’nc (i =2,3,4)
4
=— ;(Az—_nz)(A—-Az)(A—As)(A—AU , we now find the integrals associated with the

(102) modes kz,k3,k4:
|

A(12,3,4)(z)= —A (22,3,4)(2)

i ix,yz ixyz ix,z ik
_____a2172€ e + e + e e( 02 ,
2 x2u(A2—A3)(A2—A4) X3U(A3—A2)(A3'—A4) X4M(A4——A2)(A4—A3)
(106)
2,2 ixyz ixyz ixyz .
C239 ()= _ 234 (5)— 4 X1 e e e ikgz
)= = ) =t . B (Br—an) T (By—A(Bs—Ag) T (Ay— Byl Ae—Ay)
(107)

Since |x; | << kg, the contribution the integrals C; and C, make in Eqs. (94) and (95) can be neglected and
therefore the part of the solution for a,(z) and a,(z) associated with the modes k,, k3, and k4 can be writ-
ten

a,(0)—ia,(0) o2 fxy2
a3 ()= — a3 (z)= — ! 2 ay? € + e
2 Py(Py—P3)(Py—Py) ~ P3(P3—Py)(P3—Py)
eix4z ikgz

e ", (108)
T PPy =P (P,—Py)
where P; =x;u /c.
In order to find the contribution of the remaining mode k; = —ky+x; one can use the initial conditions,
rather than find the integrals (96) and (97) directly. Namely, on writing

—ik
a;(2)=Qe " 4a®¥(z), (109)

—ik,z

a(z)=0Q,e +a?3¥(z),

we find
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(0)—102(0)

a
0,=a,(0)—a>>*(0)=a,(0)+— onH
2 (110)
(0)+ia,(0)
Q2=a2(0)+“'1"2___21—1—a27’2H Py
where
1 1 1 1
H= = . (111)
Py(Py—P3)(P,—Py) + P3(P3—P,)(P3—Py) * Py(Py—P,)(P4—P;) P,P3P,
On the other hand from (102),
P,PyP,=(A,—B)A3—B)Ay—B)=—a’y?, (112)
and therefore
a,(0)+ia,(0)
Qi=iQ=——"—. (113)
Thus, finally, the full solutions for the amplitudes are
a,(2)= —iay(2)=~[a,(0)+iay(0)]e "o T*1"
’ ) ) 2 eixzz eixzz
—5[a1(0)—iay(0)]a’n + :
P2(P2—P3)(P2—P4) P3(P3—P2)(P3—-P4)
¥ ikgz
. (114)
t PuP—Py)P,—Py) |°
Assume now that initially
a,(0)+ia,(0)=0, (115)

namely, no electromagnetic energy is stored in the k; mode. Then, on using (111) and (112) we write (114)
as

ix,2 ix,z
l—e 2 l—e 2

Py(P,—P3)(P,—P;) | Py(Py—Py)(P;—Py)

a,(z)=—ia,(z)=a,(0) 1+a’p?

ix,z
1—e *

P,(P,—P,)(Py—P3)

ik
+ e, (116)

In several limiting cases this expression can be simplified and reduced to already familiar results.
(a) In the first example let |x;z | << 1. In this case we expand the exponentials in (116) in powers of x;z,
by using

Pi + P + it g’ nz? 117
(Py—P3)P,—Py) T (Py—P)Ps—Py) ' (Py—P)P—Py) |’ "~
we obtain the approximation
3.2,2.3 .
a,(2)= —ia,(z)=a,(0) 1+ic—°;’73i ]e"‘°’ : (118)
u

A similar result was obtained in Ref. 10 for the case without the guide field. In contrast to Ref. 10, howev-
er, we did not assume conditions of maximum spatial growth in the deriviation of (118).

(b) In the second example we consider the case when one of the roots of (84), say root A,, is close to
(namely, | A;—B| << | B|) and the two remaining roots satisfy | A;|,|A4| <<B. These conditions are
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fulfilled when

2 o? l
>>max |1, |[—
|7 B
and then
oin?
P2=x2u/c=A2—B=—-—1LB2 )
2 a’
P3y=x34u/c=A34,—B=—B+ |n" [1+—

B

Thus, in (116),
Py(Py—P3)(P,—P,)~—a%yp?,
Py(Py—P,)(Py—P,)~2B°A, ,
Py(Py—P,)(Py—Py)~—2B%A; .

(119

(120

(121

(122)

(123)
(124)

Thus, for | Bz | > 1, we rewrite Eq. (116) in the approximate form

2p? . cA )
a,(z)= —ia,(z)~a,(0) 1+i9771—sin uSZe_”B’/“
3 3

zal(O)

1 +i-—ﬂ-—“"22 2 —ich/u
Bu

Therefore, on defining the power gain as

B lay(2) |2+ |ay(z)|? B a,(2)a}(z)

G(2)

we find from (125) that

ikyz
e .

T ay0) 2+ |ay(0) |2 a(0)a%(0)

2,2
G(z)zZCLB;l—zsin(ch/u)=2
u

The same formula for the gain was derived in the
single particle, small gain theory.® Thus the
single-particle theory corresponds to the region in
parameter space defined by inequality (119), which
was used in reducing Eq. (127).

We finally present a numerical example of the
application of Eq. (116) in our sample case. Figure
4 shows the frequency dependence of the power
gain at 25 wiggler periods for three values of
r =QH/kou7/0=0.8 (branch A), 1.1 and 2.0 (branch
C). It follows from (91) that for » =0.8 and 2,
172>0, while for r =1.1, 7)2<0. It can be seen in
the figure that the frequency dependence of G for
positive and negative values of 72 is completely
different which reflects different type of depen-
dence of Imk on o (see Figs. 2 and 3). If for
7> >0 we see a relatively narrow frequency range
for significant gain, then for 7% <0 this range is

cla’n? 3 sin(cBz /u)
u’ (cBz/u)?

ikoz
eO

(125)

(126)

(127

[

greatly extended. In Fig. 5 we present the z depen-
dence of the gain in the amplifier on branch C in
our sample case. The values of r =Q/kouy,
=1.1at w/c =145 cm™! (curve 1 in the figure)
and r =2.0 at w/c =105, 112, and 125 cm ™!
(curves 2a, 2b, and 2c) were again used in the cal-
culations. The oscillations in G at short distances
are due to the spatial interference of the modes in
the amplifier. It is seen that only at relatively
large distances does the spatial instability take over
and the growth of the gain becomes exponential.

VII. CONCLUSIONS

We have the following conclusions.

(1) The free-electron-laser amplifier with a guide
magnetic field was analyzed, using the cold fluid
description of the electron beam.
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FIG. 4. Frequency dependence of the power gain in
the amplifier at the distance of 25 wiggler periods in the
sample case. Different curves correspond to different
values r = /kouyo: Curves 1, r =0.8 (branch A); 2,

r =2.0 (branch C, #2>0); 3, r =1.1 (branch C, 7° <0).

(2) It was shown that in a large region of param-
eters space, similar to the case without the guide
field, the amplified electromagnetic wave splits
into four modes propagating in the direction of the
electron beam. Three of the modes are coupled

o 4 8 12 . 20'2}n28

FIG. 5. Power gain in the amplifier vs the length of
the interaction region measured in numbers of wiggler
periods for the parameters of the sample case: Curves
1, Q”/‘}’o: 1.1kou, o /c =145 cm"‘; 2, Q||/yg=2k0u, a,
w/c=105cm~!, b, w/c =112 cm~, ¢, w/c =125
cm~L

and one of them may be spatially unstable. The
competition between these three modes defines
various regimes of operation of the amplifier.

(3) A simple dispersion relation for the coupled
modes was derived and analyzed. The form of the
dispersion relation is similar to the well-known cu-
bic dispersion relation for the case without the
guide field, which makes the mode stability
analysis easier.

(4) The mode analysis gives the basis for the
construction of the actual electromagnetic fields
along the interaction region in the amplifier. Vari-
ous limiting cases were considered and agreed with
the results of existing theories. The power gain
versus the length of the interaction region was
found numerically in a sample case. The calcula-
tions demonstrated the effect of spatial interference
of the modes at shorter interaction lengths and
transition to exponentially growing gain at dis-
tances when the spatial instability becomes impor-
tant.

(5) The main effects due to the presence of the
guide field can be summarized as follows:

(i) Two types of helical orbits of the electrons can
be used in the amplifier with the guide field
(branches A and C in Fig. 1) for given values of
Yos ko, and Q) 1e

(i) On branch A the response of the electrons to
electromagnetic perturbation and therefore also the
spatial instability can be enhanced if the natural
response frequency (see Sec. IV) of the electrons
becomes small. This effect is equivalent to the in-
crease of the density of the electron beam.

(iii) On branch C there exists an axial field Qo
[see Eq. (91)] for which the coupling between the
modes disappears as well as the spatial instability.
This effect is the result of the competition between
the ponderomotive forces on the electron due to the
pump and electromagnetic waves. For Q> Q0
the parametric behavior of the modes is similar to
that on branch A. If Q)< QHO, however, the fre-
quency range of the instability extends significantly
to both lower and higher frequencies in contrast to
branch A (and branch C for ;> Q) where this
range is relatively small and usually has an upper
limit close to wo=2kqy2c.

(iv) The effects described in (i) —(iii) can be
achieved for given helical orbits in the presence of
the guide field at much lower values of the pump
field.
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