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Theory of a Nonwiggler Collective Free Electron
Laser in Uniform Magnetic Field

A. FRUCHTMAN anp L. FRIEDLAND

Abstract—A nonwiggler free eleotron laser, operating in uniform guide
magnetic field, is analyzed. The amplifier problem is solved self-
consistently on the basis of the kinetic theory. It is shown that the
asymmetry in the azimuthal distribution of the electrons’ momenfum
leads to a coupling between the transverse and the space-charge modes,
This, in turn, enhances the gain in the amplifier. In the case of a cold
beam, with the electrons gyrating coherently, the spatial growth in the
collective nonwiggler free electron laser (FEL) is comparable to that
found in conventional free electron lasers operating in similar regimes.

. INTRODUCTION

ONVENTIONAL free electron lasers (FEL's) explore the
idea of backscattering of a low-frequency pump wave by
relativistic electron beams, The pump wave forces the beam
to oscillate coherently, resulting in possible stimulated emis-
sion at a wavelength shorter by roughly a factor ay® (y being
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the relativistic factor of the beam) than the wavelength A, of
the pump wave [1]. For ¥* >> | the coefficient a« is 4 or 2,
depending on whether the pump is a regular electromagnetic
wave or a magnetostatic spatially periodic field. The latter is
typically produced on the axis of a magnetic wiggler (a bifilar
helical current winding with equal and opposite currents in
each helix).

Since the first successful operation of FEL at Stanford Uni-
versity (2], wigglers became an integral part in most FEL
experiments. Nonetheless, both theory [3], [4] and experi-
ments [5] showed that special care should be taken in con-
structing wigglers and in choosing radial dimensions and
entrance conditions of the beam in order to observe co-
herent helical electron orbits in the laser. Together with
this it was appreciated recently that spatially coherent un-
dulation of the beam, and therefore also Doppler upshifted
stimulated emission, can be caused not only by a wiggler but
also by the natural gyration of the electron beam in a uniform
guide magnetic field. In fact, in a cold beam, the electrons
move on coherent helical orbits with the pitch Ay = 2myu/S2
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where £ is the nonrelativistic cyclotron frequency, character-
izing the guide field, and u is the velocity of the electrons in
the direction of the guide field. Thus, amplification in the
system is expected at a wavelength A= Nol27 = mu/y2.
Single particle calculations of small and large signal gains in
such a nonwiggler FEL [6], [7] confirmed the attractive pos-
sibility of replacing the wigglers by a uniform guide field,
which was, as a matter of fact, almost always present in con-
ventional FEL experiments. However, the encouraging predic-
tions of the single particle theories could not be applied to the
collective regime of operation, when intense electron beams
(I>1 kA) with relatively low energies (y < 10) were used.
The collective interaction, usually termed “stimulated Raman
scattering,” had to be treated by a self-consistent theory.

Ott and Manheimer published a theory for a thin slab beam
in a waveguide [8]. The first study of a nonwiggler FEL
operating in the collective regime in free space was given by
H.rshfield et al. [9], who showed the existence of a spatially
unstable mode at the Doppler upshifted cyclotron frequency.
They considered a randomly gyrophased electron beam, in
which the momentum distribution function of the electrons
was

!(pl.ipxu ¢) =f(PJ.,Px)- (I)

Here p, and p, are the momentum components, perpendicular
and parallel to the direction of the guide field, and ¢ is the
azimuthal angle (f;¢ =py/py). It was also shown in [9] that
the longitudinal and transverse modes of the system are de-
coupled and only the azimuthal bunching mechanism drives a
cyclotron maser type instability. In this respect, the device,
considered in [9] and based on randomly gyrophased beams,
differs significantly from the conventional FEL's, where the
axial density bunching is primarily responsible for the spatial
instability.

We now show that the mode decoupling described in [9] is
the result of the random gyrophase distribution of the elec-
trons in the beam. We write the distribution function in the
form

fip,z,0=flp,2, ) N(z,1) (2)
where
fﬁp.z.r)d’p=l. (3)

Let f=fo +f, and N=N, +N, where fo and N, are the
values of £ and N when there are no perturbing electromag-
netic fields. Then the linearized perturbed transverse electron
current, which is the source in the Maxwell equations for the
transverse fields, is written as

JJ_ = eﬁo (0]_] } + e{UJ_o> E’[ (4)
where
W)= |ofs @p.  (0io)= |orfo d’p (5)

and the subscript 1 denotes components transverse to the
guide field. In the case of the random gyrophase distribution
(1), (vy) vanishes and, as a result, only the transverse velocity
perturbation (v, ) contributes to J,. If, however, the momen-
tum distribution has an azimuthal asymmetry, then (o)) # 0
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and the density modulation Ny (or the axial density bunching)
can also drive transverse modes of the system,

An example of a nonwiggler FEL with an azimuthally asym-
metric electron beam was recently studied in [10]. The beam
was assumed to be cold, and the momentum distribution at
the entrance into the device was taken to be

N,
f(p.pe. 8= 3= 8(p1~ Pio) 8(Pz = Pro) 8(8 - $0). (6)

We will use the term “helical beam™ to describe such a beam
configuration. It was demonstrated in [10] that in a laser the
helical beam provides enhanced spatial gain compared to that
found with a randomly gyrophased electron beam. The origin
of the gain enhancement is the aforementioned increased role
of the axial bunching in driving the instability.

This paper presents a kinetic theory of nonwiggler FEL's in
a uniform guide magnetic field. We consider an arbitrary ¢
dependence of the electron momentum distribution function
and, in contrast to the cold fluid model of [10], we base the
theory on a Maxwell-Viasov description. The scope of the
paper is as follows. In Section Il the Maxwell equations are
reduced to a simple set of first order ordinary differential
equations for the electric component of the electromagnetic
field in the system. The current and density sources for the
field equations are found in Section IIl. In Section IV we
apply the Laplace transformation to the field equations and
derive the dispersion relation governing the stability of our
system. Finally, in Section V the dispersion relation is studied
numerically for several configurations of the electron beam.
In the same section we also solve the field equations directly
and find the actual gain in a finite length nonwiggler FEL
amplifier.

1. FieLp EQUATIONS

Consider an electromagnetic wave propagating along a rela-
tivistic electron beam, gyrating in a uniform magnetic field
$=B,8,. Assuming a one-dimensional model, we can de-
scribe the electromagnetic fields E(z,¢) and B(z,r) by the
system of Maxwell equations

oB, _ 9E,
cé: X = o +4nl; (7)
oE, 0B,
- — T amm—— 8
%X " n ®
T ST 9)
0z
B, =0 (10)

where J; and N are the self-consistent transverse current and
electron density perturbations caused by the presence of the
electromagnetic wave.

We restrict our analysis to the stationary amplifier problem,
namely, we introduce an electromagnetic perturbation of fre-
quency w at z =0 and solve for the electromagnetic fields at
given z > 0. Respectively, we write

2

(11)

E(z,1) = Re [m: a(2) ¢]
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B(z,1)=Re ["—:"3 b(z) ¢]

(12)
m
Jiz,n= Re[“e, Ji(2) “’] (13)
m
N(z,1)=Re [4'”, n(z) ¢] (14)
where
¢=exp[l‘§{z-cr)]. (15)

Note that consistent with the amplifier problem we left in
(11)-(14) only waves propagating in the positive z-direction,
which is also the direction of propagation of the electron
beam. Equations (7) and (8) can be combined and yield on
linearization

de; . wde . w
at e Ak (16)
Similarly, (9) becomes
w d n
[2e )5 e

Assume now that various frequencies characteristic to the elec-
tron beam (such as the plasma frequency wp and the cyclotron
frequency £ =eBy/me) are much less than w. Then we ex-
pect ji, n, @, and b to vary on the scale much longer than
wfe, or more precisely in order of magnitude for X =/, n,a, b

din X
dz

This disparity in scales allows us to simplify (16) and ( 17)
significantly and rewrite them in the following approximate
form:

&2
[+

(18)

da, /i
o He)
a=2 (20)
we

These are the desired field equations, describing the electro-
magnetic wave propagating along the amplifier.

[1l. PERTURBED CURRENT AND ELECTRON DENSITY

At this stage we adopt the kinetic description of the electron
beam, introduce the electron momentum distribution function
flp.z.t), and employ the Vlasov equation

:—{+5‘—ai~e[£'+£)((ﬂ+$)] '£=0-

21
oz c op @n

Choosing the cylindrical coordinate system (&, &, &) in the
p-space and writing f=fo(P;, Py, 9.2) + [1(P:.PL. .2, 1)
where f; is the perturbed part of the distribution caused by
the electromagnetic wave we get in the zero order

o,

0z X ad (22)

=0
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with
i 2
X = (23)
If initially (at z = 0) we have
m
fo(p!vpll¢|0}= 4".‘1 G(ptlpl*¢) (24)
then (22) yields
m
fo(P:, Py, 9.2) = ane? CPPL®- x2). (25)
Consider now the first-order linearized Vlasoy equation
N, i e o By
at v 2 ¢ %9 ap
=e(g+":')--3£a. (26)
Similarly to (11)-(14) let
m .
fl =Re [ﬁ q’(P;nPJ_»¢,Z)¢]- (27)
Then (26) becomes :
s a 9
[““ (‘ ) ';)* % (‘az "X a)]“‘
= 4nedc? (. +2 i: l.) 3}: (28)

Expressing & through @ from (8), it can be shown that in (28)
we can approximate

oXb i Uy d
at Z w[fw(l c)+"’az]""

+(%-¢+a,)8,.

It is convenient now to introduce the following orthonormal
set of base vectors

(29)

i =
8’-\/2‘(8” Ex)

" 1 ;
&= 75 @y ity (30)

Then, on writing @; =a, &, +a_#_, substituting (29) into (28),
using (25) and expanding

w= Y Ape™® (31)
n=-.

fo=— }E Cne™, G= fj Gne'™®. (32)
4ne* | s

Note that the coefficients 44 and A, are the only ones neces-
sary to know in order to find the perturbed current and den-
sity in the field equations (19) and (20). Indeed,

n=ff Wp, dp, dp, d¢ = 211/:/:40914?1 dp:

(33)
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Ju= f f fm‘l'm dpy dp, dp=8.],+E.]. (349)
where
je = w’z'a{f f vy Ay py dpy dp;. (35)

On Solving (29) for Ay and A,,, substituting the solutions
into (33) and (35), and integrating in the resulting equations
by parts in order to eliminate the derivatives of the coefficients
C, with respect to p; and p;, we finally get
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distribution function of the electrons at z=0. At this point,
we restrict our analysis to distribution functions of the form

2

G(ps,py. 9) = 5(Pz Pz0) 8(ps - pro)8(#).  (41)
In this case
Cp= *'“E" (P - Pso) 8(PL - Pro) &n€ = (42)

2np,

where g, = | f: T g exp (~ing) d¢] /2m. Thus, after performing
the integration with respect to p; and p, in (36) and (37), we

n=2nme ffdpl dp, ('[o dz' e ™ {a,Cc ( ~%) (l + 'wAz) \;E: - 0.0 = ain)
v
s (-2 2
z
jo = +5/Zmime? [ fap, ap. (% [= 2u,co-—'c’-§(a-cg-a.qg)]+ j; dz'e"’*‘“{a,c“ :3

Pefzlob-2-2)

ivl
V2ev? [(‘"C%

e (-8)-5)

vz
-a,Cyp) (l +—=
-2 €

jAz
- @.Cy +2sCo) 2 {1 k. "’} (N2 a,c.,}) ‘K, a7
0 2~ wye vz Ywu,
where Az =2z -2' and the constants K. are chosen so that get
jal .o =0,and z e
Jee0 n=Ro+ f de' Aze "***S,(2")
a..=-"—“—’(:- i'E) (38) Y —
Us ¢ + f dz' e 7 Qo(z') (43)
and
P 24
= qp tix. (39) Ji=R.+ f dz' Aze”"*"78,(2")
According to (25) and (32) al Az '
. f dz' e Q.(z) (44)
Cp = Gye™In*, (40)
Note that the last expression for C,, after being substituted wherej} =j.e arxes X0 = /70 Vg0, 08 = l(wfu,,)(l Uso/C),

into (36) and (37), allows one to express n and j, through the

1/vd =1 - vlolc® - uh{'c , and if we define a\ =a,e*™o*,

then
Ro = ° (45)
{ I- _' [ —=—(a gy - ai8 )] L Umuu 5 (@ ge taig. 1)} (46)
”:o?o \/_
Q ﬂ-—"p_[a (l- =) ‘ulﬂ (ﬂ g ‘ E )] {4-}}
0 YoU P2 \/— 1 +8-1
R, = _! -d.go ¥ 'i'_qi (a'g; - ﬂlxn)] + Kaeﬁx's {(48)
Yow 2e 0 -1
ic*v 3 Q v , n’) Q] vy Ruy }
Lo @ v LN LT P ) I LT
= iﬁ*ﬁ_ﬂfnu’ {1‘4,3“ [w ( ::') F Yn] P (a_gg a+g-g) [w(l 2 F 'Yo] oo (a_g, +a.xo)
(49)
ie” w, Uy, RIS v ' o820y iv2Q .}
V(_'Y:{ ; [335':1 t——=- Ve (I + “"'_) (ﬂ'—gz = ﬁpg_g) - \/fc’w (@ _,83 + d,go)] Yo 90z Bods[ - (50)
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Finally, we substitute (43) and (44) into the field equations and

(19) and (20) and we get the following complete set of integro-

differential equations describing the evolution of the electro-

magnetic wave along the amplifier.

% ' 1
=S¥t = —
dz Xods 2‘:3

. {R, +‘£ dz' e““gM[AzS,(z') + Q(.z')]} (51)

a, = é {J; de' ¢ %04t [AzSo(z") + Qo(Z')l} .

(52)

IV. ANALYSIS OF THE FieLp EQuATiONs
Equations (51) and (52) comprise a set of linear integro-
differential equations with all integrals in the form of con-
volutions. Thus, we can solve this system by means of the
Laplace transformation. Namely, if we define for E=E(2)

&= jo— e *£(z) dz

where Im k is assumed to be negative enough to assure con-
vergence, we can apply transformation (53) to the field equa-
tions and get

(53)

’ 1 ]
i(k ¥ xo) @ax = 7 [R skt @ -l-t:k)’ T (agg:-kfk)]
+a.(0) (54)
~ Sox Qok
gy t:"’[('m.‘? + k)7 + @+ (55)

On using the expressions for the transforms Sy, Qok, Rk,
Ssx, and Q.. we can rewrite (54) and (55) in the following
vector form.

€os €4 €45\ [aix a'(0)
€4 €. €y ||ax|=]d(0) (56)
e!'ll e‘-— e;g agk 0
where the dielectric tensor g is given by
Wpgo Q
=i |kFx + —L£ (1 ¥ -Z )] 57)
€ss [ Xo 2¢wre Yol + (
fw; viogsa ( u,o)
- k¥ -= 58
€s5 2E"hﬂz k Xo ¢ ( )
2
UlogWpBsy | l-'m)
Cop=F ——t—— [ (] - 250 ) 4 x5 59
T 2V 2erA? [c (I c x"] 69
vy Wigs v ck v
-y Pwwpgsy [ v _);Xo_n 40
e * V2ey,A? [(l ¢ w w (60)
w3 v
e,,=l—;f§ (l~—c'§"—)(w+ck) (61)

3
A=—w(1—-'—’;‘l)+kv,, (62)
z,=- e o (63)

cA?

The dispersion relation is now defined via Det e =0. The
knowledge of the roots k = k(w) of this dispersion relation
allows one, in principle, to apply the inverse Laplace trans-
formation to the solution @y of (56) and thus find the actual
z-dependence of the amplitude of the wave along the ampli-
fier. Nevertheless, because of the complexity of the dielectric
tensor €, the inversion of the transforms in our case is a rather
complicated algebraic procedure. Usually in such situations
one restricts the study to the search of the roots of the disper-
sion relation only, which allows one to find the asymptotic
z-dependence of spatially unstable modes. We use this ap-
proach in the next section and find roots of the dispersion
relation for several configurations of electron beams. In addi-
tion, in order to avoid complexity of taking the inverse La-
place transformation, but nevertheless willing to find the
z-dependence of the fields, we solve the field equations directly
in the next section. With this purpose in mind, we transform
here the field equations (51) and (52) into a system of first
order ordinary differential equations.

Define

r?‘f di' e85, (2" (64)
(1]

9= f dz' € "2 Qo) - 2'Sulz)] (65)
(1]

where ais +, - or 0. Then (51) and (52) can be rewritten as

' , 1
O Fixedy = o5 Ry +2li +13) (66)
"*‘é @I +19), (67)
and, differentiating (64) and (65),
dly
o S, (68)
% = "“gfg + 0y - 28,. (69)

Equations (66)-(69) comprise a complete set of first order dif-
ferential equations, which can be solved numerically with an
appropriate set of initial conditions.

V. STABILITY ANALYSIS AND DIRECT SOLUTION OF THE
FieLp EQuATiONS
In this section we apply the theory to the following three
electron momentum distribution functions,
1) A randomly gyrophased electron beam, characterized by
g(@)=1,s0thatge = landg, =0(n=1+1,42, ).
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Fig. 1. Schematic of transverse cross sections of various beam con-
figurations. (a) Randomly gyrophased beam, (b) double helical
beam, (c) helical beam. The arrows show the directions of the
transverse velocities of individual electrons in the beam.

2) A double helical beam with g(¢) = 7 [5(¢ - 0) + 5(¢ - m)).
In this case g5,, = 1 and g3, 4; =0 (M =0, £1, £2, - - ).

3) A helical beam, described by g(¢)=2n6 (- 0) and
& =1(n=0,£1,%2,--). These three types of the electron
beam are illustrated schematically in Fig. 1.

In the case of an azimuthally symmetric electron beam
[case 1)] all the off-diagonal elements of the dielectric ten-
sor € vanish and the dispersion relation simply becomes
€.o€__€;; =0. In this case the three possibilities e,,, €__,
and e;; =0 correspond respectively to the right-hand trans-
verse wave, the left-hand transverse wave, and the relativistic
longitudinal space-charge wave. The equation €,,=0 is
identical to the dispersion relation derived in [9] for the
case w/e >>xo. As was shown in [9], e,, =0 yields for A
small enough and large w a pair of complex roots for k, one
of which has a negative imaginary part

w U'Lo
Imk~-—2£- 10 (70)
V27 Cuy
and therefore describes a spatially unstable mode in the

amplifier,
We now consider cases 2) and 3). In case 2) the dispersion
relation is given by

(71)

We see that the left-hand and right-hand modes are coupled.
Nevertheless, as in case 1) the space-charge mode is still un-
coupled. The reason for this is that both distributions 1) and
2) are azimuthally symmetric and, therefore, the average
unperturbed transverse velocity in the beam (v,,) is zero (see
Section I).

In contrast to cases 1) and 2), the distribution function of
the electrons in case 3) is azimuthally asymmetric, and as a
result all the off-diagonal elements of the dielectric tensor are
nonzero. In this case the space-charge mode couples to the
transverse modes. Because of the complexity of the dispersion

(evre__-€,.€.,)€,=0.

Imi (emret)

i " 1

120 150

wic (em)

Fig. 2. Spatial growth rates }mk versus normalized frequency w/e.
The parameters are w},lc =2 em™, xg=3 em’, y9=5, and
vjg/e = 0.1. (a) Randomly gyrophased beam, (b) double helical
beam, (c) helical beam.

relation in cases 2) and 3), their analytic study becomes
difficult. We therefore find the roots numerically for the
sample case: wpfe? =2em™, xo=3em™, 7, =5, and
vjofc=0.1. This set of parameters is typical of a collective
type Raman free electron laser. In Fig. 2 we compare the
computed growth rates for the three distribution functions
1), 2), and 3). The solid lines represent the solutions of
the dispersion relation for the sample case, and the dots were
found by solving the field equations directly for large values
of z, where the exponentially growing modes with the largest
growth rates are dominant. We see from the figure that in
case 1) (the randomly phased electron beam) the maximum
growth rate is 0.044 cm™ in agreement with (70). For the
double helical beam [case 2)] the growth rate at maximum i§
0.087 em™. The growth rates found for the helical beam
[case 3)] agree well with the results of the cold fluid theqpy
[10] and for both cases 2) and 3) are comparable in m.
tude with the growth rates one has in conventional FELj;
operating in similar regimes [11]. Thus, we see in Fig. 2 thy
the coupling between the transverse modes in case 2) enhancgs
the gain, In case 3) the enhancement effect comes from tiw
coupling to the space-charge modes, which enables the axis}
density bunching to drive the instability.

The improved operation of the amplifier in the cases of the
helical and double-helical beams is demonstrated in Fig. ~
where the actual z-dependence of the gain along the amplifier
is shown for aforementioned three distributions in the sample
case. These results were obtained by solving the field equ.-
tions (66)-(69) directly. We see in the figure that the
ponential growth for distribution 1) becomes dominant onh
after the beam passes 60-100 cm along the device, while in the
cases of the helical and double-helical beams the growth 1,
exponential already at ~30 cm and its actual value quickly
becomes very high.

These results should motivate attempts to generate helical
beams for a practical nonwiggler FEL. One way is to shoot
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Fig. 3. The square root of the relative power gain P=|c(x}mn(0‘)l
versus the interaction distance in the sample case for w/e = 120 em™L.
(a) Randomly gyrophased beam, (b) double helical beam, (c) helical
beam.

the beam at an angle to the magnetic field. Perhaps more
promising is to pass the beam through a magnetic “kicker”
which will give all the electrons the same perpendicular mo-
mentum component,

In conclusion,

1) We have presented a kinetic theory of nonwiggler FEL
operating in strong uniform guide magnetic fields. The am-
plifier problem is reduced to a solution of a system of first
order ordinary differential equations for the electric com-
ponent of the electromagnetic field.

2) Our numerical examples demonstrate the potential of
operating 3 nonwiggler FEL in the collective regime, where
the spatial growth rates can be comparable to those in the
convential FEL’s,

T3) The form of the azimuthal distribution of the momen-
" of the electrons in the beam in the nonwiggler FEL is
fremely important and influences the growth rates in both
abir magnitude and form. The asymmetry in the azimuthal

distribution results in higher gains in the system due to the

f:?{ilp!ing of the transverse and space-charge modes.

3
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