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Mirrors linked by toroidal segments may be stabilized by ponderomotive force produced by
electromagnetic waves at the ion-cyclotron frequency. This may provide a simple alternative to
tandem mirrors and bumpy tori. Approximate calculations of equilibrium, stability, and diffusion

are given.

I. INTRODUCTION

We consider the possibility of stabilizing toroidally
linked mirrors by the ponderomotive force of electromag-
netic waves at the ion-cyclotron frequency. Ponderomotive
stabilization has been demonstrated in a straight tandem
mirror.! In tandem mirrors,>* an axial electrostatic poten-
tial reduces the axial particle losses. Creating this potential is
complicated, and trapped particle modes,* rotational insta-
bilities, and other modes® may be excited in the process. A
much more direct and simple way to eliminate end losses is
to add toroidal segments linking the ends of two or more
mirrors.

The toroidal mirror resembles a bumpy torus or ELMO
bumpy square.® In these devices, stabilization is provided by
hot electron rings. This method is limited by the requirement
that the hot electrons must not respond to the fluid motion of
the bulk plasma.”® Toroidal mirrors do not rely on a hot
electron population and are geometrically simpler (no
bumps).

Equilibrium, stability, and particle diffusion are consid-
ered. Our equilibrium and stability calculations are based on
the long thin magnetofluid ordering®'° including toroidal
curvature!! and ponderomotive force.»'?"'* We assume low
beta. In zero order, the pressure surfaces have concentric
circular cross sections. In first order, we obtain the outward
shift of the pressure surfaces, which is opposite to the inward
shift in bumpy tori.

We consider stability in the short-wavelength limit.
Equilibria are found to be stable for interchange modes, ex-
cept for a small unstable region near the magnetic axis,
which should flatten the pressure profile in the center. Bal-
looning modes in the toroidal sections do not impose a re-
strictive beta limit. Finite Larmor radius effects, of course,
would be expected to be strongly stabilizing.

We then consider particle orbits and diffusion. The or-
bits are affected by the electrostatic potential, which we do
not calculate, but estimate to be e¢p ~ nkT. The diffusion as-
sociated with the orbits is estimated using mappings.'®!’
The diffusion rate is typically comparable to that of neoclas-
sical plateau regime, and scales approximately as the inverse
square of the mirror ratio.

3594 Phys. Fluids 28 (12), December 1985

0031-9171/85/123594-04%$01.90

. EQUILIBRIUM

The magnetic geometry consists of N mirror machines,
N2, connected at the ends by N toroidal segments, each of
length 27R /N. Each mirror machineis divided into a central
cell of length L, and two plugs of length L,. The cross sec-
tions are circular. The magnetic field strength in the toroidal
segments is B,, and in the central cells B,, with mirror ratio
M = B,/B,> 1. The cross-section radius of the central cells
is a; that of the toroidal sections, a/M /2, by flux conserva-
tion. The central cells are irradiated with ICRF (Ion-Cyclo-
tron Radio Frequency radiation). The plugs are transition
regions in which the magnetic field changes from B, to B,.

A low beta, long thin equilibrium satisfies, in coordi-
nates (7,0,z), where the magnetic field is predominantly in the
z direction, '*!2

B:V{J./B)+2kXVp+2/B+ VW XVn+2/B=0,
1)
B:Vp=0, 2)
where B is the magnetic field, J, is the current, k is the curva-

ture, p is the pressure, 7 is the density, and W is the pondero-
motive potential, given by!>!4*

e _|E.|?

=Pl 3
dmo (@ — Q) G
where E | is the amplitude of left circularly polarized waves
with frequency w, m; is the ion mass, and ) = eB /m;c.
A vacuum field line in leading order satisfies
r=ap, 4)
where o = oz} and p = const on a field line; the curvature k
is given by'®!!
1 d%ocr? rcos@
K= V(— —— ) , 5
o dz? 2 R Gl
where the toroidal curvature 1/R vanishes outside the toroi-
dal segments and do/dz vanishes outside the plugs.
The magnetic field has the form

B = VyX2 + B,VC,

, (6)
1 dor ( r) B
=z————+0(—), Bu =—2 ’
£ o dz 2 + R o?
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where 7/R is assumed small, and B, is constant, by axial flux
conservation.

In the absence of toroidal curvature, 1/R = 0, we have
B = B, {z), ¥ = 0,and p = p,(r). A shear Alfvén displacement
of the form

E=Vux2/B, (7)
produces perturbations of ¢, p, and n:

¥, =(B-Vu)/B,, (8)

1 dp ou 1
= ————— 9
=T e B ®l
n,= —_l..d_ngu__l_‘ (10)

r dr 30 B

Assuming that £ is small, the displacement stream function
.u satisfies, substituting (8)—(10) into (1) and using (5),

d%u
vz
az
. az 6 9%
=D, 0-—D( g U , cos ) 11
p S e T, aer 4
where
w194 4 1329°
T p o G p* o6’
K= _l‘_alld_”gf_, (12)
p* dp dp B
_2° d’o dp, (13)
pB: dz2 dp’
D 20°_dp, (14)
RBGp dp

For small D& S~K we can neglect the last terms on the
right side of (11) proportional to Du. This approximation is
roughly that a/(RM*/*)¢(a/L,)* and is improved by having
a mirror ratio M » 1.

We obtain an approximate solution of (11) for the case in
which n,, po, W, have parabolic profiles:

Po=3BB3(1 —p*/a’}, W= Wyp/af. (15)
Expanding

u = [u,( p/a) + us( p/a)’ +
gives a set of equations
8 9%

e

( n?+44n+3 ) i’_

a? az?
where S and X' depend only on z. The boundary condition
u =0, p = a requires

Uy +u;+-:--=0. (17)
Because of the large coefficient (n* + 4n + 3), the u, con-
verge rapidly; thus, we shall take only the first two terms
uy, us. Using the condition (17) in the n = 1 equation [(16)]
gives

. .Jsin

Uy + (K—Sh, =
(16)

Uy +(S—Ku, =0, n>1,

8 3%u
P 1+ (K—S)u,=D. (18)
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An interchange-type solution can be obtained if
(K — S)L %a*<1, where L is the length of the torus,

uy=(D)/ (K-S}, (19)

where the bracket denotes a z average.
To calculate the shift and to compare with a straight
mirror, introduce the constant A,

(K)=@R+1KS), (20)

where A =0 is the marginal stability criterion for inter-
change (flute) modes in a straight mirror. We estimate S by
assuming that in a plug of length L, =z, — z,,

L =31+M7")+ 41 —M ~)cos[m(z — 2,)/L, ] ,
where M is the mirror ratio; in the central cell o 2 = 1, and in

a toroidal segment o 2 = 1/M.
The average curvature due to 2N plugs is

R (= R S
21

where L is the total length of the magnetic axis, with N cen-
tral cells of length L., 2N plugs of length L,, and toroidal
segments of length 27R.

The average curvature due to the toroidal segments is

(03/R) =2a/(M>?L).

Note that R cancels out of this expression.

From (7) and (19) the axis shift is given by

1/2

A_16 L M7 22)

a 37N al (M— 1)
The shift A depends only on L,/a, N, and 4, but is indepen-
dent of R /a. For A > 0, necessary for stability, the axis shift is
outward, not inward as in the Elmo Bumpy Torus.® The shift
may be made small by choosing a large mirror ratio M, and
increasing A and N.

For example, letting L, =ma, A=1, M=9, N=2
gives

Ala=}.
This example shows that it is possible to obtain a small shift
for reasonable parameters. To obtain the equilibrium, the rf
energy density, or W, must be increased by a factor 1 4+ A4
over the value required for marginal stability to interchange
modes in a mirror with no toroidal segments, D = 0.

li. STABILITY

We now consider interchange stability, including the
toroidal curvature. Linearizing about the equilibrium and
assuming

u = u;( p,0,z)exp{im 0},
with m> 1, we obtain from (11)

192
2 o7
where we have assumed u, is localized about 6 = 0, where
the toroidal curvature is most destabilizing.
Proceeding as before, the marginal stability condition is

=(D)/A(S)

u +(K— S)“t—ﬁul» (23)

Strauss, Friedland, and Kishinevsky 3595

Downloaded 04 Sep 2003 to 131.243.171.238. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



or
p=A.
Thus, for p < A, the interchange modes are unstable, and we
should expect that, dynamically, they should produce a flat-
tening of the n, p profiles for p<Aa. Taking finite Larmor
radius effects into account could stabilize this central region.
In any case, outside a small central region, the interchange
modes are completely stable.
To estimate ballooning stability, multiply (23) by « and
integrate over z to obtain the variational integral

2
5w = [ ae| (2 ) — 0p + 5% — Ko |
74

which vanishes for marginally stable perturbations. Choose
a trial function

U, = cos(mz/2z)),  |2|<z,

=0, 2| >z,,

where z, = 7R /N + L,. This makes u, nonzero in a toroi-
dal segment and the ad_]acent plugs, in which the curvature is
destabilizing, while #, = 0 in the central cells to avoid the
stabilizing ICRF. The most unstable field line is at p = a.
Since we only want an estimate, we replace S by its average
over the plug. The condition §W yields the beta limit

Y R sin
p= 8 N?M'%g (X+ :x)
;3 X (1— smﬂ)]_’, 24)
6 1T-x\' iy

x=[1+(NL,/7R)]"".

As an example, let N=2, L, =3ma/2, R =3a, M=9.
Then S < 0.6, which is not restrictive.

On the basis of magnetohydrodynamics (MHD) consid-
erations, it appears quite feasible to link mirrors together
with toroidal sections. We remark that although we have
specialized to mirrors stabilized by rf, similar results apply
to mirrors stabilized by minimum B cells. In this case, (K )
represents the average positive curvature due to the mini-
mum B cells, which must be increased by a factor 1 + 4,
A ~1, to add toroidal segments.

IV. TRANSPORT

Turning now to diffusion, we limit our discussion to
diffusion associated with particle orbits. As for microinstabi-
lities, we observe that the mirror loss cone is filled, and the
curvature driving trapped particle modes in the mirrors is
favorable. Losses due to the waves at the ion-cyclotron fre-
quency should be the same as in a straight mirror.

The ion drift velocity is given by

vp = [mv* + V(e — W)} Xz/(eB), (25)
where v” = v} + v}, and a low beta equilibrium has been as-

sumed. Excluding the toroidal drift, the z-averaged drift ve-
locity is given approximately by

Ar’a?
(voe) = LA ( + a) . (26)
oo v; LL,
where
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, b=——, 27
% a T, B, 7
v, is the ion thermal speed, and & is the Larmor radius in the
central cell. For e¢~T, ~T;, we have a~1; the drift is
dominated by the electrostatic EXB rotation.

In the toroidal sections,
dp _ v sin6
dt MVY%, R’
2 2
% M"sz (:R cos 6 +a>
The z velocity is given by

dZ ) vim 172
a =y =W -——=) -
g

where v =42, + vﬁ,,, = const, and v,,,, v, are velocity
components in the central cell.

Particles trapped in the mirrors do not experience toroi-
dal drift or neoclassical diffusion. A particle is in the loss
cone of the mirror if

v = [vF, — (M~ 103,,]'*>0.

We shall neglect particles trapped in the toroidal seg-
ments; as long as a#0, they do not make large excursions.
This differs from tokamaks, where a is replaced by v B, /B,,
which vanishes at the turning points of trapped orbits. We
then approximate vy as piecewise constant in the mirrors and
toroidal sections. We also neglect a in the toroidal sections,
since it is essential only for toroidally trapped orbits. These
simplifications allow the orbits to be easily integrated, giving
a mapping

en+l =0n +(0,
(28)

=yn +§’

Xnt1l =Xns Yni1
where
X, =pncosb,, y,=p,sinb,,
§= 277'(5/M”2)(”2/U||:Ui) ’
vt L ( /117'2(12)
o=——"|a+ .
a*v, Vim LL,

In the special case w = const, the orbits are not confined, but
diffuse outward. We have

Proi =Pt 420,500, +£7.
The sin @ term averages out, if w is irrational, giving a diffu-
sion rate per step

‘DO = g 2 .

The diffusion coefficient is obtained by dividing D, by
the transit time over which diffusion occurs,

7=27R,/[v}, — (M — 1)}, ]2,

multiplying by an assumed Maxwellian distribution func-
tion, and integrating over v,,,,, V), :

27 28%, f f [x2/(M— 1) + p2)?
M(M— 1)R 2)1/2
Xexp[ —x¥/(M —1) - 2]x dxdy,

wherex = (M — 1)"%v,,, /v,y = v, /v;. The integral is tak-
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en over particles in the mirror loss cone, x <. There is no
singularity at x = y, v, = 0. For large M, and assuming the
integrand is significant only for x~y~1, we approximate
x2/(M — 1)=~0 and obtain

D =27'26%,/M(M — )R, (29)

which resembles a neoclassical diffusion coefficient in the
plateau regime. The diffusion is strongly reduced by
M (M — 1), which is partly due to the smaller Larmor radius
in the toroidal sections, and partly due to the loss cone vol-
ume.

The same result holds in the more general case in which
a is a function of p. Linearizing and integrating the orbits
gives a form of the standard map'®

Pn+1 =pn +§Sin0n ’

0n+l =0n +_42pn+l +(l)0.
dp

The stochasticity parameter
dow
=— £.
Ip

If da/dp~1/a, 8/a<]1, then for most particles K <1, and
the orbits are not stochastic. However, for barely untrapped
particles with v, =0, K > 1. For these particles, the diffusion
per step is D,, and, assuming they dominate the diffusion, we
obtain (29).

To summarize, toroidally linked mirrors appear to be a
reasonable alternative to tandem mirrors and bumpy
squares. Although we have emphasized circular cross-sec-
tion mirrors stabilized by ponderomotive force, essentially
the same analysis applies for minimum B stabilized mirrors.

17—

19 K is given by
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